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Abstract: Harvesting ambient mechanical energy at the nanometric scale holds great promise for
powering small electronics and achieving self-powered electronic devices. The current review is
focused on kinetic energy harvesters, particularly on flexible piezoelectric nanogenerators (p-NGs)
based on barium titanate (BaTiO3) nanomaterials. p-NGs based on nanotubes, nanowires, nanofibres,
nanoplatelets, nanocubes or nanoparticles of BaTiO3 fabricated in vertical or lateral orientation,
as well as mixed composite structures, are overviewed here. The achievable power output level
is shown to depend on the fabrication method, processing parameters and potential application
conditions. Therefore, the most widely studied aspects, such as influence of geometry/orientation,
BaTiO3 content, poling process and other factors in the output performance of p-NGs, are discussed.
The current standing of BaTiO3-based p-NGs as possible candidates for various applications is
summarized, and the issues that need to be addressed for realization of practical piezoelectric energy
harvesting devices are discussed.

Keywords: energy harvesting; piezoelectrics; nanomaterials; BaTiO3; polymers; composites; power
output performance

1. Introduction

Energy harvesting is attracting much attention nowadays, particularly if it is accom-
panied by high power density, simplicity, and miniaturization. Great advancements in
low power integrated circuits, wireless communication and small electronics have reduced
the demand for power consumption and increased the attractiveness of energy harvest-
ing approaches. At the same time, the recent development of nanogenerators (NGs) has
demonstrated a possible solution for the design of mobile electronics [1,2] and self-powered
devices directly drawing energy from ambient sources [3,4]. NGs here refer to energy
conversion systems containing materials at the nanometric scale.

The ambient sources suitable for energy harvesting are solar, temperature gradient,
radio frequency, acoustic waves, and kinetic energy. Among these, kinetic energy, in
the form of vibrations, random displacements, or forces, is ubiquitous and versatile in
our ambient environment, including direct human activities such as walking, running,
finger tapping, heartbeat and respiration, structural vibrations from industrial machinery,
buildings, and transport vehicles, and fluid flows from tides, wind, geo-processes, etc. A
number of research projects have been conducted to develop simple and efficient devices
harvesting energy from vibrations by using piezoelectric materials. For random vibrations
with frequencies from Hz to kHz, the available energy density is within the range of a
few hundred microwatts to milliwatts per cubic or square centimetre [5–7]. Therefore,
harvesting this type of energy offers great potential for remote/wireless sensing, charging
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batteries, and powering electronic devices. Moreover, energy harvesting from moving
objects is a highly effective approach to solving energy problems.

NGs have opened a new gateway towards converting mechanical energy into electrical
energy [8,9]. Piezoelectric, as well as triboelectric, NGs convert not only mechanical bending
motions but also small movements of the human finger, heartbeat, and diaphragm activities
into electrical signals [10,11]. Piezoelectric devices can produce a higher performance
than triboelectric devices [12]. Piezoelectric bulk crystalline materials are widely used
for applications, including transducers, sensors, and actuators, due to their affordability,
stability, low cost of manufacturing, simple fabrication techniques, and the ability to be
rendered into a variety of shapes [13], besides the fact that piezoelectricity shows good
scaling with size [14]. However, their use in flexible devices is very limited due to their
fragility. To overcome this problem, piezoelectric materials at the nanometric scale can be
coated and/or mixed with flexible additives within composites, gaining flexibility at the
cost of reduced piezoelectric response.

Such materials as lead zirconate titanate (Pb(Zr,Ti)O3, PZT), zinc oxide (ZnO), alu-
minium nitrate (AlN) and barium titanate (BaTiO3, BT) have been extensively studied
in order to realize piezoelectric nanogenerators (p-NGs) [15–18]. Each of the considered
materials can potentially satisfy the functional properties required for the fabrication of
reusable, flexible, and conformable p-NGs. However, some differences can be appreciated,
helping in the selection of the piezoelectric material to be used. By far the most distinc-
tive element is piezoelectric behaviour, quantitatively represented by the piezoelectric
coefficients (d33 and d31). As shown in Table 1, PZT has exceptional piezoelectric per-
formance compared to other piezoelectric materials, being, e.g., employed by Wu et al.
to fabricate flexible and wearable NGs, which can generate up to 200 mW/cm3 output
power [19]. However, since PZT contains highly toxic lead, lead-free perovskite nanostruc-
tured piezoelectric materials have attracted attention for use in p-NGs [20]. At the same
time, AlN and ZnO are lead-free, biocompatible, and non-ferroelectric materials showing
piezoelectricity at a wide range of temperatures. However, despite both these materials
possessing several advantages and similar properties, they have lower d33 and d31 values
than those for BT. Moreover, BT is a valid non-toxic alternative to PZT, showing higher d33
than that for piezoelectric polymer polyvinylidene fluoride (PVDF) and its copolymers,
polyvinylidene difluoride poly(vinylidene fluoride-co-trifluoro-ethylene) (P(VDF-TrFE))
and poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) [21].

Table 1. Values of piezoelectric coefficients d33 and d31 for the most common piezoelectric materials [22–25].

Piezoelectric
Coefficient, pm/V PZT BaTiO3 ZnO AlN PVFD P(VDF-TrFE) P(VDF-HFP)

|d33| ~60–593 ~149–350 ~5.9–44 ~3.9–5.15 ~25.8 ~33.5 ~32
|d31| ~120–274 ~78 ~5 ~2 ~22.4 ~10.7 ~43.1

The main mechanism of and studies on p-NGs with different basic materials, design,
fabrication methods and generated power were first briefly overviewed by Kumar and Kim
in 2011 [26]. Then, a number of review articles were published on different piezoelectric
materials for mechanical energy harvesting (e.g., [27–29]), as well as on the current state
of stretchable [30] or flexible p-NGs (e.g., [31]). However, p-NGs based on BaTiO3 were
mentioned only superficially among energy harvesters fabricated using other piezoelectric
materials. Only very recently were BaTiO3-based p-NGs separately overviewed and sum-
marized with regard to their output voltage by Korkmaz and Kariper [32], since flexible
p-NGs based on BaTiO3 have been widely studied over the last decade due to significant
developments in robotics and interfaces between humans and machines. Here, we not
only focus, in Section 2, on these studies with regard to the structures of the BaTiO3-based
flexible p-NGs and the types of BT nanomaterials used, but also organise them into com-
posites with non-piezoelectric and piezoelectric polymers in Sections 3 and 4, respectively.
Moreover, the effects of the concentration of used BT nanomaterials, poling process, applied
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mechanical stress mode parameters and p-NG thickness on the output voltage of flexible
p-NGs are discussed in Section 5. Furthermore, since the output voltage is shown to be
thickness-dependent, in contrast to the aforementioned review articles the reported results
are summarised by power density in Section 6. Finally, some application examples are
given in Section 7, followed by conclusions.

2. BaTiO3 Nanomaterial Types and Design of Flexible p-NGs Structures

Different types/forms of BT nanomaterials have been used for the fabrication of p-
NGs, including ribbons of transferred film [17], nanoparticles (NPs) [33–42], nanowires
(NWs) [43–48], nanofibres (NFs) [49], fibres made of NPs [50–52] or fibres made of NWs [45],
nanotubes (NTs) [53,54], nano-cubes (NCs) [55,56], nanocrystals (NCr) [57], as well as the
combination of different types of BT, such as the mixture of NWs and NPs [58].

The first flexible piezoelectric nanogenerator on plastic substrate was reported by
Park et al. in 2010 as 1350 metal-insulator-metal (MIM) structures made of transferred
300 nm thick BT film [17]. Output voltage up to ~1.0 V and current ~26 nA with power
density ~7 mW/cm3 for periodical bending/unbending with a finger were obtained. How-
ever, the proposed method for p-NG fabrication was highly complicated. MIM ribbons
(300 µm × 50 µm) from BT film were obtained by a plasma-reactive ion etching process and
transferred onto flexible Kapton substrate using a polydimethylsiloxane (PDMS) stamp,
followed by its peeling away (see Figure 1) [17]. Due to difficulties during the transferring
process, there are only few reports on flexible p-NGs using BT films. Only Takahashi et al.
reported the output power level of ~2.3 µW for a vibration frequency of 5 Hz generated by
such p-NG [59].
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contact area was then opened by a standard photolithography process. When the nanogenerator 
was bent (corresponding to (b)), charges were generated in each MIM structure due to the tensile 
stress induced by the deflection of the device (corresponding to (c)). (Reprinted with permission 
from [17] Copyright 2010, American Chemical Society). 

