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Abstract: This paper studies the impact of shape factor on a mass-based hybrid nanofluid model for
Homann stagnation-point flow in porous media. The HAM-based Mathematica package BVPh 2.0 is
suitable for determining approximate solutions of coupled nonlinear ordinary differential equations
with boundary conditions. This analysis involves discussions of the impact of the many physical
parameters generated in the proposed model. The results show that skin friction coefficients of Cfx
and Cfy increase with the mass of the first and second nanoparticles of the hybrid nanofluids w1 and
w2 and with the coefficient of permeability in porous media. For the axisymmetric case of γ = 0,
when w1 = w2 = 10 gr, wf = 100 gr and Cfx = Cfy = 2.03443, 2.27994, 2.50681, and 3.10222 for σ = 0,
1, 2, and 5. Compared with w1 = w2 = 10 gr, wf = 100 gr, and σ = 0, it can be found that the wall
shear stress values increase by 12.06%, 23.21%, and 52.48%, respectively. As the mass of the first and
second nanoparticles of the mass-based hybrid nanofluid model increases, the local Nusselt number
Nux increases. Values of Nux obviously decrease and change with an increase in the coefficient of
permeability in the range of γ < 0; otherwise, Nux is less affected in the range of γ > 0. According to
the calculation results, the platelet-shaped nanoparticles in the mass-based hybrid nanofluid model
can achieve maximum heat transfer rates and minimum surface friction.

Keywords: mass-based hybrid nanofluids; Homann stagnation-point flows; shape factor; porous media

1. Introduction

A hybrid nanofluid consists of two kinds of nanofluids combined in a base fluid.
Hybrid nanofluids have become a hot field of interest for researchers in engineering
applications of various disciplines and industries, such as the heat transfer of nanofluids in
micro-channel or porous media, geothermal applications, oil-flow filtration, and so on [1–8].

