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Abstract: H2O2 generation via an electrochemical two-electron oxygen reduction (2e− ORR) is a
potential candidate to replace the industrial anthraquinone process. In this study, porous carbon
catalysts co-doped by nitrogen and oxygen are successfully synthesized by the pyrolysis and oxidation
of a ZIF-67 precursor. The catalyst exhibits a selectivity of ~83.1% for 2e− ORR, with the electron-
transferring number approaching 2.33, and generation rate of 2909.79 mmol g−1 h−1 at 0.36 V (vs.
RHE) in KOH solution (0.1 M). The results prove that graphitic N and –COOH functional groups
act as the catalytic centers for this reaction, and the two functional groups work together to greatly
enhance the performance of 2e− ORR. In addition, the introduction of the –COOH functional group
increases the hydrophilicity and the zeta potential of the carbon materials, which also promotes the
2e− ORR. The study provides a new understanding of the production of H2O2 by electrocatalytic
oxygen reduction with MOF-derived carbon catalysts.
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1. Introduction

Hydrogen peroxide (H2O2) is regarded as one of the most significant chemical com-
pounds [1–3]. It is serves as both a desirable energy carrier and a green oxidant and
disinfectant. It is comprehensively applied in the industries of medicine and environmental
protection, such as the bleach of paper pulp and textiles [4–6]. To date, the majority of
the industrial processes for producing H2O2 depend on the process of anthraquinone
oxidation. This is a complex and energy-intensive procedure, with a large quantity output
of chemical waste [7–9]. Since Beal first reported the electrochemical production of H2O2 in
the 1930s [10], the electrochemical reduction of oxygen has been gradually realized as a
potential approach for the generation of H2O2 [11–14].

In order to produce H2O2 in an electrochemical way, it is crucial to explore novel
electrocatalysts with superior activity, selectivity, stability and low cost [11]. Compared
to noble metals and alloys (Pt-Hg [13], Pd-Au [15] and Pd-Hg [16]), carbon materials
were extensively explored for their good abundance, low cost and easy functionaliza-
tion [17–23]. The electronic structure of carbons is regulatable by some dopants such
as heteroatoms [24,25], and the heteroatoms themselves can also act as active centers for
ORR [26–28], thereby improving the catalytic activity. Particularly, it is of importance
to dope nitrogen (N) in facilitating the oxygen reduction reaction through two electrons
(2e− ORR) for H2O2 production [29–32]. It is widely accepted that the doping of nitrogen
into the carbon materials can drastically lower the overpotential of 2e− ORR by the reduc-
tion in the Gibbs free-energy of O2 reduction and the optimization of the binding energy
of HOO− [31,33]. In alternative studies, the electrocatalytic activity of oxygen-substituted
carbon materials is investigated. Xia et al. [34] explored a convenient approach to oxidize
commercial carbon blacks with concentrated nitric acid. Oxygen functional groups were
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then introduced as active sites to increase the H2O2 selectivity up to ~95%. Recently, carbon
materials with two kinds of active centers in the framework were prepared to further
promote the catalytic property for H2O2 electroproduction. For example, Zhao [35] et al.
prepared the COOH-terminated N-doping carbon aerogel. The production rate for H2O2
was as high as 0.071 mmol g−1 h−1, due to the synergy of the N atoms and the –COOH
groups. Very recently, it was found that the significant interaction between the pyridinic N
and carbon-based groups (–COOH/C–O–C) helped the desorption of intermediates *OOH,
which subsequently enhanced the H2O2 selectivity, via the density functional theory (DFT)
computation [36]. Therefore, the type and doping mode of dopants play crucial roles in
electrochemical 2e− ORR processes. In addition, the relationship between solvation effect
and ORR selectivity has also been reported [37,38]. Therefore, it is necessary to investigate
the hydrophilicity and charge of the catalyst.