Figure 1. (a) Schematic illustration of the fabrication steps: (i) Deposition of an amorphous 300 nm
thick BaTiO3 film on a Pt/Ti/SiO2/Si substrate by rf magnetron sputtering, with further rapid
thermal annealing at 700 ◦C for crystallization. (ii) Inductive coupled plasma-reactive ion etching
of metal-insulator-metal (MIM) structures (Au/BaTiO3/Pt layers) by chlorine gas, using an Al and
plasma enhanced chemical vapor deposited-SiO2 (PEO) mask made with a narrow bridge pattern
(300 µm × 50 µm). (iii) Transfer of the MIM structures onto a plastic substrate by PDMS stamp
that was peeled away after transferring. (iv) Fabrication of self-powered flexible devices. The metal
contact area was then opened by a standard photolithography process. When the nanogenerator was
bent (corresponding to (b)), charges were generated in each MIM structure due to the tensile stress
induced by the deflection of the device (corresponding to (c)). (Reprinted with permission from [17]
Copyright 2010, American Chemical Society).

According to the majority of reports, the piezoelectric layer in p-NGs includes BT nano-
materials as a main component of the composites, or at least as an individual piezoelectric
layer covered/encapsulated by a polymer such as polyvinyl chloride (PVC) or PDMS [60].
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This often includes plasticizers, helping to solve the fragility problem by adjustment of
the hardness and viscoelasticity of composites. Thus, the piezoelectric layers in BT-based
p-NGs can use BT nanomaterials (oriented vertically or horizontally) or a fully mixed
structure (without preferable orientation).

Nanogenerators with vertical arrays between two horizontal electrodes are typically
obtained using BT nanoparticles, with or without piezoelectric polymers. Tsege et al.
reported vertically aligned (VA) BT NTs on Ti-mesh substrate, encapsulated by non-
piezoelectric PDMS, as shown in Figure 2a, with the NT morphology presented in scanning
electron microscopy (SEM) images, as shown in Figure 2b,c [53]. A maximum output
voltage of 10.6 V and current of 1.1 µA were obtained with periodic bending at a frequency
of ~0.7 Hz [53]. Similarly, a vertical BT NTs array was obtained after anodization of Ti foil,
with a preparation of BT NPs by hydrothermal reaction, by Jeong et al., also encapsulated
by PDMS [61]. However, such a device produced a significantly lower output voltage of
~150 mV and a current of ~3 nA by bending and releasing [61].
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Figure 2. Schematic representation for the fabrication process of BT NT arrays on flexible Ti-mesh
substrate (a). Surface (b) and cross-section (c) SEM image of BT nanotube arrays on Ti-mesh substrate
after hydrothermal conversion of the TiO2 nanotube for 24 h. (Reproduced with permission of [53].
Copyright Royal Society of Chemistry, 2016).

At the same time, micropillar arrays can be made from BT NPs mixed with piezoelectric
polymer P(VDF-TrFE) formed inside the micropores of the soft PDMS mould by hot
pressing, as reported by Chen et al., and can be seen in Figure 3 [40]. Here, a PDMS layer
was also used for spin-coating onto the micropillar array acting as an insulation layer for
electrical stability during the poling process and providing mechanical durability to the
whole piezoelectric device. Moreover, Chen et al. used a multi-wall carbon nanotube
(MWCNT) solution for the coating on the top of the surface. The maximal voltage and
current outputs of fabricated p-NG could reach 13.2 V and 0.33 µA, respectively [40].

In addition to vertically oriented BT arrays with parallel plate electrodes, a single
horizontally oriented fibre obtained from BT NWs [48] or BT NWs-PVC [44] can be used,
together with interdigital electrodes as p-NGs. As reported by Ni et al., a single BT NW
with a diameter of less than 350 nm covered by PDMS can generate an output voltage of
0.21 V and an output current of 1.3 nA with periodical bending and releasing [48]. Similarly,
Zhang et al. used a single fibre made of composite BT NWs-PVC (see Figure 4a–c) and
reported an output voltage of 0.9 V and a current of up to 10.5 nA [44].
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Figure 3. Experimental methods for fabrication of a high-performance piezoelectric nanogener-
ator based on a P(VDF-TrFE)/BT nanocomposite micropillar array, including solution mixing
(a), spin-coating (b), moulding/hot pressing (c), annealing/mould removal (d) and PDMS cov-
ering/electroding (e). Schematic view of the flexible piezoelectric device (f). (Reproduced with
permission of [40]. Copyright Wiley, 2017).
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Figure 4. Digital images (a,b) and schematic of NG structure of <001> oriented BT nanowires–PVC
composite microfibres (c). (Reproduced with permission of [44]. Copyright Elsevier, 2014).

The difference between the vertical, horizontal and randomly-oriented types of struc-
tures was studied in depth by Yan et al. for flexible NGs with several alignments of BT NFs
in the PDMS matrix (see Figure 5) [49]. For this purpose, PDMS was poured into uniaxially
aligned calcined BT nanofibres. After penetration and curing of the PDMS, BT NFs–PDMS
composite was cut into pieces along the aligned nanofibre direction or transverse direction
to obtain horizontally-aligned BT NFs-based p-NGs (BT NF-H) or vertically-aligned BT
NFs-based p-NGs (BT NF-V), respectively (see Figure 5a). For comparison, randomly-
aligned BT NFs-based p-NGs (BT NF-R) were also fabricated with the same BT content,
as represented in Figure 5. The highest average output voltage of ~2.67 V was obtained
under applied pressure of 2 kPa for the p-NG with BT NF-V, in contrast to ~0.56 V and
~1.48 V measured for BT NF-R and BT NF-H, respectively (see Figure 5b). The highest
average output voltage achieved for BT NF-V was explained by Yan et al. as due to three
main reasons. First, a higher piezoelectric charge value can be delivered to the electrodes
from the vertically-aligned BT nanofibres, due to the reduced number of polymer barriers
compared to that for the two other composites. Second, fewer polymer barriers also make
the poling of the vertically-aligned BT more efficient compared with that for the other
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two composites, where a significant value of the electric field has also to be applied to the
polymer phase, which is not piezoelectrically active. Third, nanofibres connected vertically
between electrodes are more compliant to mechanical stress [49].
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Table 2 summarizes the features of p-NGs with strong vertical or lateral orientation of
BaTiO3 nanomaterials, as reported by Yan et al. [49] and others [48,53]. Although a defini-
tive conclusion cannot be made on composites with different geometrical parameters under
dissimilar mechanical stimuli, the values of output voltage of p-NGs based on strongly
vertically oriented BT nanomaterials are higher than those of p-NGs with horizontally
oriented nanomaterials.

Table 2. Comparison of the output voltage for flexible p-NGs with horizontally and vertically oriented
BaTiO3 nanomaterials.

Work Layer Work Area, cm2

(Thickness, µm)
Output Voltage, V Working Mode Ref.

Horizontal single BT NW covered
by PDMS - (≤0.35) 0.21

bending/stretching,
20 mm bending

amplitude
[48]

Horizontal single fibre made of BT
NWs-PVC - (0.3) 0.9 bending/releasing [44]

Horizontal BT NFs in PDMS 0.17 × 0.07 (650) 1.48 pressure 2 kPa [49]
VA BT NFs in PDMS 0.17 × 0.09 (670) 2.67 pressure 2 kPa [49]

VA BT NTs encapsulated by PDMS 1 × 1 (≤7) 10.6 bending/releasing,
bending angle 70◦ [53]

VA BT NPs-P(VDF-TrFE) covered
by PDMS 1 (60) 13.2 force 50 N [40]

In contrast to the rarely reported p-NGs based on strongly vertically or horizon-
tally oriented BT nanomaterials, p-NGs with randomly oriented BT nanomaterials are
the most common in the literature. Typically, BT nanomaterials were mixed with non-
piezoelectric additives such as resin [42], PDMS [37,41,49,54,55,57], or PVC [44] to in-
crease flexibility, or combined with piezoelectric polymers such as PVDF [38,39,45,51,52,56],
P(VDF-HFP) [33–35], P(VDF-TrFE) [46,50], or polylactic acid (PLA) [47] for enhancement of
both flexibility and piezoelectric properties. However, the reported results mainly include
only voltage and current values generated by p-NGs with different active areas and thick-
nesses, and with dissimilar applied stress modes and polling procedures. At the same time,
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power density (areal and volumetric), which is very important for the proper comparison
of p-NGs and their final commercial application, is missing in many publications. Taking
this into account, the aforementioned aspects will be discussed below, as far as possible,
using the published data.