It is of great interest to researchers to apply hybrid nanoparticles and to determine
how the shape of nanoparticles influences thermophysical properties. Murshed et al. [9]
used deionized water as the medium to prepare nanofluids from spherical and rod-shaped
TiO2 nanoparticles. In addition to nanoparticle volume fraction, nanoparticle sizes and
shapes also contribute to the enhancement of thermal conductivity. Alumina nanoparti-
cles of different shapes were examined by Timofeeva et al. [10] in a mixture of ethylene
glycol and water to determine their thermal conductivity and viscosity. The viscosity and
thermal conductivity of nanofluids with approximate rectangular and spherical shapes
were studied experimentally by Jeong et al. [11]. The significant effects of nanoparticle
shapes on viscosity and thermal conductivity were observed in the volume concentration
range of 0.05–5.0 vol%. In a study by Elias et al. [12], different nanoparticle shapes were
examined with regard to the performance of shell-and-tube heat exchangers using five
shapes of nanoparticles. As a result, the cylindrical nanoparticles demonstrated better heat
transfer characteristics and an even higher rate of heat transfer. An analysis of heat transfer
and fluid-flow characteristics was conducted by Vanaki et al. [13] using SiO2 nanoparticles
of different concentrations and shapes. In terms of heat transfer enhancement, SiO2-EG
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nanofluids with platelet-shaped nanoparticles exhibited the highest performance. Using
a stretch sheet, Ghadikolaei et al. [14] studied the effects of induced magnetic fields on
stagnant flows of hybrid nanofluids. The effect of temperature distribution on the shape of
hybrid nanofluids was studied. Generally, platelet-shaped nanoparticles proved to be more
effective than brick-shaped, cylindrical, and spherical nanoparticles. The effects of magnetic
force and radiation on alumina migration in permeable media were simulated by Sheik-
holeslami et al. [15] using a new numerical method. In order to enhance the characteristics
of the working liquid, Al2O3-water with various nanoparticle shapes was selected. In an
isothermal heated horizontal tube, Benkhedda et al. [16] conducted numerical simulations
of the steady-state forced-convection heat transfer and fluid-flow characteristics of hybrid
nanofluids of various shapes. Nanoparticles with bladed shapes exhibited the highest heat
transfer rate when the volume concentration was high, followed by those with platelet,
cylindrical, or spherical shapes. Depending on the different shapes and radiation levels of
the nanoparticles, the hydrothermal properties of Al2O3-H2O nanofluids passing through
a porous shell under ambient magnetic conditions were studied by Shah et al. [17] and
Khashi’ie et al. [18]. You et al. [19–21] studied the flow characteristics of Cu-Al2O3-H2O
hybrid nanofluids in the inclined microchannel of porous media. A smaller average spher-
ical particle size and a high concentration of small particles enhanced the heat transfer
within the nanofluid. Wanatasanappan et al. [22] carried out experimental research on the
viscosity and rheological properties of hybrid nanofluids, analyzed the influence of Al2O3-
Fe2O3 mixing ratios on viscosity properties, and established a correlation with viscosity
prediction. Using a rotating disk with a constant radial stretching rate, Dinavand et al. [23]
explored the three-dimensional laminar flow of a hybrid nanofluid in an incompressible,
steady condition. Calculations for the hybrid single-phase nanofluid model were based
on the mass of nanoparticles in conjunction with the mass of the base fluid at a constant
pressure. For the flow of an incompressible, two-dimensional, hybrid nanofluid on a
convection-heated moving wedge with a radiation transition, Berrehal et al. [24] calculated
the steady flow using numerical simulation. Spherical and non-spherical nanoparticle
suspensions of magnetite (Fe3O4) and graphene oxide (GO) were suspended in pure water.
Rahimi et al. [25] studied two-dimensional natural convection and entropy generation in a
hollow heat exchanger filled with a CuO-water nanofluid. The KKL model was used to
estimate the dynamic viscosity of nanoparticles based on their shape in the simulation. In
nanofluid-filled channels, Rao et al. [26] considered fluid flow, heat transfer, entropy gener-
ation, and hot-wire visualization using the finite volume method. A Koo–Kleinstreuer–Li
model was used to estimate dynamic viscosity, and Brownian motion was taken into ac-
count. In horizontal microchannels, Soumya et al. [27] examined the flow and thermal
properties of Fe3O4-Ag/water and Fe3O4-Ag/kerosene hybrid nanofluids and analyzed the
effect of different nanoparticle shape factors on nanofluid temperature. The perturbation
technique was used by Subray et al. [28] to study the effect of the nanoparticle shape factor
on convective heat and mass transfer in an inclined pipe. The thermal conductivity of
SWCNT-CuO (25:75)/water nanofluids was investigated by Esfe et al. [29] using basic
parameters such as temperature and the solid volume fraction. A permeable exponentially
shrinking Riga surface with thermal radiation energy was considered by Mandal et al. [30]
to determine the flow of hybrid Ag-MoS_2/water nanofluids. They investigated the veloc-
ity, temperature, surface friction coefficients, the Nusselt number, and entropy generation
at the contraction Riga surface under convective heat boundary conditions, as well as
the way hybrid nanofluids varied in viscosity, thermal conductivity, and slip velocity. Fa-
rooq et al. [31] studied the velocity, thermal field, and entropy distribution characteristics
of hybrid nanofluids when passing through a thermal radiation slurry. With Cattaneo–
Christov heat flux, carbon nanotubes were used as nanoparticles, and ethylene glycol was
used as a base fluid. Utilizing X-ray-computed tomography and 3D scanning transmission
electron microscopy, Li et al. [32] characterized the combined effects of nanofiller volume
fractions and packer–polymer interface interactions. As a means of improving heat transfer
capacity, Qi et al. [33] developed a contact probability model for analyzing silicone rubber
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composites with hybrid fillers in terms of thermal conductivity. In both experimental and
simulation studies, the volume fraction, filler shape, and filler size were found to be the
most significant factors that affect a composite material’s thermal conductivity. Using
water-based Fe3O4-Al2O3-ZnO nanofluid, Adun et al. [34–36] investigated the effect of
temperature, volume concentration, and mixing ratio on the fluid. Machine learning mod-
els were also developed for predicting the fluid’s characteristics. Similarly, ternary hybrid
nanofluids were studied for thermal conductivity and dynamic viscosity.