Metal–organic framework materials (MOFs) have been widely considered as poten-
tial templates to produce carbon materials with adjustable heteroatoms, stable carbon
skeleton structure, high specific surface area and abundant pore structures [39]. The carbon-
based catalysts derived from MOFs are widely studied to be promising in ORR/OER
(oxygen reduction reaction), HER (hydrogen evolution reaction) and CO2RR (CO2 reduc-
tion reaction) [40–44]. For the electrochemical production of H2O2, Sun [45] et al. and
Gao [46] et al. demonstrated that MOF-derived Co–N–C single-atom catalysts (SACs)
displayed good 2e− ORR properties in acidic solutions, whereas the same Co–N–C SACs
was found to show mainly 4e− ORR performance in alkaline solutions [47–50]. In some
other studies, MOF-derived carbon materials, such as layered porous carbon derived from
MOF-5 [51], F-doped porous carbon prepared from MIL-53(Al) [28], NCPs synthesized by
ZnPDA (zinc pyridine-2,6-dicarboxylate) [52] and ZIF-8-derived N-doped porous carbon
p-ZIF [53], are considered for the electrochemical production of H2O2 in acidic solutions.
Concerning the potential applications of H2O2 in industry, it is also interesting to produce
H2O2 in alkaline solutions. In the present work, ZIF-67 (zeolitic imidazolate-67) was cho-
sen as the precursor to synthesize porous carbon materials with a uniform distributed N
dopant. The HNO3 (nitric acid) oxidation treatment was carried out to introduce –COOH,
and at the same time to remove metal Co from the carbon framework. Finally, the carbon
materials co-doped by N and –COOH were used as catalysts to investigate the effects of
microstructure, dopant type, contact angle and Zeta potential on the property of 2e− ORR.
The ultra-high formation rate of 2909.79 mmol g−1 h−1 for H2O2 was reached in KOH
solution (0.1 M), indicating that this material is a promising 2e− ORR electrocatalyst.

2. Experimental
2.1. Reagents and Chemicals

2-Methylimidazole and cobalt nitrate hexahydrate (Co(NO3)2·6H2O) were provided
from Aladdin Reagent Co., Ltd. (Shanghai, China); 5% Nafion solution was obtained from
Aldrich chemical Co., Inc.(Du Pont, Wilmington, DE, USA). Nafion 115 membrane was
obtained from Dupont. Carbon cloths (W0S1009) were purchased from Taiwan Carbon En-
ergy Technology Co., Ltd.(Sinero Technology Co., Ltd. Suzhou, China). Methanol (≥99.5%),
ethanol (≥99.5%), nitric acid (65%) and hydrochloric acid (36~38%) were provided from
Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai, China). All chemicals were
employed without further treatment.

2.2. Synthesis of Catalysts

Synthesis of ZIF-67: The dissolution of Co(NO3)2·6H2O (0.5850 g) and 2-methylimidazole
(0.9850 g) was carried out in methanol (50 mL) to obtain two solutions. The 2-methylimidazole
solution was charged drop-wise into the Co(NO3)2 solution with vigorous stirring. After
stirring for 3 h at ambient temperature, the mixture was kept static for 12 h to obtain the
sediment, followed by centrifuging, washing with ethanol and vacuum-drying at 70 ◦C for
12 h. The collected product was named ZIF-67.
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Synthesis of NPC-900: A portion of ZIF-67 powder was heated in flowing N2 at 900 ◦C
for 3 h. The carbonized product was then immersed in 15% concentration HCl solution,
followed by stirring slowly for 12 h to eliminate the residual cobalt. After being washed
with deionized water to pH = 7, the black powder obtained was vacuum-dried at 70 ◦C for
12 h. The collected product was named NPC-900.

Synthesis of O-NPC-T: In a typical pre-oxidation procedure, NPC-900 (50 mg) was
charged into 100 mL of 65% nitric acid. The obtained solution was refluxed at 120 ◦C for
3 h, followed by washing to pH = 7. The black products were then vacuum-dried at 70 ◦C
for 12 h and named as O-NPC-120. For comparison, the pre-oxidation was also performed
at 80 ◦C and 100 ◦C, and the obtained products were named O-NPC-80 and O-NPC-100,
respectively.