3. p-NGs Based on BaTiO3 Nanomaterials with Non-Piezoelectric Additives

There are several known combinations of BT materials with non-piezoelectric polymers
for the fabrication of p-NGs on flexible substrates, such as polyethylene terephthalate
(PET) or Kapton covered by a metallic or indium tin oxide (ITO) conductive layer. The
most popular among them is the combination of PDMS and different BT nanomaterials
such as nanoparticles [37,41], nanofibres [49], nanowires [43,48], nanowires together with
nanoparticles [58], nanotubes [54], nanocrystals [57], and nanocubes [55]. Besides PDMS,
other combinations with non-piezoelectric polymers such as p-NG based on fibre made of
BT NWs with PVC [44], all-inkjet-printed NG made of BT NPs and resin [42], or polyacrylic
acid (PAA) [36], were reported.

A simple mixture of BT NPs and PDMS was used for the preparation of p-NG by
Suo et al. [37]. A device with 100-µm-thick film of 20 wt.% BT in PDMS showed an output
voltage ~14 V under periodic compressive force at 20 Hz [37]. At the same time, BT
NWs mixed with PDMS by Park et al. reached an output voltage and current up to 7 V
and 360 nA, respectively, under bending mode, and a power of 1.2 µW at 20 MΩ load
resistance [43]. Moreover, Baek et al. studied p-NG, using simultaneously both BT NWs
and NPs poured into a PDMS matrix (see Figure 6). This resulted in a high output voltage
of ~60 V and the highest power of 40 µW at 500 MΩ for a piezoelectric composite with 4:1
ratio between spherical BT NPs (SPs) and NWs [58].

Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 29 
 

 

ported results mainly include only voltage and current values generated by p-NGs with 
different active areas and thicknesses, and with dissimilar applied stress modes and 
polling procedures. At the same time, power density (areal and volumetric), which is 
very important for the proper comparison of p-NGs and their final commercial applica-
tion, is missing in many publications. Taking this into account, the aforementioned as-
pects will be discussed below, as far as possible, using the published data. 

3. p-NGs Based on BaTiO3 Nanomaterials with Non-Piezoelectric Additives 
There are several known combinations of BT materials with non-piezoelectric pol-

ymers for the fabrication of p-NGs on flexible substrates, such as polyethylene tereph-
thalate (PET) or Kapton covered by a metallic or indium tin oxide (ITO) conductive layer. 
The most popular among them is the combination of PDMS and different BT nano-
materials such as nanoparticles [37,41], nanofibres [49], nanowires [43,48], nanowires 
together with nanoparticles [58], nanotubes [54], nanocrystals [57], and nanocubes [55]. 
Besides PDMS, other combinations with non-piezoelectric polymers such as p-NG based 
on fibre made of BT NWs with PVC [44], all-inkjet-printed NG made of BT NPs and resin 
[42], or polyacrylic acid (PAA) [36], were reported. 

A simple mixture of BT NPs and PDMS was used for the preparation of p-NG by 
Suo et al. [37]. A device with 100-μm-thick film of 20 wt.% BT in PDMS showed an output 
voltage ~14 V under periodic compressive force at 20 Hz [37]. At the same time, BT NWs 
mixed with PDMS by Park et al. reached an output voltage and current up to 7 V and 360 
nA, respectively, under bending mode, and a power of 1.2 μW at 20 MΩ load resistance 
[43]. Moreover, Baek et al. studied p-NG, using simultaneously both BT NWs and NPs 
poured into a PDMS matrix (see Figure 6). This resulted in a high output voltage of ~60 V 
and the highest power of 40 μW at 500 MΩ for a piezoelectric composite with 4:1 ratio 
between spherical BT NPs (SPs) and NWs [58]. 

 
Figure 6. Hydrothermally synthesized BaTiO3 spherical nanoparticles (a) and nanowires (NWs) 
(b). Mixture of BT spherical NPs and NWs (c) and its embedded state in PDMS matrix (d). Sche-
matic illustration of BT spherical NPs and NWs embedded in p-NG (e). The harvested electric 
signals generated from p-NG devices with different weights of BT SPs and NWs ratios (f). (Re-
produced with permission of [58]. Copyright Elsevier, 2017). 

To obtain biodegradable and biocompatible nanogenerator BT, NPs were mixed 
with chitosan by Pongampai et al. [62]. Open circuit voltage (Voc) ~ 110.8 V and short 
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magnitude of ~250 N for 3 × 3 cm2 BT NPs-chitosan p-NG with 160 μm thickness [62]. 

Figure 6. Hydrothermally synthesized BaTiO3 spherical nanoparticles (a) and nanowires (NWs) (b).
Mixture of BT spherical NPs and NWs (c) and its embedded state in PDMS matrix (d). Schematic
illustration of BT spherical NPs and NWs embedded in p-NG (e). The harvested electric signals
generated from p-NG devices with different weights of BT SPs and NWs ratios (f). (Reproduced with
permission of [58]. Copyright Elsevier, 2017).

To obtain biodegradable and biocompatible nanogenerator BT, NPs were mixed with
chitosan by Pongampai et al. [62]. Open circuit voltage (Voc) ~ 110.8 V and short circuit cur-
rent (Isc) ~ 10 µA were obtained at an external force frequency of ~0.5 Hz and a magnitude
of ~250 N for 3 × 3 cm2 BT NPs-chitosan p-NG with 160 µm thickness [62].
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Another method for the preparation of flexible p-NG or a piezoelectric energy har-
vester (f-PEH) was reported by Lim et al., who inkjet-printed BT NPs-resin hybrid layers
on Ag coated polyimide (PI) (see Figure 7) [42]. Voc and Isc reached ~7 V and ~2.8 µA,
respectively, under periodical bending by a programmable linear motor with a strain of
0.236% at a strain rate of 3.54%/s.
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Figure 7. Scheme of the sequential process for the all-inkjet-printed f-PEH fabrication (a). The cross-
sectional SEM images of all-inkjet-printed f-PEH (b). The inset shows the magnified cross-sectional
image of a BaTiO3-resin hybrid film (scale bar: 500 nm). A photograph of the f-PEH with a sample
size of 5 cm × 5 cm (activation area of 3 cm × 4 cm) achieved by inkjet-printing of piezoelectric hybrid
film and conductive layers (c). The inset shows the top surface of an inkjet-printed piezoelectric
hybrid film (scale bar: 500 nm). (Reproduced with permission of [42]. Copyright Elsevier, 2017).

Besides BT particles without clear crystallographic orientation, there are reports on
the use of oriented BT nanocrystals or polycrystals, as well as cube-shape nanoparticles
in composites with polymers, for p-NG applications [36,55,57,63]. Yao et al. used 2D BT-
oriented polycrystals in composite with PDMS and obtained an output voltage and current
of 13 V and 200 nA, respectively, under a periodic bend-release mode [63]. Jeong et al. used
untypical M13-virus as a template for the growth of BT nanocrystals [57]. The final BT NCr-
M13 virus-PDMS structure p-NG represented Isc and Voc of ~300 nA and ~6 V, respectively,
when bending and releasing [57]. Kim et al. reported on p-NG as an alternation of layers
of cubic-like BT NPs stabilized by oleic acid (OA) ligands and PAA [36]. A 13-nm thick
structure of 100 PAA-BT NCs bilayers generated an output voltage and current increasing
from 0.4 V and 60 nA to 1.8 V and 700 nA, respectively, as the compressive force raised from
7 to 51 N without an additional poling process [36]. Moreover, both voltage and current
were shown to drop along with decreasing bilayer number, and hence device thickness. In
agreement with the later observation, the highest voltage value of this section, reaching
126.3 V generated at a constant mechanical pressure of ~0.001 MPa from the linear motor at
a fixed acceleration of 1 m/s2, was reported by Alluri et al. for p-NG based on as thick as a
790 µm composite layer of BT NCs and PDMS, with the largest size reported here of BT
nanomaterials used (nanocubes with a size up to 400 nm) (see Figure 8) [55].

Thus, once again a tendency of the output voltage to be enhanced by p-NG thickness
prevents a proper comparison and definitive conclusion on composite effectiveness, based
on the voltage values generated by composites with different geometrical parameters.
At the same time, although composites of BT nanomaterials with PDMS were widely
studied and different final parameters/output performances reported, their power density,
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particularly areal or volumetric, were not always provided. Even so, Table 3 summarises
the main characteristics and parameters reported for BT-based flexible p-NGs with non-
piezoelectric polymers.
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Figure 8. Field-emission SEM image showing highly crystalline BT NCs at 200 nm scale (a). Schematic
drawing of composite p-NG device for harnessing mechanical energy (b). Cross-sectional SEM image
of the p-NG device at the 100 µm scale; the inset is a photograph of the p-NG device (4.4 cm × 4.6 cm)
without the PDMS packaging layer (c). (Reprinted with permission from [55]. Copyright 2018,
American Chemical Society).