There are many references on stagnation point flow, some of which are studied in the
following literature survey. Ariel [37] studied the two-dimensional stagnation-point flow
problem of second-order non-Newtonian fluids. Weidman [38,39] changed exterior poten-
tial flow in Homann’s problem and solved non-axisymmetric stagnation-point flows and
rotational stagnation-point flows. Dinarvan et al. [40] solved Tiwari–Das nanofluid models
by using Homotopy Analysis Method (HAM), and observed transient MHD stagnation-
point and heat transfer over a vertically permeable sheet for nanofluids. Othman et al. [41]
investigated numerically steady flow of two-dimensional mixed convection boundary
layers near stagnation on impermeable vertical surfaces that are stretching and shrinking. It
was investigated by Abbas et al. [42] whether stagnation-point flows occurred in MHD mi-
cropolar nanomaterial fluid flowing around a sinusoidally shaped cylinder. In addition, the
velocity slip of porous surfaces was also studied. Turkyilmazoglu [43] mainly used numeri-
cal and perturbation methods to study the unsteady flow field caused by the deceleration
of a rotating ball. A vertically stretched thin plate was examined by Sharma et al. [44] for
effects of heat generation and absorption on mixed-convection stagnation-point flows with
external magnetic fields. The magneto-hydrodynamic oscillatory oblique stagnation-point
flows of micropolar nanofluids were analyzed by Sadiq et al. [45]. Copper and alumina
nanoparticles were studied while the aqueous base solution was observed. Ahmed et al. [46]
used Tiwari and Das models to study heat transfer characteristics of hybrid nanofluids in
non-axisymmetric Homann stagnation region with magnetic flux. The importance of the
shape factors of nanoparticles, namely cylinders, blades, bricks and platelets, was studied
under free flow conditions independent of time. Khan et al. [47] considered unsteady
three-dimensional non-axisymmetric Homann flows of conducting nanofluids under buoy-
ancy. By using the fourth-order Runge–Kutta method combined with shooting techniques,
Mahapatra et al. [48] developed a numerical method to solve nonaxisymmetric Homann
stagnation-point flows on a rigid plate of viscoelastic fluid. Khan et al. [49] studied Homann
stagnation-point flows of non-axisymmetric Walter’s B nanofluids, and cylindrical disk
exhibited nonlinear Rosseland thermal radiation and magnetohydrodynamics that was
independent of time. As described in Waini et al. [50], hybrid nanofluid flows on a flat
plate with non-axisymmetric stagnation points are studied.

This study applies the homotopy analysis method (HAM) to approximate analytical
solutions for shape-factor impact on a mass-based hybrid nanofluid model for Homann
stagnation-point flow in porous media. Some HAM-based packages developed in Maple
or Mathematica simplify its application. The free software BVPh 2.0 can be downloaded
online (http://numericaltank.sjtu.edu.cn/BVPh.htm (accessed on 18 May 2013)). It is an
easy-to-use tool that calculates boundary layer flows [51,52]. This paper is divided into
four sections. In addition to the introduction in Section 1, Section 2 contains mathematical
descriptions of this problem. Section 3 covers the results and discussion and includes
graphic illustrations and tables. Finally, Section 4 contains the conclusions, highlighting the
main findings in this work.

2. Mathematical Formulas

A mass-based hybrid nanofluid model for Homann stagnation-point flow in porous
media is shown in Figure 1. The z-axis represents normal direction and xy represents a plane
in Cartesian coordinate systems. The governing equations are as follows (Weidman [38];
Waini et al. [50]):

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (1)

http://numericaltank.sjtu.edu.cn/BVPh.htm
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u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= ue
due

dx
+

µhn f

ρhn f

∂2u
∂z2 −

µhn f

Kρhn f
(u− ue), (2)

u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

= ve
dve

dx
+

µhn f

ρhn f

∂2v
∂z2 −

µhn f

Kρhn f
(v− ve), (3)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f(

ρcp
)

hn f

∂2T
∂z2 , (4)

subject to

u = 0, v = 0, w = 0, T = Tw(x) at z = 0
u→ ue(x), v→ ve(x), w→ we(x), T → T∞ at z→ ∞

, (5)
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In the formulas, u, v, w represent velocity components, external flow velocities are
ue(x, y) = x

(
a + b

)
, ve(x, y) = y

(
a− b

)
, and we(z) = −2az such that a, b represent

shear–strain rates; surface temperature is represented by Tw = T∞ + T0x (T0 represents
characteristic temperature and T∞ represents ambient temperature); K represents the per-
meability of porous media; k represents conductivity at certain temperatures; ρ represents
fluid density; cp represents the specific heat capacity coefficient; and µ represents dynamic
viscosity. Table 1 shows the thermophysical properties of H2O, Cu, and Al2O3 nanoparti-
cles. Tables 2 and 3 present mass-based hybrid nanofluid models for the thermophysical
properties of spherical nanoparticles.

Table 1. Properties of H2O and nanoparticles [6,18,23,24].

Properties ρ (kg/m3) k (W/mK) cp (J/kgK)

H2O 997.1 0.613 4179
Cu 8933 401 385

Al2O3 3970 40 765
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Table 2. Mass-based hybrid nanofluid models for thermophysical properties [23,24,53].