2.3. Characterization of Catalysts

The catalyst crystal structure was identified by X-ray diffraction (XRD, Bruker AXS
D8: Bruker, Karlsruhe, Germany) under Cu Kα radiation. The morphologies and structures
were observed by field emission scanning electron microscopy (FESEM, ZEIES-Sigma 500:
ZEIES, Munich, Germany) and transmission electron microscopy (TEM, JEOL-JEM-2100,
JEOL Ltd., Tokyo, Japan). Fourier-transformed infrared spectroscopy (FT-IR, PE spec-
troscopy ASCI: Bruker, Karlsruhe, Germany) was employed to study the formation of
ZIF-67 precursor and the changes in chemical bonds during pyrolysis. X-ray photoelectron
spectroscopy (XPS, KRATOS-AXIS-ULTRA-DLD: KRATOS, Manchester, UK) was used to
obtain the surface composition of the catalyst. The C1s, O1s and N1s XPS spectra were ana-
lyzed with Casa XPS software version 2.3.23, with 284.6 eV as the charge-corrected reference
for C 1. The degree of carbon defects was characterized by Raman spectroscopy (Raman,
HORIBA-Lab RAM-HR: Jobin Yvon, Longjumeau, France). The specific surface area and
pore size distribution of the catalysts were measured by the Micromeritics Instrument
TriStar II 3020 ( Micromeritics Instrument, Norcross, GA, USA) for N2 adsorption-analytical
isotherms, on the basis of the Brunauer–Emmett–Teller (BET) equation and the Barrett–
Joyner–Halenda (BJH) method. UV-Vis spectrum was collected on Shimadzu UV-2600
UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan). The Zeta potential of the material
surface in aqueous solution was determined using Malvern Zetasizer Nano ZS90 (Malvern
Instruments Ltd., Malvern, UK). The content of metallic Co in the material was determined
using ICP-MS Aglient 7800 (Agilent, Santa Clara, CA, USA).

2.4. Electrochemical Measurements

An electrochemical workstation (CHI 760 B) and Pine Rotator (Instrument model:
AFMSRCE, Pine Research Instrumentation, Inc., Durham, NC, USA) were employed to
explore the catalytic properties of the electrocatalysts at 25 ◦C. All the electrochemical
characterization was performed in a standardized three-electrode cell. An RRDE (RDE:
0.2475 cm2, Pt ring: 0.1866 cm2) loaded with catalysts was taken as a working electrode, and
a Pt-mesh and saturated Hg/HgO (1 M KOH) electrode were taken as a counter electrode
and a reference electrode, respectively.

Preparation of RRDE working electrode: The dispersion of the catalyst (5 mg) in
an aqueous solution with 1960 µL of isopropanol solution (Visopropanol: VH2O= 1 : 3) and
Nafion (40 µL, 5 wt.%) was conducted under 2 h of sonication, to form the homogeneous
catalyst ink. The ink (10 µL) was then transferred onto the RRDE surface, followed by
drying at ambient temperature in air to synthesize the working electrode. Additionally, the
catalyst loading amount was 100 µg/cm2.

The measurements of cyclic voltammetry (CV) and linear sweep voltammetry (LSV)
were carried out from 0 to 1.0 V (vs. RHE) in N2- or O2-saturated 0.1 M KOH electrolytes
(pH 13) at a scanning speed of 50 mV s−1 and 10 mV s−1, respectively. The rotation speed
of RRDE was 1600 rpm. The ring potential was set at 1.2 V (vs. RHE) to quantitatively
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detect the H2O2. The conversion of all the potentials into reversible hydrogen electrodes
(RHE) was performed by the subsequent equation:

ERHE = EHgO + 0.0591× pH + 0.098 (V) (1)

The electron transfer number (n), the H2O2 selectivity (H2O2%) and the Tafel slope η

are computed from the RRDE polarization curve with the subsequent equations:

n =
4× N × |Idisk|

N × |Idisk|+ Iring
(2)

H2O2% =
200× Iring

N × |Idisk|+ Iring
(3)

η= b log jk+a (4)

where Idisk is the disk current (mA cm−2), Iring is the ring current (mA cm−2). N is the
collection efficiency of Pt ring, which is calculated to be 0.35 (the collection efficiency is
obtained with a one-electron reversible [Fe(CN) 4−

6 ]/[Fe(CN)3−
6 ] system in K3[Fe(CN)6]

solution). j indicates the kinetic current density and b refers to the Tafel slope, jk is kinetic
current (mA cm−2).