Table 3. The main characteristics and parameters of flexible p-NGs based on BaTiO3 mixed with
non-piezoelectric additives (ordered by the type of used BT nanomaterials).

Type of BaTiO3
(Size, nm) Work Layer Area, cm2

(Thickness, µm)
Bottom Layer||

Top Layer
Output

Voltage, V
Output

Current, µA
Type of

Working Mode Ref.

film BT/SrTiO3 film 0.4 × 0.6 (0.2) PET/ITO/PDMS||
PDMS/ITO/PET 1.5 - vibration [59]

film BT film 0.82 (0.3) Kapton/PDMS||PDMS 1 0.026 bending [17]
Oriented NPs BT NCs-PDMS 4 × 4 (-) PET/Cu||Cu/PET 13 0.02 bending [63]

NCr (≤100) BT NCr-M13
virus-PDMS 2.5 × 2.5 (200) PET/ITO/PDMS||

ITO/PET 6 0.3 bending [57]

NCs (≤400) BT NCs-PDMS 4.4 × 4.6 (790) Kapton/Al||Al/Kapton 126.3 77.6

constant
mechanical

pressure
~0.001 MPa at

fixed
acceleration of

1 m/s2

[55]

NFs (∅354) vertical BT
NFs-PDMS 0.17 × 0.09 (670) PET/ITO||ITO/PET 2.67 0.26 pressure

0.002 MPa [49]

NFs (∅354) BT NFs-PDMS 0.17 × 0.07 (650) PET/ITO||ITO/PET 1.48 0.1 pressure
0.002 MPa [49]

NFs (∅354) BT NFs-PDMS 0.17 × 0.13 (430) PET/ITO||ITO/PET 0.56 0.058 pressure
0.002 MPa [49]

NTs (∅50) vertical BT
NTs-PDMS 1 × 1 (≤7) PET/ITO||

PDMS/ITO/PET 10.6 1.1 bending/releasing,
angle 70◦ [53]

NTs (∅130) vertical BT
NTs-PDMS 2 × 3 (15) Al||Ti/PET 1 0.02 bending [61]

NTs (∅11) BT NTs-PDMS 1 × 1 (300) PS/Au/Cr||Au/Cr/PDMS 5.5 0.35 pressure 1 MPa [54]
NWs (≤∅350) BT NW-PDMS (0.35) PET/Ag||Ag/PDMS 0.21 0.0013 bending [48]

NWs (∅156) BT NWs-PDMS 3 × 3 (250) PET/ITO/PDMS||
PDMS/ITO/PET 7 0.36 bending [43]

NWs (∅300) fibres made of BT
NWs-PVC (0.3) PET/PDMS||Ag/Kapton 0.9 0.01 bending [44]

NPs, NWs BT NWs-BT
NPs-PDMS 3.5 × 3.5 (300) PET/ITO/PDMS||

PDMS/ITO/PET 60 1.1
5 mm

displacement,
rate 0.2 m/s

[58]

NPs (∅200) BT NPs-PDMS 1 × 1 (200) PET/Cu||ITO/PET 13.5 -

cantilever-type
device,

compressive
force at 20 Hz

[37]

NPs (150) BT NPs-resin 3 × 4 (~15) Plastic/Ag||Ag/epoxy 7 2.5 strain 0.236%,
rate 3.54%/s [42]

NPs (20) OA-BT NPs-PAA 1 (≤200) Plastic/ITO||Al 1.8 0.7 force 51 N [36]
NPs BT NPs-chitosan 3 × 3 (160) PET/Al||Al/PET 40.9 4.5 pressed/releasing [62]

NPs (~100) BT
NPs-CNT-PDMS 5 × 7 (<300) Kapton/Au-Cr||

PDMS/Au-Cr/Kapton 3.2 0.35

5 mm
displacement,
rate 0.2 m/s,
strain 0.33%

[41]
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In addition, Park et al. studied BT NPs-PDMS composite in combination with carbon
nanotubes (CNT), which resulted in much higher output voltage (~3.2 V) in comparison to
BT NPs-PDMS with reduced graphene oxide (RGO) (~2 V) [41]. The low output voltage
from the RGO-containing p-NG was explained by the geometrical difference between the
CNT networks and RGO sheets.

4. p-NGs Based on BaTiO3 Nanomaterials with Piezoelectric Polymers

Piezoelectric polymers are also considered as candidates for p-NGs owing to their
remarkable flexibility and other mechanical properties. PVDF is their best-known represen-
tative, being a semicrystalline polymer, the β phase of which is characterised by a relatively
high piezoelectric coefficient [64]. Therefore, polymers such as PVDF can also contribute to
the generation of piezoelectric potential. In addition, compared to conventional PDMS, the
PVDF solution can be of lower viscosity that is favourable for a more uniform distribution
of BT NPs incorporated into PVDF matrix [38]. An output voltage as high as 150 V has been
shown for 60-µm-thick p-NG made of BT NPs with PVDF by Zhao et al. [38]. This value is
higher than the 126.3 V reported for 790-µm-thick composite of BT NCs and PDMS [55],
but it was obtained at a four orders of magnitude higher pressure of 10 MPa, while a signif-
icantly lower output voltage of 35 V was reported in the case of 1 MPa applied pressure.
Moreover, Zhao et al. used 150 nm large BT NPs (see Figure 9a,b) and a vacuum drying
method (see Figure 9c) for the formation of an oriented fibre array of BT NPs-PVDF (see
Figure 9a,d) [38]. Accordingly, PVDF fibres are separated into many segments by BaTiO3
nanoparticles that can act as stress concentration points when the film is subjected to a
compression stress [38]. Therefore, the local deformation of the soft PVDF segments will
be dramatically increased. However, there is no deformation enhancement in the pure
PVDF film (Figure 9e), which results in a lower generated piezoelectric output of 15 V in
comparison to that of 35 V for BT NPs-PVDF.
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NCs–PVDF composite that generated up to 7.99 V potential under a force of 11 N [56]. 
However, such output voltage was far from the highest voltage of 150 V under 10 MPa 

Figure 9. Side-view SEM image of the BT NPs-PVDF film (a). Inset in (a) is a low-magnification SEM
image. Top-view SEM image of a piezo-nanocomposite film (b). Detailed fabrication procedure of
flexible piezo-nanocomposite (c). Schematic diagram of the vertical stress applied to BT NPs-PVDF
composite (d) and to pure PVDF (e). (Reproduced with permission of [38]. Copyright Elsevier, 2014).

Like nanoparticles, BT nanocubes were also used for the fabrication of composite
p-NGs with piezoelectric polymers. Alluri et al. used BT NCs for the preparation of BT
NCs–PVDF composite that generated up to 7.99 V potential under a force of 11 N [56].
However, such output voltage was far from the highest voltage of 150 V under 10 MPa
reported by Zhao et al. [38]. On the other hand, Siddiqui et al. reported a reducing effect for
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output voltage and enhanced flexibility after PDMS encapsulation of nanofibres prepared
from BT NPs-P(VDF-TrFE) (Figure 10) [50]. Although the output voltage decreased from
~11 V to 3.4 V under tapping mode at 20 N after PDMS covering, the use of polymer is
necessary because of the fragility of the BT-based nanomaterial [50].
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Figure 10. Schematic of the nanocomposite p-NG (a). Top-view image of electro-spun 35 wt.%
BT-P(VDF-TrFE) nanocomposite nanofibers before (b) and after PDMS coating (c). (Reproduced
with permission of [50]. Copyright Elsevier, 2016). Open-circuit voltage of BT NPs–P(VDF–TrFE)
composite p-NGs before and after PDMS encapsulation as a function of BT amount (d) (adapted
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Moreover, voltage values up to 110 V were obtained at the applied pressure of 0.23 MPa
to the surface by Shin et al., who studied the influence of the dimethyl-farmamide (DMF)
and acetone solution on the dissolution of P(VDF-HFP) and particularly the influence of
the covering area of BT NPs by piezopolymer on the output [34,35]. However, the output
voltage was reported to be ~5 V only when this p-NG was studied at cycling bending stage
(Figure 11) [34].
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Figure 11. Optical images of the NG at bending and releasing state on bending stage (a). Cyclic
measurement of open circuit voltages for 5400 cycles (b). The inset displays magnified signals.
Cyclic measurement of short-circuit current for 5400 cycles (c). The inset shows magnified signals.
(Reprinted with permission from [34]. Copyright 2014, American Chemical Society).