Properties Formulation

Heat capacitance
(
ρcp
)

hn f = φ
(
ρcp
)

s + (1− φ)
(
ρcp
)

f

Density ρhn f = φρs + (1− φ)ρ f

Dynamic viscosity µhn f =
µ

(1−φ)2.5 (Spherical)

µhn f =
(
1 + Aφ + Bφ2)µ f (Non-spherical)

Thermal conductivity
khn f
kn f

=
ks2+(n2−1)kn f−(n2−1)φ2(kn f−ks2)

ks2+(n2−1)kn f +φ2(kn f−ks2)

kn f
k f

=
ks1+(n1−1)k f−(n1−1)φ1(k f−ks1)

ks1+(n1−1)k f +φ1(k f−ks1)

Table 3. The mass-based models for selective hybrid nanofluids [23,24,53].

Properties Mathematical Relations

Equivalent density ρs = (ρ1×w1)+(ρ2×w2)
w1+w2

Specific heat equivalent of nanoparticles at
constant pressure

(
cp
)

s =
((cp)1

×w1)+((cp)2
×w2)

w1+w2

Solid volume fraction of first nanoparticle φ1 =
w1
ρ1

w1
ρ1

+
w2
ρ2

+
w f
ρ f

Solid volume fraction of second nanoparticle φ2 =
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

Equivalent volume fraction of nanoparticles φ = φ1 + φ2 =
w1+w2

ρs
w1+w2

ρs
+

w f
ρ f

It is worth noting that w1, w2, w f are the masses of the first and second nanoparticles
and base fluid water, respectively; φ1,φ2 represent Cu and Al2O3 nanoparticles, respectively;
and solid compositions are represented by the subscripts n1 and n2. φ = φ1 + φ2 is the
volume fraction of hybrid nanofluids, and n is the shape factor, n = 3/ψ, where ψ repre-
sents the sphericity of nanoparticles. Table 4 shows A and B coefficients for non-spherical
nanoparticles in the effective viscosity relation for nanoparticles of different shapes.

Table 4. Sphericity, empirical shape factor, and A, B for non-spherical nanoparticles [18,23–25].

Nanoparticle
Shape Sphere Brick Cylinder Platelet Disk

n 3 3.7 4.8 5.7 8.3
ψ 1 0.81 0.62 0.52 0.36
A 1.9 13.5 37.1 14.6
B 471.4 904.4 612.6 123.3

Using similarity transformation (Weidman [38]; Waini et al. [50]), we obtain

u = x f ′(η)
(

a + b
)

, v = yg′(η)
(

a− b
)

, w = −
√

aν f

[
f (η)

(
a + b

)
+ g(η)

(
a− b

)]
θ = T−T∞

Tw−T∞
, η = z

√
a
ν f

, (6)

In the formula, ’ indicates the derivative with respect to η.
Substitute Equation (6) into Equations (1)–(4), and one gets:

N f ( f , g) = A1 f ′′′ + (1 + γ)
(

f f ′′ + 1− f ′2
)
+ (1− γ)g f ′′ − A1σ( f ′ − 1) = 0, (7)

Ng( f , g) = A1g′′′ + (1− γ)
(

gg′′ + 1− g′2
)
+ (1 + γ) f g′′ − A1σ(g′ − 1) = 0, (8)
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Nθ( f , g, θ) =
A2

Pr
θ′′ + (1 + γ)( f θ′ − f ′θ) + (1− γ)gθ′ = 0, (9)

subject to
f (0) = 0, f ′(0) = 0, g(0) = 0, g′(0) = 0, θ(0) = 1
f ′(η)→ 1, g′(η)→ 1, θ(η)→ 0 at η → ∞

, (10)

In the formula, N f ( f , g), Ng( f , g), Nθ( f , g, θ) are nonlinear differential operators; the
reflective symmetries are obtained through f (η, γ) = g(η,−γ) or f (η,−γ) = g(η, γ),
where γ is the ratio of the strain–shear rate. The coefficients of A1, A2, σ, and Pr are
given by

A1 =
µhn f /µ f

ρhn f /ρ f
, A2 =

khn f /k f(
ρcp
)

hn f /
(
ρcp
)

f
, γ =

b
a

, σ =
ν f

aK
, Pr =

µ f
(
cp
)

f

k f
. (11)

The skin friction coefficients of C fx, C fy and the local Nusselt number Nux are