According to the K-L equation, the kinetic current density is calculated as follows:

1
j =

1
jk
+ 1

jL (5)

jL = 0.62nFD
2
3
O2

υ−
1
6 ω

1
2 CO2 (6)

where j is the measured current density and jk and jL are the kinetic current and diffusion-
limited current densities, respectively. n is the number of electrons transferred, F is the Fara-
day constant (96,485 C mol−1), DO2 is the diffusion coefficient of oxygen (1.9 × 10−5 cm2 s−1),
õ is the kinematic viscosity of the solution (0.01 cm2 s−1), ù is the angular velocity (in rpm),
CO2 is the bulk concentration of O2 (1.2 × 10−3 mol L−1).

2.5. Determination of H2O2 Production and Faradaic Efficiency

In order to eliminate the occurrence of the reaction of the H2O2 generated on the
counter electrode, the tests were performed in an H−type electrolytic cell equipped with a
pretreated Nafion 115 separator. The specific test process was as follows: the catalyst ink
was coated on commercial carbon cloth (1 × 1 cm2) and dried at ambient temperature to
prepare the working electrode. The cell was filled with KOH solution (40 mL, 0.1 M). Before
testing, the cathode compartment was purged with a high-purity oxygen gas for no less
than 30 min, and oxygen was kept continuously supplied to the cathode compartment. In
situ electrolysis was performed at 0.26 V, 0.36 V and 0.46 V by chronoamperometry for 3 h.
A certain amount of electrolyte was taken every 30 min, and the quantification of generated
H2O2 (HO2

−) was performed by the Ce (SO4)2 titration approach.

2 Ce4++ H2O2 → 2 Ce3++ 2 H++ O2 ↑ (7)

According to the concentration of reduced Ce4+, the Faradaic efficiency (FE%) for
H2O2 formation can be obtained with the subsequent formula:

FE% =
QH2O2

Qtotal
× 100% =

2 CH2O2 V × F
Qtotal

× 100% (8)

where QH2O2 is the charge consumed to produce H2O2 (C), Qtotal represents the total charge
(C) passed in the chronoamperometric test in 3 h, which was realized by the subtraction
of the charges measured in nitrogen-saturated solution from those in oxygen-saturated
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one, CH2O2 refers to the concentration of H2O2 produced (mol L−1), V is the volume of
electrolyte (L), i denotes the current during electrolysis (A), F indicates Faraday’s constant
(96,485 C/mol) and t is the electrolysis time (s).

3. Results and Discussion
3.1. Synthesis and Characterization of Catalysts

Figure 1a presents the XRD patterns of the prepared material. Clearly all the diffraction
peaks are located exactly in the same positions as published in the literature [54,55], proving
the successful formation of single-phase ZIF-67. Figure 1b shows the XRD pattern of the
pyrolysis product and the oxidation products that were pre-treated by concentrated nitric
acid at different temperatures. All these materials show diffraction peaks at 25.99◦, 42.66◦,
53.62◦ and 77.66◦, attributed to the (002), (100), (004) and (110) planes of graphitic carbon,
respectively. In the pyrolysis product, the small diffraction peaks at 44.18◦, 51.56◦ and 75.78◦

correspond to the (111), (200) and (220) crystal planes of metallic Co (JCPDS: 15-0806). The
intensities of these diffraction peaks gradually decrease with the increase in pre-oxidation
temperatures. At 100 ◦C and 120 ◦C, these diffraction peaks disappear, indicating that
the Co element in the material is completely removed after the nitrate acid pre-oxidation
treatment. To further study whether there is residual cobalt in the catalyst, the content
of metallic Co in the catalyst material is measured by ICP-MS, and the result is shown in
Table 1. The Co content decreases with the rising temperature of pre-oxidation. When the
pre-oxidation temperature reaches 100 ◦C and 120 ◦C, the content of metallic Co is less than
the detection limit (0.01%). This result is consistent with the EDS data (0.03%, Figure S2d),
indicating almost no metallic Co in the catalyst.
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Table 1. Determination of Co content in catalysts by ICP-MS.