Another piezoelectric polymer, polylactic acid (PLA), with advantages such as biodegrad-
able properties, was used by Malakooti et al. for the fabrication of p-NG by 3D printing [47].
However, reported output values of 1.4 V or 164.5 nA were not high [47].
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Randomly oriented layer-by-layer (LbL) structures were reported by Yaqoob et al.
as a combination of peeled-off BT NPs–PVDF films covered by graphene (Gr) [39]. The
fabricated tri-layer p-NG showed a maximum output voltage of 10 V, along with a current
of 2.5 µA, at an applied force of 2 N. The bi-layer structure generated just 2.7 V [39]. In
addition to layered structures fabricated by a simple mixing of polymers with BT NPs, the
NPs were also widely used for the fabrication of fibres, particularly by electrospinning. Such
fibres made of BT NPs–PVDF or BT NPs–PVDF-graphene were reported by Lu et al. [52]
and Shi et al. [51], respectively. The nanocomposite fibre of BT NPs–PVDF–graphene
yielded an output voltage of ~11 V under a loading frequency of 2 Hz and a strain of 4 mm,
higher than the Voc of ~8 V for the composite without graphene [51]. Moreover, such a BT
NPs–PVDF–graphene fibre p-NG had a maximum output power of 4.1 µW at 6.9 MΩ for
0.15 wt.% of graphene [51].

At the same time, methyl cellulose was successfully used as a supporting skeleton for
BT NPs–PVDF–TrFE (Figure 12a,b) [65]. Young’s modulus and d33 (Figure 12c) were found
to increase for freeze-dried cellulose mixed with BT NPs followed by pouring of PVDF-TrFE.
As explained by Zhang et al., when stress is applied to the BT NPs–cellulose–PVDF–TrFE
film, the stress transfer is more concentrated on the cellulose scaffold because the Young’s
modulus of the cellulose scaffold is higher than that of the PVDF–TrFE matrix [65]. Thus,
the deformation process of BT NPs fillers proceeds along with the deformation of the
cellulose scaffold (Figure 12d).
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Figure 12. SEM image of the BT NP-impregnated cellulose scaffold after freeze-drying (a). The
schematic diagram of the BT nanoparticles-impregnated cellulose scaffold (b). Piezoelectric coefficient
of composite films with different methyl cellulose components added (c). Open-circuit voltage of
PEHs with different cellulose content added. Open-circuit voltage of the PEHs with 3 wt.% methyl
cellulose (d). Schematic diagram of forces transmitted to ceramic particles on a mesh scaffold (e).
Schematic diagram of force conduction between ceramic particles through the matrix (f). (Reproduced
with permission of [65]. Copyright Elsevier, 2022).
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The net stress transferred to the piezoelectric BT nanoparticles on the scaffold is higher
than that on typically distributed particles without a cellulose scaffold, as illustrated in
Figure 12e. The stress between BT NPs is broadly transferred throughout the whole polymer
matrix, and the mechanical conduction efficiency is poor due to a significant part of the
stress being dissipated within the soft polymer matrix [65].

The main data for the related p-NGs on flexible PET/ITO, metallic or metalized PI,
Kapton or PET, as well as polystyrene/Kapton/carbon-impregnated low-density polyethy-
lene (PS/Kapton/C-LDPE) substrates, are summarized in Table 4.

Table 4. Main characteristics and parameters of the flexible p-NGs based on BaTiO3 mixed with
piezoelectric polymers (ordered by type of BT nanomaterials used).

Type of BaTiO3
(Size, nm) Work Layer Area, cm2

(Thickness, µm) Bottom Layer||Top Layer Output
Voltage, V

Output
Current, µA Working Mode Ref.

NCs BT NCs-PVDF 2.5 × 2.5 (~220) PDMS/Al||Al/PDMS 7.99 1.01
pushing-

releasing, force
11 N

[56]

NWs BT NWs-PMMA-
PVDF-TrFE 2.5 × 2.5 (20) PET/Al||Al/PET 12.6 1.3 bending [66]

NWs (∅150) BT
NWs-P(VDF-TrFE) 2 × 2 (50) PET/ITO||Ti/Au 14 4 bending [46]

NWs (∅170) BT NWs-PVDF - In-Ag||Kapton 2 - - [67]
NWs (∅250) BT NWs-PLA 1 × 4.5100 (100) Stainless steel||Au 1.4 - strain 0.35% [47]

NWs (∅270) fibres made of
BT NWs-PVDF 3.5 × 3.5 Al||Al 0.7 - pressure

0.04 MPa [45]

NPs BT
NPs-PDA-PVDF 2.6 × 2.3 (36–42) Al||Al 9.3 0.086 force 12 N [68]

NPs
fibres made of
BT NPs-PDA-
PVDF-TrFE

2.5 × 2.5 (0.059) Cu-Ni-fabric||
Cu-Ni-fabric 6 1.5 force 700 N

at 3 Hz [69]

NPs BT-NPs-Cell-PVDF-
TrFE 0.7 × 0.5 (100) Au||Au 60 - bending [65]

NPs fibres made of BT
NPs-Gr-PVDF 2.5 × 2.5 (19) PET/Al||Al/PET 11 - strain 4 mm

at 2 Hz [51]

NPs BT NPs-MWCNT-
PVDF 3 × 1 (50) PET/Al||Al/PET 4.4 0.66 force 2 N [70]

NPs (50) BT
NPs-P(VDF-HFP) 0.785 (30) Kapton/Al/PDMS||

PDMS/Al/Kapton 1.4 - bending [33]

NPs (100) LbL Gr/BT
NPs-PVDF 4 × 2 (60) PET/ITO/Ag||Au/PET 10 2.5 force 2 N [39]

NPs (100)
fibres made of

BT
NPs-P(VDF-TrFE)

0.785 (90) PET/ITO||ITO/PET 12.46 3.65 force 20 N [50]

NPs (100)
fibres made of

BT
NPs-P(VDF-TrFE)

0.785 (90) PET/ITO||PDMS/ITO/PET 3.4 0.523 force 20 N [50]

NPs (150) fibre array of
BT NPs-PVDF 1 × 1 (60) PET/ITO||ITO/PET 35 (or 150) 0.6 (or 1.5) pressure 1 MPa

(or at 10 MPa) [38]

NPs (200) fibres made of BT
NPs-PVDF (100) PS/Kapton/C-LDPE||

C-LDPE 8 0.05 bending [52]

NPs (200) BT
NPs-P(VDF-HFP) 2.2 (50) PI/Al/PDMS||Al/PI 110 22

normal to
surface, pressure

0.23 MPa
[34]

NPs (200) BT
NPs-P(VDF-HFP) 2.2 (50) PI/Al/PDMS||Al/PI 5 0.75 bending [34]

NPs (200)
vertical array of

BT
NPs-P(VDF-TrFE)

1 (60) Kapton/Au||MWCNT 13.2 0.3 force 50 N [40]

5. Parameters Affecting Output Performance of p-NG
5.1. Concentration of BaTiO3 Nanomaterial in Composites

The fabrication process of the piezoelectric nanogenerator begins from choosing the
type of BT materials and the ratio between the components in the composite. As already
mentioned above, the highest reported output voltage of 150 V was obtained for an oriented
fibre array structure of BT NPs-PVDF under 10 MPa, with 0.7 g of BT NPs and 0.3 g of PVDF
powder (70 wt.% and 30 wt.%, respectively) by Zhao et al. [38]. Shin et al. also reported
high output data of 75 V and 110 V for composites of 30 wt.% BT NPs and P(VDF–HFP)
dissolved in acetone–DMF mixture, with ratios of 3:1 and 5:1, respectively [34,35]. However,
neither Zhao et al. [38] nor Shin et al. [34,35] showed further data for p-NGs with a higher
or lower BT amount in their comparison and used only one selected BT amount and only
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the main part of the available reports. At the same time, there are several reports on the
systematic study of the BT concentration effect on the output voltages of p-NGs based on
BT materials (summarized in Figure 13). According to Figure 13, the increase in the output
voltage with BT content is always present for concentrations of different BT nanomaterials
up to 5–30%, but further increase in concentration decreases the output. Moreover, there is
no strong tendency related to the type of BT nanomaterials or the type of used polymers.
At the same time, Chen et al. explained the decrease in the output in vertical arrays made
of BT NPs–P(VD–TrFE) composite observed for BT concentrations higher than 20 wt.% by
the agglomeration of BT NPs, which leads to the formation of cracks in the nanocomposite
films and further adversely affects the performance of the nanogenerator [40].
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Figure 13. Output voltage values vs content of BaTiO3-based nanomaterials in flexible p-NGs
(adapted from works by Suo et al. [37], Chen et al. [40], Park et al [43], Jeong et al. [46],
Siddiqui et al. [50], Lu et al. [52], Lin et al. [54], Pongampai et al. [62], Yao et al. [63], Yang et al. [68]).