C f x =
µhn f

ρ f u2
e

(
∂u
∂z

)
z = 0

, C f y =
µhn f

ρ f v2
e

(
∂v
∂z

)
z = 0

, Nux = −
xkhn f

k f
(
Tw − T∞

)(∂T
∂z

)
z = 0

,

(12)
C f x =

√
Rex(1 + γ)C f x =

µhn f
µ f

f ′′(0), C f y =
√

Rey(1− γ)C f y =
µhn f
µ f

g′′(0)

Nux =
√

1+γ
Rex

Nux = − khn f
k f

θ′′(0)
, (13)

In the formulas, the local Reynolds numbers are Rex = uex/ν f , and Rey = vey/ν f .
HAM-based Mathematica packages [48,49] are suitable for determining approximate
solutions of coupled nonlinear ordinary differential Equations (7)–(9) with Boundary
Conditions (10). Free online instructions for BVPh 2.0 are available online (http://numerica-
ltank.sjtu.edu.cn/BVPh.htm (accessed on 18 May 2013) ).

As a result, HAM based on topological homotopy transforms a nonlinear problem into
an infinite linear subproblem without requiring any physical parameters. The problems
considered have the following characteristics:

f (η) =
+∞

∑
m = 0

fm(η), g(η) =
+∞

∑
m = 0

gm(η), θ(η) =
+∞

∑
t = 0

θm(η), (14)

In the formula, fm(η), gm(η), θm(η) are calculated based on the higher-order defor-
mation equation controlled by the selected auxiliary linear operator. In accordance with
Equations (7)–(9) and the Boundary Conditions (10) at infinity, f (η), g(η), θ(η) should be
in the form

f (η) =
+∞

∑
k = 0

+∞

∑
i = 0

+∞

∑
j = 0

ak
i,jη

ie−jη , g(η) =
+∞

∑
k = 0

+∞

∑
i = 0

+∞

∑
j = 0

bk
i,jη

ie−jη , θ(η) =
+∞

∑
k = 0

+∞

∑
i = 0

+∞

∑
j = 0

ck
i,jη

ie−jη , (15)

where ak
i,j, bk

i,j, ck
i,j are the constant coefficients to be determined by HAM-based Mathe-

matica package BVPh 2.0. HAM relies heavily on the solution expression of Equation (15)
to select auxiliary linear operators and initial guesses. It is important to note that the
f (η), g(η), θ(η) given by BVPh 2.0 contain three unknown convergence control param-
eters, d f

0 , dg
0 , dθ

0. The series solution relies on these to ensure convergence. The mean
residual errors of the kth-order approximations are defined as follows:

ζ
f
k

(
d f

0 , dg
0 , dθ

0

)
=

1
N + 1

N

∑
i = 0

N f

(
k

∑
m = 0

fm

)∣∣∣∣∣
η = iβη

2

, (16)

ζ
f
k

(
d f

0 , dg
0 , dθ

0

)
=

1
N + 1

N

∑
i = 0

Ng

(
k

∑
m = 0

fm,
k

∑
m = 0

gm

)∣∣∣∣∣
η = iβη

2

, (17)

http://numerica- ltank.sjtu.edu.cn/BVPh.htm
http://numerica- ltank.sjtu.edu.cn/BVPh.htm
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ζ
f
k

(
d f

0 , dg
0 , dθ

0

)
=

1
N + 1

N

∑
i = 0

Nθ

(
k

∑
m = 0

fm,
k

∑
m = 0

gm,
k

∑
m = 0

θm

)∣∣∣∣∣
η = iβη

2

, (18)

for the original governing Equations (7)–(9). An approximation of the kth order has a total
error defined as follows:

ζtol
k

(
d f

0 , dg
0 , dθ

0

)
= ζ

f
k

(
d f

0 , dg
0 , dθ

0

)
+ ζ

g
k

(
d f

0 , dg
0 , dθ

0

)
+ ζθ

k

(
d f

0 , dg
0 , dθ

0

)
, (19)

As a result of the kth-order approximation, the optimal values for d f
0 , dg

0 , dθ
0 can be

determined as the minimum of the total error of ζtol
k . Consult the online BVPh 2.0 for

details on specific operations (http://numericaltank.sjtu.edu.cn/BVPh.htm (accessed on
18 May 2013)).