Sample NPC-900 O-NPC-80 O-NPC-100 O-NPC-120

Co (wt %) 0.89 0.16 <0.01 <0.01
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Figure 1c shows the FT-IR spectra of corresponding studied materials. For ZIF-67,
the typical FT-IR spectrum is obtained [55–58]. The peak at 3425 cm−1 is attributed to the
–OH stretching vibration; 1580 cm−1 is due to the C=C stretching vibration; the peaks at
1417 cm−1 and 1303 cm−1 can be assigned to the C=N and C−N stretching vibrations.
The other two peaks at 1141 cm−1 and 755 cm−1 belong to the C–H and C=N bending
vibrations. In summary, all the peaks are derived from the vibrations of the imidazole
ring. In addition, the peak at 425 cm−1 refers to the vibration of Co–N coordination
bonds. Therefore, combined with the XRD characterizations, it shows clearly that ZIF-67 is
successfully synthesized. After the pyrolysis treatment at 900 ◦C, the vibration peaks of
–OH and the imidazole ring disappear, indicating the decomposition of the ZIF-67 precursor
to form carbon-related products. After the pre-oxidation treatment, two newly developed
peaks at ~1700 cm−1 and ~1205 cm−1 are attributable to the stretching vibration of C=O
and C–O, showing the successful integration of O−containing functional groups into the
pyrolysis products.

Carbon defect is a significant indicator to determine the catalytic ability of carbons
for H2O2 formation via the 2e− ORR pathway [51,59]. To characterize the possible carbon
defects in our material, Raman spectrum is collected (Figure 1d). The D-band and G-
band appear at ~1350 cm−1 and ~1600 cm−1 in the four studied materials. Typically,
the intensity ratio of D-band to G-band (ID/IG) describes the relative defect contents in
carbon materials, mainly due to the fact that D-band and G-band are associated with
the disordered and ordered crystalline sp2-C, respectively [23]. It is generally believed
that the larger the ratio, the higher the amounts of defects. However, it is found from
Figure 1d that the ID/IG are 0.99, 0.99, 1.01 and 1.00 for NPC-900, O-NPC-80, O-NPC-
100 and O-NPC-120, respectively. This result indicates that the relative carbon defect
contents are quite similar in the four studied carbon materials. The specific surface area
and porosity of the material are further calculated by N2-sorption isotherms. At the relative
pressure of 0.4 < p/p0 < 1.0, the hysteresis loops are found in all samples, indicating the
generation of mesoporous structures (Figure 1e). The curves of pore diameter distribution
verify the existence of a mesoporous structure with apparent peaks of around 2.3~4.3 nm
(Figure 1f). Meanwhile, stacking pores with pore size around 5.5~10 nm are also observed
in NPC-900 and O-NPC-80. The calculated pore volumes of NPC-900 (0.4913 cm3/g) and
O-NPC-80 (0.4196 cm3/g) are significantly larger than those of O-NPC-100 (0.3822 cm3/g)
and O-NPC-120 (0.3223 cm3/g). Furthermore, the Brunauer–Emmett–Teller (BET) surface
areas of NPC-900, O-NPC-80, O-NPC-100 and O-NPC-120 are 226.40 m2/g, 157.65 m2/g,
92.11 m2/g and 56.58 m2/g, respectively. The pre-oxidation temperature increases with
the gradually decreasing specific surface area of the material, probably due to the collapse
of the pore structure. This conclusion can also be drawn from the observation of the
microstructure evolution of the catalysts (Figures S1 and S2).

3.2. 2e− ORR Performance of Catalysts

The half-wave potential (E1/2) is a key index to assess the ORR electrocatalyst activ-
ity [60]. Based on the linear sweep voltammetry plots, the E1/2 of NPC-900 is 0.78 V, while
it is 0.74 V, 0.75 V and 0.73 V for O-NPC-80, O-NPC-100 and O-NPC-120, respectively
(Figure 2a). The E1/2 of O-NPC-120 is very similar to the thermodynamic potential of 2e−