5.2. Poling Process

For enhanced piezoelectric, all the dipoles of piezoelectric material need to be oriented
in the direction of the field and for is, a poling process in particular is widely used before
the characterization of p-NGs. As can be seen in Figure 14a, the piezoelectric coefficient
d33 of the composite BT-PDMS films significantly increased after the poling process for
all studied BT concentrations between 10 and 40 wt.% [63]. Moreover, in cases using
piezoelectric PVDF polymer together with BT nanomaterials, the poling process is quite
important, because during the poling the extent of the most piezoelectrically active β-phase
of PVDF significantly increased, as reported by Zhao et al. (Figure 14b) [38], and has strong
influence on the output results [70].
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(Reproduced with permission of [38]. Copyright Elsevier, 2014).

However, not all p-NGs overviewed were electrically poled before the output mea-
surements (more details of the poling process, including applied field, temperature, and
time, for the p-NGs described are summarized in Table A1 in Appendix A). Kim et al. stud-
ied the multi-layered structure of OA-BT NPs–PAA without an electrical poling process,
postulating that the unpoled dipoles within the ferroelectric film can be aligned by the
application of an external stress instead of an electric field [36]. Thus, an output voltage of
1.8 V was obtained using a compressive force of 51 N [36]. In addition, Siddiqui et al. [50],
Shi et al. [51] and Guo et al. [45] reported the absence of a necessity to perform the poling
process for p-NGs fabricated using the self-poled nanocomposite fibres obtained by elec-
trospinning of BT NPs-P(VFD–TrFE), BT NPs–PVDF with graphene and BT NWs–PVDF,
respectively. In this case, the high electrical field is already present during the fabrication
process. Moreover, Shi et al. reported that, under the in-situ poling processes, the conduc-
tive graphene in BT NPs–PVDF can enlarge the local electric field and generate charges,
thus resulting in a stronger Coulomb force, which can attract PVDF chains to crystallize
into the β phase on the graphene surface [51]. This leads to an increased amount of β phase
in the nanocomposites in comparison to pure PVDF nanofibres [51].

On the other hand, when the poling was performed, the electric field, time, and
temperature values varied across a wide range:

- applied electric field was set to 400 kV/cm [46];
- time of poling varied up to 24 h [52,53];
- electric field was applied from room temperature up to 150 ◦C [41].

According to our knowledge, there are no available reports concerning the time or
temperature effect on output performance of p-NGs based on BT nanomaterials. However,
the effect of the applied electric field during the poling process on the output voltage and
current was demonstrated in many articles for different BT nanomaterials with different
additives. For example, Figure 15a,b present such variations for BT NPs with resin [42] and
BT NWs with PDMS [43], respectively. The output increases along with poling voltage for
both systems.
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Moreover, a general conclusion that a much smaller output was observed for unpoled
p-NGs compared to those after the poling process can be made, based on several reports
summarized in Table 5. It is obvious that the output voltage can be increased up to 25 times,
from 0.2 V to 5 V, after poling, as was reported by Yan et al. [49].

Table 5. Reported output voltage before and after poling process and poling conditions of p-NGs
(ordered by increasing applied field).

Applied Field,
kV/cm

Time, h Temperature,
◦C

Piezoelectric
Composite

Output Voltage, V
Ref.Before Poling After Poling

5 24 80 BT NPs-PVDF fibre ~0 1 [52]
5 12 120 VA-BT NFs-PDMS 0.2 5 [49]

15 12 140 BT NWs-PDMS ~0 7 [40]
100 20 - BT NPs-P(VDF-HFP) 0.5 1.2 [33]
100 20 150 BT NPs-CNT-PDMS 0.2 3.2 [41]
120 12 - BT NPs-PDMS 9.2 13.5 [37]
150 1 100 n-Gr/BT NPs-PVDF 1.5 10 [39]
200 3 - BT NPs-resin ~0 7 [42]
400 4 120 BT NWs-P(VDF-TrFE) 4 14 [46]

5.3. Influence of Applied Mechanical Stress Mode

During the measurements, the output voltage and current of the piezoelectric nano-
generators appeared as a response to applied mechanical stress. In the simplest manner,
this can be done by a simple bending/releasing of p-NG by fingers, or by a special device
such as the one shown in Figure 13a. The performance of the nanogenerator is found to
be very sensitive to the bending parameters, such as amplitude, stress/strain, bending
angle, etc. However, many reports did not include these details, while some of them used
dissimilar terminology that can produce different meaning for such measurements. At the
same time, there are reports on the output voltage dependency on strain/bending displace-
ment/bending amplitudes/angular bending curvature, mainly for fibre- or wire-based
p-NGs with different additives. Moreover, for such p-NGs, the output voltage increases
only up to some specific value of mechanical deformation and decreases after that, as
observed for fibre made of BT NPs [51,52], or for BT NW [43,48]. In addition, the output
response depends on bending frequency, bending radius, and bending angle. Figure 16a
depicts that voltage increases with bending frequency, at least up to some limit, as shown
by Shi et al. for fibre p-NGs based on BT NPs–PVDF [51]. The relationship between the
output voltage and bending angle was presented by Tsege et al. for vertically aligned BT
NTs covered by PDMS [53]. As shown in Figure 16b, the output signal increases along with
decrease in bending angle.
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Figure 16. Dependence of the output voltage on bending frequency (a) (adapted from works by
Schädli et al. [33], Guo et al. [45], Ni et al. [48], Shi et al. [51]), on bending angle (b) (the inset in
(b) shows the image of the possible bending angle, adapted from work by Tsege et al. [53]), on
mechanical force (c) (adapted from works by Kim et al. [36], Yaqoob et al. [39], Chen et al. [40], and
on applied pressure (d) (adapted from works by Zhao et al. [38], Guo et al. [45], Lin et al. [54]), for
BT-based flexible p-NGs.

Some authors mentioned the values of force (see Figure 16c) or external pressure (see
Figure 16d) applied to the studied p-NGs, both of which increased the output voltage.
However, both weak and strong dependences of voltage on applied force can be seen in
Figure 16c, comparing a 200 µm thick layered structure of NPs–PAA [36] with a layered
but thinner, and thereby more flexible, 60 µm thick structure of NPs–PVDF with graphene
layer [39]. However, Zhao et al. reported the voltage increasing from 35 V to the highest
point at 150 V along with applied pressure from 1 MPa to 10 MPa, respectively, for p-NGs
based on BT NPs–PVDF (Figure 16d) [38]. Thus, output voltage as well as current is
strongly dependent on applied external mechanical bending, force or pressure.

5.4. Thickness of Working Layer

Despite that only nanometre-scale materials are used for the fabrication of p-NGs, the
thickness of the final device, as well as of the working BT-based composite layer, can be
much larger. The increase of the output voltage along with thickness was demonstrated
for composite fibres fabricated using BT NPs with PDMS [52], as well as for BT NWs with
P(VDF–TrFE) [46] or for OA–BT NPs on PAA prepared as a multilayer structure [36], as
shown in Figure 17. Moreover, as already seen in Tables 3 and 4, one of the highest output
voltages of 126.3 V among those presented here was reported for the p-NG with the thickest
composite BT NCs–PDMS layers of 790 µm [55].

At the same time, the thickness of BT NWs–P(VDF-TrFE) layers over ~50 µm was
found by Jeong et al. to significantly decrease the flexibility of p-NG [46]. Furthermore, if
not very high output voltage but high-power density is aimed for in the p-NG, then not
very thick, but rather thin film can be necessary, as will be discussed in the next section.
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6. Power Performance

Having considered numerous reports on p-NGs fabricated using BT nanomaterials
(presented in Tables 3 and 4), often only open-circuit voltage Voc and short-circuit current
Isc, obtained under repeatedly applied bending or force or displacement, etc., are presented
as the p-NG output. However, power or power density values are necessary for proper
comparison of the composite effectiveness for p-NG applications, and these values cannot
be obtained as a product of Voc and Isc, which are measured at extremely different load
resistances. Therefore, besides the different mechanical conditions such as bending or force
or displacement amplitudes and frequencies, the p-NG output power depends also on the
load resistance. Then, the output power can be calculated based on Equation (1):

P =
1
T

∫ U2(t)
R

dt (1)

where U2(t) is the square of the real-time voltage on the external load, R is the impedance
of the external load (usually in MΩ), and T is the period of the pressing (or bending)
and releasing [49]. Alternatively, the product of voltage and current measured on the
same external load resistance provides the effective power for the fabricated flexible p-NG.
Such power or power density values obtained or optimised at specified load resistance are
summarized in Table 6, ordered by load resistance value.