3. Results Analysis and Discussion

This analysis involves a discussion of the impact of the many physical parameters
generated in the proposed model. When γ = 0, φ = 0, and σ = 0, it can be found that
f (η) = g(η) represents the axisymmetric Homann stagnation-point flow. When γ = 0
(axisymmetric), φ = 0 (pure fluid), and σ = 0 (non-porous medium), f ′′(0) = 1.311608,
compared with f ′′(0) = 1.311938 in Waini et al. [38], the relative error is not more than
0.8194%. As shown in Table 5, the values of the skin friction coefficients of C fx, C fy, and
the local Nusselt number Nux with γ, φ, and σ when Pr = 6.2 are calculated compared
with the results of Waini et al. [38]. Consequently, Table 5 demonstrates that the results of
the present mass-based study (w1 = w2 = 0, pure water) are consistent with previous
similar work on volume fraction (φ = φ1 = φ2 = 0, pure water). All calculation cases
are compared when the first (Cu) and second (Al2O3) nanoparticles have the same shape
factor, namely n1 = n2.

Table 5. Skin friction coefficients of C fx, C fy and local Nusselt number Nux under values of γ, φ,
and σ when Pr = 6.2.

γ φ σ Cfx (Ref. [50]) HAM
20th

Relative
Error(%) Cfy (Ref. [50]) HAM

20th
Relative
Error(%)

Nux
(Ref. [50])

HAM
20th

Relative
Error(%)

0 0 0 1.311938 1.311608 0.0252 1.311938 1.311608 0.0252 1.806069 1.810147 0.2258
5 3.038940 3.036096 0.0935 −0.894909 −0.902242 0.8194 3.938146 3.998352 0.2257
−5 −0.894909 −0.902242 0.8194 3.038940 3.036096 0.0935 3.074275 3.084240 0.3241

An analysis of the shape factor of nanoparticles as it relates to velocity distribution
is shown in Figure 2, where w1 = w2 = 10 gr , w f = 100 gr = 0, σ = 0, Pr = 6.2, and
γ = 0. First, velocity increases as the shape factor increases, and then it decreases as the
shape factor decreases. Furthermore, disk-shaped nanoparticles (n1 = n2 = 8.3) have
similar velocity profiles to brick-shaped nanoparticles (n1 = n2 = 3.7). Whenever η
is large, the dimensionless velocity profile reaches the same value, which is limited to 1.
Nanoparticle shape has a greater effect on velocity fields than temperature distribution.
Figure 3 shows the effect of the shape factor on the temperature distribution of nanoparticles
where w1 = w2 = 10 gr, w f = 100 gr = 0, σ = 0, Pr= 6.2, and γ =0. Figure 3 shows
the effect of shape factor on temperature distributions of nanoparticles. In general, as the
shape factor increases, temperature profiles decrease first and then increase, especially for
disk nanoparticles. The image indicates that the shape factors of nanoparticles are not
significantly different between these dimensionless temperature profiles. As η increases, the
dimensionless temperature profile reaches a value limited to 0. Compared to temperature
distribution, the shape factor of nanoparticles has a greater effect on the velocity field. Based
on Figures 2 and 3, increasing the levels of nanoparticle shape factors leads to increases in
velocity and decreases in temperature. Consequently, the hydrodynamic boundary layer

http://numericaltank.sjtu.edu.cn/BVPh.htm
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and thermal boundary layer become thinner. In these cases, the Prandtl number is fixed at
6.2, which does not account for variations.
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Figure 3. The dimensionless temperature distributions θ(η) against shape factor n when
w1 = w2 = 10 gr, w f = 100 gr, σ = 0, Pr = 6.2, and γ = 0: (a) the full picture of θ(η); (b) the par-
tial enlargement picture of θ(η).