ORR (≈0.7 V) [56,58], indicating that it has the best 2e− ORR activity. Meanwhile, the ring
current of O-NPC-120 reaches 1.80 mA cm−2, which is the highest one among the four
studied materials. The CV curves of the catalysts indicate obvious ORR catalytic activity of
these carbon materials (Figure S4). Figure 2b,c show the electron transfer number and selec-
tivity of H2O2 that were obtained according to the plots of Figure 2a. Clearly, O-NPC-120
shows the best performance, with n = 2.33, and the selectivity reaches 83.10%. The electron
transfer number was further calculated through the K-L equation (Figure S5), and the result
was found to be consistent with the RRDE measurement. To gain a further understanding
of the 2e− ORR performance, the Tafel slope values are calculated and the results are
presented in Figure 2d. It is found that the values are between 35 and 47 mV dec−1 for
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the four studied materials. This value is smaller than some carbon catalysts reported in
the literature [23,61–66], indicating that ZIF-67-derived carbon has much faster kinetics
for the 2e− ORR reaction. The effects of catalyst loading are studied and the results are
presented in Figure S6. Clearly, when the catalyst loading is 100 ìg/cm2, the electrode
shows the best 2e− ORR performance. Figure 2e shows the stability test for 10 h. Both
the ring current and the disk current have no obvious attenuation after 10 h consecutive
recording, indicating the quite super stability of the catalyst. The ORR performance of
the glassy carbon electrode (GCE) without the loading of catalysts was evaluated and the
results are comparably shown in Figure S3. This result indicates that the major contribution
of H2O2 production comes from the catalytic activity of O-NPC-120.
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Figure 2. The catalyst ORR property in KOH electrolyte (0.1 M): (a) The catalyst RRDE polarization
curves at 1600 rpm and a scan rate of 10 mV s−1. Current density was normalized to loading and
BET. (b) Electron transfer number and (c) H2O2 selectivity of catalysts. (d) Tafel slope of catalysts.
(e) Stability test of O-NPC-120 at a fixed disk potential of 0.36 V. (f) The capacitance current densities
(obtained from Figure S4) tested at 0.963 V (vs. RHE) as a function of scanning rate. The slope value
refers to the double-layer capacitance (Cdl).

To further understand the important parameters determining the 2e− ORR activity and
selectivity, the electrochemical double-layer capacitance (Cdl) of the four carbon materials is
tested. According to Figure 2g, the Cdl of NPC-900, O-NPC-80, O-NPC-100 and O-NPC-120
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is 2.62 mF cm−2, 2.12 mF cm−2, 1.52 mF cm−2 and 1.35 mF cm−2, respectively. Considering
that the electrochemical active surface area (ECSA) is positively proportional to Cdl [67,68],
this result shows that O-NPC-120 has the smallest ECSA among the four materials. In
addition, the Raman analysis has proved that there is no significant difference of carbon
defect contents in the four studied carbon materials (Figure 1d).

3.3. Production Test of H2O2

In order to obtain the working potential for the formation of H2O2, and to eliminate
the reduction of the generated H2O2 during the oxygen reduction process, the reduction
reaction test of H2O2 was carried out (Figure S8). The currents that appear over 0.79 V
and below 0.25 V are assigned to the currents of oxidation and reduction of H2O2 [29],
respectively. Therefore, the applied voltages of 0.26 V, 0.36 V and 0.46 V were selected in
the H2O2 production rate measurement experiments. The amount of H2O2 produced is
calculated by the spectroscopic results (Figure S9), which are normalized by electrolysis time
and catalyst loading to obtain the H2O2 production rate (Figure 3a). It is observed that the
H2O2 amount increases gradually with the electrolysis time. The O-NPC-120 electrocatalyst
exhibits a high H2O2 production rate of 2907.79 mmol gcatalyst

−1 h−1 at 0.36 V, significantly
larger than the H2O2 production rate reported [69–75] (Table S5). Figure 3b is the faradaic
efficiency diagram of O-NPC-120. The Faradaic efficiency reaches 95.63% at 0.36 V, much
better than that at 0.26 V and 0.46 V.
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3.4. Catalytic Mechanism Analysis

Hydrophilicity is a critical feature for H2O2 generation [66]. To examine the wet-
ting ability of the catalysts to the 0.1 M KOH electrolyte solution, contact angle tests
were performed (Figure 4). The contact angles of NPC-900, O-NPC-80, O-NPC-100 and
O-NPC-120 are 143.5◦, 73.5◦, 41.3◦ and 24.0◦. This result shows that the contact angle
decreases dramatically with the pre-oxidation treatment temperatures. This is attributed to
the integration of O-containing functional groups, which increases the hydrophilicity of the
carbon material. The good hydrophilicity may facilitate the mutual interaction between the
carbon catalyst and the electrolyte, and contribute to the diffusion of O2.