While Park et al. reported the power density of ~7 mW/cm3 for p-NG made of thin BT
transferred film without specifying the load resistance [17], Takahashi et al. demonstrated
on another p-NG, based on BT film, the power of 2.3 µW at a single resistance of 1 MΩ,
resulting in the calculated volumetric power density of 480 mW/cm3 based on reported
p-NG area of 0.4 × 0.6 cm2 and BT film thickness of 200 nm [59]. There are also literature
reports showing the output power as a function of applied external load resistance, as
summarized in Figure 18. The left panel of Figure 18 includes composites of BT with
non-piezoelectric additives and the right panel presents composites of BT with piezoelectric
polymers. According to the plots, each p-NG has a load resistance at which its power
output is maximal. Moreover, according to Table 6 and Figure 18, the composites without
piezoelectric polymer can generate as high values for output power as ~40 µW at load
resistance of ~500 MΩ for p-NGs based on BT NPs and NWs in a PDMS matrix [58]. All
the other data, including composites with piezoelectric polymers (see Figure 18b), have
shown lower values for output power, as well as lower optimum load resistance values.
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Table 6. Output power and power density of flexible p-NGs based on BaTiO3, obtained with external
load resistance, and their geometrical parameters (ordered by load resistance increase).

Work Layer Load Resistance,
MΩ

Area, cm2

(Thickness, µm)

Power, µW/Areal
Power Density,

µW/cm2/Volumetric Power
Density, mW/cm3

Ref.

Gr/BT NPs-PVDF 1 4 × 2 (60) 5.8/0.73 */0.121 * [39]
BT film-PDMS 1 0.4 × 0.6 (0.2) 2.3/9.6 */480 * [59]
BT NPs-resin 2 3 × 4 (~15) 5/0.42/0.28 * [42]

vertical array BT NPs-P(VDF-TrFE) 3.9 1 (60) 12.7 */12.7/2.1 * [40]
fibres BT NPs-PDA-PVDF-TrFE 5 2.5 × 2.5 (59) 5.5 */0.878/0.15 * [62]

vertical array BT NTs-PDMS 5.2 1 × 1 (≤7) 1 */1/1.4 * [53]
fibres BT NPs-Gr-PVDF 6.9 2.5 × 2.5 (19) 4.1/0.66 */0.35 * [51]

BT NWs-PMMA-PVDF-TrFE 7.2 2.5 × 2.5 (20) 4.25/0.68 */0.34 * [66]
BT NWs-PVDF 9.3 - -/1/- [67]

vertical BT NFs-PDMS 10 0.17 × 0.09 (670) 0.184/12 */0.18 * [49]
BT NWs-PDMS 20 3 × 3 (250) 1.2/0.13 */0.0052 * [43]

BT NWs-P(VDF-TrFE) 30 2 × 2 (50) 1.5/0.38 */0.076 * [46]
BT NCs-PDMS 35 4 × 4 (-) 2.6/0.16 */- [63]

BT NPs-Cell-PVDF-TrFE 50 0.7 × 0.5 (100) 0.147 */0.42 */~0.042 [65]
BT NPs-PDA-PVDF 70 2.6 × 2.3 (42) 0.73 */0.122/0.03 * [68]

vertical array BT NPs-PDMS 100 2 × 3 (15) 0.003/0.0005/0.0003 * [61]
BT NCs-PDMS 100 4.4 × 4.6 (790) 16 */0.8/0.00001 * [55]

BT NWs-BT NPs-PDMS 500 3.5 × 3.5 (300) ~40/3.3 */0.0001 * [58]

* Calculated value based on the reported p-NG geometrical parameters.

Another main comparable characteristic of piezoelectric nanogenerators for appli-
cation is power density. Calculated from power, the power density is also dependent
on the external load resistance, as shown in Figures 19 and 20. According to Figure 19,
the highest areal power density was obtained for the vertical micropillar based on BT
NPs with piezoelectric polymer P(VDF-TrFE). The maximum areal output power density
reached 12.7 µW/cm2, with a load resistance of 3.9 MΩ [40]. A similar areal power den-
sity of 12 µW/cm2 can be calculated for vertical BT NFs–PDMS p-NG with an area of
0.17 × 0.09 cm2, thickness of 670 µm and output power of 0.184 µW at a load resistance of
10 MΩ, reported by Yan et al. [49] and included in Table 6.
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Figure 18. Power as a function of external load resistance reported for flexible p-NGs based on com-
posited including BT nanomaterials with (a) non-piezoelectric (adapted from works by Lim et al. [42],
Park et al. [43], Tsege et al. [53], Alluri et al. [55], Baek et al. [58]) and (b) piezoelectric polymers
(adapted from works by Yaqoob et al. [39], Chen et al. [40], Jeong et al. [46], Shi et al. [51]).
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polymers (adapted from works by Yaqoob et al. [39], Chen et al. [40], Jeong et al. [46], Shi et al. [51]).
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Figure 20. Volumetric power density as a function of external load resistance reported for flexible
p-NGs based on composites, including BT nanomaterials, with (a) non-piezoelectric (adapted from
works by Lim et al. [42], Park et al. [43], Tsege et al. [53], Alluri et al. [55], Baek et al. [58]) and
(b) piezoelectric polymers (adapted from works by Yaqoob et al. [39], Chen et al. [40], Jeong et al. [46],
Shi et al. [51]).

Regarding the reported and calculated volumetric power densities presented in
Figure 20, high values can be obtained for p-NGs with a vertically oriented structure.
A volumetric power density value of ~2.1 mW/cm3 was achieved for ~60 µm high vertical
micropillars made of BT NPs–P(VDF–TrFE) by Chen et al. [40], and that of ~1.4 mW/cm3

was reported for ~7 µm high vertical BT NTs covered by PDMS by Tsege et al. [53]. How-
ever, the highest volumetric power density of 480 µW/cm3 can be calculated from a power
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value of 2.3 µW, reported by Takahashi et al. for p-NG prepared by transferring BT films,
with very small thickness of 200 nm and area of 0.4 × 0.6 cm2 [59], as can also be seen from
Table 6. All other composites have shown lower power density values by some orders of
magnitude. Thus, high power density was obtained for p-NGs based on thin and small BT
transferred films [59], or on BT structures with vertical geometry [40,53].

In addition, to estimate the p-NG effectiveness, the maximum volumetric power
density is plotted as a function of the piezoelectric composite layer volume in Figure 21,
based on the available data for the reported areal size and thickness of the layer. The lower
the volume, the higher the power density trend. The highest volumetric power density was
obtained by Takahashi et al. for transferred BT film with a thickness of 200 nm [59].
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Figure 21. Dependency of the volumetric power density on the volume of the flexible BaTiO3-based
piezoelectric composite layer (adapted from works by Yaqoob et al. [39], Chen et al. [40], Lim et al. [42],
Park et al. [43], Jeong et al. [46], Yan et al. [49], Shi et al. [51], Tsege et al. [53], Alluri et al. [55],
Baek et al. [58], Takahashi et al. [59], Jeong et al. [61], Zhang et al. [65], Shi et al. [66], Yang et al. [68],
Guan et al. [69]).

7. Potential Application of BaTiO3-Based p-NGs

As was reported in many articles and can be seen in Figure 22, p-NGs based on BaTiO3
nanomaterials can be used to power light emission diodes (LEDs) [51]. In the case shown in
Figure 22, the electric energy is converted from a simple finger pressing-releasing process.
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However, usually p-NGs based on BaTiO3 nanomaterials have to be used as the
energy source for small sensors such as air-pressure sensors in detecting the pressure on
the noncontact-mode, proposed by Chen et al. [40]. Chen et al. also reported that such a
p-NG device, fabricated using BT NPs–P(VDF–TrFE) composite, can be fixed on the chest
to detect human breathing activity (see Figure 23a). Typically measured respiration signals
for deep breathing, gasping, laboured breathing, and normal breathing modes are shown in
Figure 23b–e. The curves of the output graphs closely follow the actual respiration cycle in
both pitch and magnitude, which validates the effectiveness of a sensor used for reflecting
the actual respiration cycle and different respiration modes. This can indicate that the highly
sensitive, vertically well-aligned piezoelectrically enhanced nanocomposite micropillar
array based nanogenerator can be applied as a wearable sensor for health monitoring [40].
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Figure 23. p-NG used for a highly sensitive wearable sensor for detecting human breathing motion
(a). Output curves according to different breathing patterns (b). Fast Fourier transformation of waves
of gasping (c) and normal breathing (e), respectively. An enlarged curve laboured breathing (d).
(Reproduced with permission of [40]. Copyright Wiley, 2017).