When w1 = w2 = 10 gr, w f = 100 gr = 0, σ = 1, Pr= 6.2, γ = 0, the effects of shape
factor of nanoparticles on velocity, and temperature distributions f ′(η), g′(η), θ(η) of
hybrid nanofluid under different values of shear–strain rate ratios γ = ±3 are presented
in Figures 4 and 5. The behaviors of flow fields by changing shear–strain rate ratios γ were
studied. f ′(η), g′(η) increase with the increase in γ; θ(η) decreases with increase in γ. As
shown in Figure 4, f ′(η) reverse flows occur near walls at γ = −3, or g′(η) reverse flows
occur near walls at γ = 3, the flow is inward near the stagnation zone. As the shape factor
increases, the velocities increase first and then decrease. Moreover, the velocity profile
of disk nanoparticles is close to that of brick nanoparticles. Figure 5 shows influence of
shape factor of nanoparticles on temperature distributions. As shape factor n increases,
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temperature profiles θ(η) decrease first and then increase; in particular, the temperature
profile of disk nanoparticles is close to that of sphere nanoparticles because of the coefficient
of permeability of porous medium σ = 1 increasing. This dimensionless temperature
profile under the influence of the nanoparticle shape factor shows no significant difference.
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In nanofluids or hybrid nanofluids, the shape of nanoparticles affects both thermal
characteristics and flow characteristics. A plot showing the influence of the shape factor
n of nanoparticles on the skin friction coefficients and local Nusselt number can be seen
in Figure 6. The skin friction coefficients of C fx, C fy and the local Nusselt number Nux
against γ in the range of −6 ≤ γ ≤ 6 for various shape factors n1 = n2 = 3, 3.7, 4.8, 5.7,
and 8.3 when w1 = w2 = 10 gr, w f = 100 gr, σ = 0, and Pr = 6.2 are shown in Figure 6. The
values of C fx, C fy show a symmetric pattern where the line of symmetry lies at γ = 0 in the
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axisymmetric case. When γ = 0, σ = 0, and w1 = w2 = 0, C fx = f ′′(0) = 1.311608, and
C fy = g′′(0) = 1.311608, also as shown in Table 5. As shown in Figure 6a, C fx = C fy = 0;
that is, the wall shear stress value is 0 when γ = ±2.50895. When γ < −2.50895,
C fx decreases with increasing w1, w2; when γ > −2.50895 increases, C fx increases with
increasing w1, w2. When γ > 2.50895 increases, C fy decreases with increasing w1, w2;
when γ < 2.50895, C fy increases with increasing w1, w2. Figure 6b shows the local Nusselt
number Nux against γ in the range of −6 ≤ γ ≤ 8 for various shape factors n1 = n2 = 3,
3.7, 4.8, 5.7, and 8.3 when w1 = w2 = 10 gr, w f = 100 gr, σ = 0, and Pr = 6.2. Nux
increases as the value of the shape factor n increases. When γ < 0, the values of Nux
increase sharply, with shape factor n increasing. When γ > 0, the values of Nux increase
and slow down with an increase in shape factor n. In addition, for the axisymmetric case
of γ = 0, when w1 = w2 = 10 gr, w f = 100 gr, σ = 0, and Pr = 6.2, C fx = C fy = 2.03443,
1.69439, 1.42415, 1.29710, and 1.63776, changing with the shape factor n1 = n2 = 3, 3.7,
4.8, 5.7, and 8.3, as shown in Figure 7a. Among the five nanoparticle shapes, including
spherical (n1 = n2 = 3), brick-shaped (n1 = n2 = 3.7), cylindrical (n1 = n2 = 4.8),
platelet-shaped (n1 = n2 = 5.7), and disk-shaped (n1 = n2 = 8.3), spherical and
platelet-shaped nanoparticles have the highest and lowest friction coefficients, respectively.
Skin friction C fx, C fy decreases as the shape factor n increases. Among the five nanoparticle
shapes, including spherical (n1 = n2 = 3), brick-shaped (n1 = n2 = 3.7), cylindrical
(n1 = n2 = 4.8), platelet-shaped (n1 = n2 = 5.7), and disk-shaped (n1 = n2 = 8.3),
the highest local Nusselt number is related to spherical nanoparticles, as shown in Figure 7b.
Nux increases with an increase in shape factor n, showing a close correlation of the five
nanoparticle shapes.
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Figure 6. Skin friction coefficients C fx, C fy and local Nusselt number Nux against γ, shape factor
n when w1 = w2 = 10 gr, w f = 100 gr, σ = 0, and Pr = 6.2: (a) the distributions of C fx, C fy; (b) the
distributions of Nux.