Zeta potential is another important factor affecting ORR [76]. The Zeta potentials of
NPC-900, O-NPC-80, O-NPC-100 and O-NPC-120 are measured to be −6.04 mV, −29.6 mV,
−39.4 mV and −40.4 mV, respectively (Figure 5a). It can be seen that Zeta potential
becomes more negative with the increase in pre-oxidation treatment temperatures, with
O-NPC-120 showing the most negative Zeta value. This result indicates that O-NPC-120
has the strongest desorption ability for the adsorbed intermediate species OOH−, due to
the coulombic repulsion effects of this carbon material to negatively charged species. It
is well established in the literature that the easy desorption of OOH− from the catalyst
surface is beneficial for the 2e− ORR reaction, therefore O-NPC-120 shows the best catalytic
performance for H2O2 production.
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The chemical components and bonding states are characterized by XPS, so as to de-
termine the active centres of the catalyst (Figures 5b–d and S11–S13). Clearly, the strong
signals of C1s, N1s and O1s are found at ~285.0 eV, ~401.0 eV and ~531.6 eV, respectively
(the specific contents of C, N and O are shown in Table S1). The C1s signal of O-NPC-120
can be decomposed into five types (Figure 5b), namely, sp2-C: C=C (284.60 eV), sp3-C:
C–C (285.06 eV), C–O/C–N (286.00 eV), –COOH (288.89 eV) and π→π* (290.61 eV). The
corresponding atomic percentages are 32.01%, 25.29%, 25.1%, 5.95% and 11.65% (Table S2).
The O1s signal is decomposed into three types (Figure 5c), namely, C=O (531.76 eV), C–O–
C/–OH (532.40 eV) and –COOH (533.38 eV), and their relative concentrations are 43.50%,
25.43% and 31.07% (Table S3). In summary, the successful integration of –COOH into
the carbon framework is realized after the nitric acid pre-oxidation treatment. It is also
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observed that the content of –COOH increases with the increase in pre-oxidation tempera-
tures (Table S3). The N1s signal at ~400 eV can be decomposed into three types (Figure 5d),
namely, pyridinic N (398.54 eV), pyrrolic N (400.56 eV) and graphitic N (401.63 eV). An-
other peak at 405.80 eV is due to the formation of N–oxide. The corresponding atomic
percentages of various N species are shown in Table S4. In order to understand the contri-
butions of different N– and O–containing species to the catalytic activity, the variations of
H2O2 selectivity versus atomic percentages of O and N species are plotted in Figure 5e,f,
respectively. Clearly, the selectivity of H2O2 increases with the increase in –COOH and
graphitic N contents. Therefore, we propose that both the –COOH and graphitic N are
the catalytic centres for the 2e− ORR reaction. Furthermore, DFT simulation results have
confirmed the improvement effects of the coupled N/COOH complexes on the improved
adsorption of O2 [35,77,78]. Moreover, the nitrogen-based and COOH–based groups may
also play the roles of the intramolecular acid/base to aid the catalytic reactions [79,80].
Therefore, we believe that the excellent performance of O-NPC-120 is due to the joint
contributions of graphite N and –COOH.

At last, the active site density is calculated according to the following formula [68]:

ASSD =
mcatalyst×O%(at%)×(−COOH%)(at%)

mcatalyst×BET(m2 g−1)
+

mcatalyst×N%(at%)×(Graphtic N%)(at%)

mcatalyst×BET(m2 g−1)

=
[

O%(at%)×(−COOH%)(at%)
BET + N%(at%)×(Graphtic N%)(at%)

BET

]
× 1000 (mg m−2)

(9)

mcatalyst is the mass of catalyst (g); O%(at%) and N%(at%) are the content of O1s
and N1s characterized by XPS; –COOH%(at%) and graphitic N%(at%) are the content of
–COOH and graphitic N obtained by XPS deconvolution of O1s and N1s.

It can be seen from Table 2 that with the increasing pre-oxidation treatment tem-
perature, the active site density gradually increases, which also makes the activity and
selectivity of 2e− ORR increase sequentially.

Table 2. Calculation results of active site density.