Other popular contact pressure sensors based on p-NG were proposed by different
research groups [55,68]. One of the sensors, reported by Alluri et al. and fabricated using
p-NG based on BT NCs–PDMS composite, was sensitive to biomechanical energy from
hand and foot stress and generated an output voltage of 55.9 V during foot stress (see
Figure 24) [55]. Thus, BT NCs–PDMS composite p-NG used normal human physical mo-
tions and may be a reliable alternative and an unconventional energy harvesting approach.
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Figure 24. Real-time experimental demonstration using a composite p-NG device to harness low-
frequency waste biomechanical energy. Photographs of human hand and foot release and press
conditions acting on the composite p-NG device (a). Comparison of the open-circuit voltage when
human hand and foot release/press force acted on the composite p-NG device (b). (Reprinted with
permission from [55]. Copyright 2018, American Chemical Society).



Nanomaterials 2023, 13, 988 23 of 29

Several other possible applications for p-NGs fabricated with fibres made of BT NPs-
PVDF were proposed by Lu et al. [52]. They proposed integration of such piezoelectric
fibres into large-area cotton textiles (see Figure 25). The obtained piezoelectric textiles
can generate Voc up to 5 V during repeated irregular deformations caused by human
tapping-releasing actions (see Figure 25d,e).
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Figure 25. Potential applications for piezoelectric fibre generators. A cotton-based textile containing
piezoelectric fibres woven using a loom (a,b). Electrical properties of the piezoelectric textile actuated
by human hand tapping (c). Open-circuit voltages of the piezoelectric textile from hand tapping-
releasing actions (d). Open-circuit voltages and short-circuit currents generated by the piezoelectric
textile during repeated hand tap-release motions (e) [52].

In the second prototype proposed by Lu et al., the piezoelectric fibre was glued onto
the exterior of an airplane model (Figure 26) [52]. During the tests, the airplane model
was fixed on a wooden table. As the airplane motor was turned on, the rotation of the
airplane propeller resulted in irregular vibrations of the piezoelectric fibres, thus generating
an electric signal (see Figure 26). The output voltages of the piezoelectric fibres are highly
dependent on the rotation speed of the airplane motor. As the propeller rotation speed
increased to the maximum, the open-circuit voltage of the piezoelectric fibre increased from
0 to 2 V [52].
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motor speed set at zero, 1/4, 1/2, and 3/4 of its maximum (e) [52].
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Thus, since p-NGs can convert mechanical energy into electrical energy, one day they
could replace toxic/chemical power cells. Moreover, flexible p-NGs on textiles create
a possibility for use as energy transformation systems, together with online sensors for
human health.

8. Conclusions

We have reviewed the recent advances in flexible generators based on piezoelectric
BaTiO3 nanomaterials, highlighting these as a promising class of advanced energy harvest-
ing devices. Although at a cost to the output signal, the combination of BT with polymers
has enhanced mechanical stability, which is important for flexible p-NG applications. The
optimal BT concentration can be found at around 20 wt.%. Poling is usually needed for
the enhancement of the output performance of piezoelectric materials such as BaTiO3 and
is obligatory for piezoelectric polymers such as PVDF (to obtain piezoelectric β phase).
However, it can be avoided by the addition of conductive filler to BT-based nanocomposite,
or in the case of the preparation of fibres by electrospinning. All forms of BT materials can
be used in p-NG, although the highest values of power or power density were reported for
thick composite films with BT nanoparticles fabricated in vertical orientation, or transferred
thin BT films, respectively. Despite the increasing interest directed towards the develop-
ment of small, lightweight, and flexible energy harvesting devices for advanced thin and
wearable electronics, the output power performance of thick piezoelectric composite films
was shown to be dependent on the strain/stress/angle, etc., in a similar way to that of
thin composites.

The performance of flexible nanogenerators can still be enhanced by the BT geometry
alignment between the generator electrodes, depending thus on the orientation of the BT
component in the composite, similarly to that of other piezoelectric devices. Moreover, ra-
tional design can ensure reproducibility and better understanding of the structure–property
relationships. Especially important is the fact that design and control of the texture and
composition of the composites will possibly extend the potential use of BT nanowires, nan-
otubes, etc. Additional attention should be paid to such characteristics of BT nanomaterials
as surface area, porosity, stretchability, durability, degradability, etc., which can be very
important for practical use in flexible self-powered devices. Thus, future efforts should be
focused on the geometry of the piezoelectric BT materials/composite layers, and control of
the size, morphology, quantity, distribution and poling of functional components.

In addition, the packaging of the piezoelectric layer is very important and must be
adequate. With continuous exploitation, it is believed that barium titanate composite
materials will show a high enough power density to be realized in commercial piezoelectric
nanogenerators. At the same time, the output performance of the prepared flexible p-NGs
can be influenced by a connection with other devices requiring efficient power manage-
ment. Thus, a lead-free piezoelectric self-powered nanogenerator based on BaTiO3 can
be prepared and used in wearable electronics, different sensors/monitoring systems, and
medical devices without negative effect on the environment. To conclude, new materials
for mechanical energy harvesting/transformation, including new composites with BT, and
a deeper understanding of the mechanism of charge transfer will lead to improvement in
output characteristics and energy conversion efficiency.
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Glossary

BT barium titanate
BT NF-H barium titanate nanofibres horizontal
BT NF-R barium titanate nanofibres random
BT NF-V barium titanate nanofibres vertical
C-LDPE carbon-impregnated low density polyethylene
CNT carbon nanotubes
DMF dimethylformamide
f-PEH flexible piezoelectric energy harvester
Isc short-circuit current
ITO indium tin oxide
LbL layer-by-layer
LED light emission diode
MWCNT multi wall carbon nanotubes
NCs nanocubes
NCr nanocrystals
Gr graphene
NFs nanofibres
NPs nanoparticles
NTs nanotubes
NWs nanowires
OA oleic acid
PAA poly(acrylic acid)
PDA polydopamine
PDMS polydimethylsiloxane
PEH piezoelectric energy harvester
PET polyethylene terephthalate
PI polyimide
PLA polylactic acid
p-NG piezo nanogenerator
PS polystyrene
PVC polyvinyl chloride
PVDF polyvinylidene fluoride
P(VDF-HFP) poly(vinylidene fluoride-co-hexafluoropropylene)
P(VDF-TrFE) poly(vinylidene fluoride-co-trifluoroethylene)
PZT lead zirconate titanate
RGO reduced graphene oxide
SEM scanning electron microscopy
SPs spherical nanoparticles
Voc open-circuit voltage
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Appendix A

Table A1. Reported details of poling process of flexible p-NGs based on BaTiO3 nanomaterials
(ordered by increasing applied electric field).

Applied Field
or Voltage Time, h Temperature,

◦C Work Layer The Highest
Output Voltage, V Ref.

30 kV/cm 3 100 fibres made of BT NWs-PVC 0.9 [44]
50 kV/cm 12 120 Random BT NFs-PDMS 0.56 [49]
50 kV/cm 12 120 Horizontal BT NFs in PDMS 1.48 [49]
50 kV/cm 12 120 VA BT NFs in PDMS 2.67 [49]
80 kV/cm 12 rt BT NTs-PDMS 5.5 [54]
100 kV/cm 1 rt horizontal BT NW covered by PDMS 0.21 [48]
100 kV/cm 12 90 BT NWs-PLA 0.49 [47]
100 kV/cm 15 140 MIM ribbons of BT nanofilm 1 [17]
100 kV/cm 20 100 BT NPs-P(VDF-HFP) 1.4 [33]
100 kV/cm 20 100 BT NPs-P(VDF-HFP) 110 [34]
100 kV/cm 20 150 BT NPs-(CNT or RGO)-PDMS 3.2 [41]
100 kV/cm 20 100 BT NPs-P(VDF-HFP) 75 [35]
±120 kV/cm 12 rt BT NPs-PDMS 13.5 [37]
150 kV/cm 1 100 LbL Gr/BT NPs-PVDF 10 [39]
200 kV/cm 3 rt BT NPs-resin 7 [42]

400 (100 *) kV/cm 4 (2 *) 120 (50 *) BT NWs-P(VDF-TrFE) 14 [46]
500 kV/cm - - VA BT NPs-P(VDF-TrFE) 13.2 [40]

1 kV 12 120 BT NWs-BT NPs-PDMS 60 [58]
1.5 kV 12 140 BT NWs-PDMS 7 [43]
2 kV 8 rt BT NPs-PVDF 150 [38]
2 kV 12 130 BT NCr-M13 virus-PDMS 6 [57]
5 kV 24 80 fibres made of BT NPs-PVDF 8 [52]
8 kV 24 rt BT NCs-PDMS 126.3 [55]
8 kV 24 rt BT NCs-PVDF 11.9 [56]

15 kV 4 rt VA of BT NTs, PDMS 10.6 [53]

* In reverse direction. rt-room temperature.
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