Sample NPC-900 O-NPC-80 O-NPC-100 O-NPC-120

ASSD 0.0112 0.2036 0.4202 0.8449

4. Conclusions

ZIF-67 was used as the precursor, and the oxygen-containing functional group
(–COOH) was successfully introduced into the carbon skeleton through high-temperature
carbonization and a concentrated nitric acid oxidation reaction. The results show that the
electron transfer number of O-NPC-120 is 2.33, and the selectivity of H2O2 is 83.10%. The
high H2O2 formation rate of −2909.79 mmol g catalist

−1 h−1 was obtained with O-NPC-120
at 0.36 V. The superior property of this catalyst is mostly due to the following aspects:
(1) Thegraphitic N and –COOH functional groups act as catalytic sites, and they work
together to greatly enhance the performance of 2e− ORR. (2) The catalyst has good hy-
drophilicity, which can promote the mutual contact between the catalyst and electrolyte
and contribute to the diffusion of O2. (3) The catalyst has the largest negative Zeta potential
value, which is of benefit to the desorption of adsorbed intermediate OOH−. The present
work is expected to be helpful to rationally design efficient carbon-based catalysts for the
production of H2O2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13071188/s1, Figure S1: SEM image of the catalyst. (a)
ZIF-67. (b) NPC-900. (c) O-NPC-80. (d) O-NPC-100. (e) O-NPC-120; Figure S2: TEM images of (a)
ZIF-67 and (b) NPC-900. (c) HRTEM image of O-NPC-120. (d) STEM-mapping images and the EDS
data of O-NPC-120. (e−h) EDS of O-NPC-120; Figure S3: Comparison of 2e− ORR performance
between empty glassy carbon electrode (GCE) and catalyst loading GCE. (a) RRDE polarization curve.
(b) electron transfer number. (c) H2O2 selectivity; Figure S4: CV curves of the catalysts at 1600 rpm

https://www.mdpi.com/article/10.3390/nano13071188/s1
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and 50 mV s−1 in N2 and O2 saturated electrolyte. (a) NPC-900. (b) O-NPC-80. (c) O-NPC-100.
(d) O-NPC-120. All dashed lines: N2; all solid lines: O2; Figure S5: LSV curves of (a) NPC-900, (c)
O-NPC-80, (e) O-NPC-100, (g) O-NPC-120 measured at different rotation speeds in O2 saturated
0.1 M KOH. (b) NPC-900, (d) O-NPC-80, (f) O-NPC-100, (h) O-NPC-120 are Koutecky−Levich
plots based on corresponding LSV curves; Figure S6: Effect of O-NPC-120 loading on catalytic
performance of 2e− ORR. (a) RRDE polarization curve. (b) electron transfer number. (c) H2O2
selectivity; Figure S7: Cyclic voltammogram in the non-faradic potential region at varying scan
rates for the samples of (a) NPC-900. (b) O-NPC-80. (c) O-NPC-100. (d) O-NPC-120; Figure S8:
LSV curves of O-NPC-120 in 0.1M KOH solution with H2O2 concentrations of 0 mM, 1 mM, 2 mM,
and 3 mM; Figure S9: (a) UV-Vis spectra of Ce4+ solutions with different concentrations. (b) is the
standard curve corresponding to (a).Figure S10: i-t curves of O-NPC-120 in 0.1 M KOH electrolyte
under different voltages. (a) 0.26 V. (b) 0.36 V. (c) 0.46 V. Loading capacity of catalyst: 100 µg/cm2;
Figure S11: The XPS-characterized C1s spectra of (a) NPC-900, (b) O-NPC-80 and (c) O-NPC-100,
respectively; Figure S12: O1s spectra characterized by XPS (a) NPC-900, (b) O-NPC-80 and (c) O-
NPC-100, respectively; Figure S13: N1s spectra characterized by XPS (a) NPC-900, (b) O-NPC-80
and (c) O-NPC-100, respectively; Table S1: C, N, O contents of catalysts detected by XPS; Table S2:
Different C types and contents in catalysts determined from XPS analysis results; Table S3: Different
O types and contents in catalysts determined from XPS analysis results; Table S4: Different N types
and contents in catalysts determined from XPS analysis results; Table S5: 2e− ORR performance of
some carbon-based catalysts [19,23,31,59,62–76,81].
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