When w1 = w2 = 10 gr, w f = 100 gr, Pr = 6.2 n1 = n2 = 3 (spherical nanoparticles),
the skin friction coefficients of C fx, C fy against γ in range of −6 ≤ γ ≤ 6 for various
σ = 0, 1, 2, 5 are shown in Figure 8a. Additionally, for the axisymmetric case of γ = 0, when
w1 = w2 = 10 gr, w f = 100 gr, C fx = C fy = 2.03443, 2.27994, 2.50681, 3.10222 for various
σ = 0, 1, 2, 5. Compared with w1 = w2 = 10 gr, w f = 100 gr, σ = 0, it can be found that the
wall shear stress values increase by 12.06%, 23.21%, and 52.48%, respectively. It is shown
the percentage of skin friction coefficient enhanced by hybrid nanofluid relative to regular
fluid. This shows that shear stress can be enhanced by increasing coefficient of permeability
in porous media. As σ increases, the values of C fx and C fy increase. When w1 = w2 and
γ are given certain values, the greater the values of σ, the stronger the values of C fx and
C fy. When w1 = w2 = 10 gr, w f = 100 gr, Pr = 6.2n1 = n2 = 3 (spherical nanoparticles),
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local Nusselt number Nux with γ in the range of −6 ≤ γ ≤ 8 for various σ = 0, 1, 2, 5 are
shown in Figure 8b. As the coefficient of permeability in porous media increases, the values
of Nux decrease when γ < 0. When γ > 0, the values of Nux are less affected by the values
of σ.
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Figure 8. Skin friction coefficients C fx, C fy and local Nusselt number Nux against γ when
w1 = w2 = 10 gr, w f = 100 gr, σ = 0, 1, 2, 5, and Pr = 6.2: (a) the distribution of C fx, C fy with
n1 = n2 = 3 (sphere); (b) the distribution of Nux with n1 = n2 = 3 (sphere).

When w1 = 10 gr, w f = 100 gr, Pr = 6.2 n1 = n2 = 3 (spherical nanoparticles),
skin friction coefficients of C fx, C fy with γ in the range of −6 ≤ γ ≤ 6 for various
w2 = 0, 10 gr, 30 gr, σ = 0, 1 are shown in Figure 9a. When w1 = 10 gr, w f = 100 gr,
σ = 0, C fx = C fy = 1.40293, 2.03443, 2.42377 for various w2 = 0, 10 gr, 30 gr. Compared
with w1 = 10 gr, w2 = 0, w f = 100 gr, σ = 0, it can be found that the wall shear stress
values increase by 45.01% and 72.76%, respectively. When w1 = 10 gr, w f = 100 gr, σ = 1,
C fx = C fy = 1.70784, 2.27994, 2.68638 for various w2 = 0, 10 gr, 30 gr. Compared
with w1 = 10 gr, w2 = 0, w f = 100 gr, σ = 0, it can be found that the wall shear stress
values increase by 33.50% and 57.30%, respectively. This shows that shear stress can be
augmented by increasing the mass of the second nanoparticle. When w1 = 10 gr, w f = 100 gr,
Pr = 6.2 n1 = n2 = 3 (sphere nanoparticle), local Nusselt number Nux with γ in range
of −6 ≤ γ ≤ 8 for various w2 = 0, 10 gr, 30 gr, σ = 0, 1, 2 are shown in Figure 9b. As the
mass of the second nanoparticle increases, Nux increases more evenly. With an increase in
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the mass of the first and second nanoparticles of hybrid nanofluids, the relevant Nusselt
number, and skin friction coefficient are enhanced. Since the mass of the nanoparticles
increases, thermal conductivity is also augmented, affecting the rate of heat transfer.
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Figure 9. Skin friction coefficients C fx, C fy and local Nusselt number Nux against γ when w1 = 10 gr,
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n1 = n2 = 3 (sphere); (b) the distribution of Nux with n1 = n2 = 3 (sphere).

4. Conclusions

The impact of the shape factor on mass-based hybrid nanofluid models for Homann
stagnation-point flow in porous media was studied herein. The HAM-based Mathematica
package BVPh 2.0 is suitable for determining the solution of coupled nonlinear ODEs
with boundary conditions. Free online instructions for BVPh 2.0 are available (http://
numericaltank.sjtu.edu.cn/BVPh.htm (accessed on 18 May 2013)). The analysis involved
a discussion of the impact of the many physical parameters generated in the proposed
model. The results show that the skin friction coefficients of Cfx, and Cfy increase with
the mass of the first and second nanoparticles of hybrid nanofluids w1 and w2 and with
the coefficient of permeability in porous media. For the axisymmetric case of γ = 0, when
w1 = w2 = 10 gr and wf = 100 gr, Cfx = Cfy = 2.03443, 2.27994, 2.50681, and 3.10222 for σ = 0,
1, 2, and 5. Compared with w1 = w2 = 10 gr, wf = 100 gr, and σ = 0, it can be seen that the
wall shear stress values increase by 12.06%, 23.21% and 52.48%, respectively. According
to the calculation results, platelet-shaped nanoparticles in mass-based hybrid nanofluid
models can achieve maximum heat transfer rates and minimum surface friction. As the
mass of the first and second nanoparticles of hybrid nanofluid models increases, the local
Nusselt number Nux increases. Nux decreases and obviously changes with an increase in
the coefficient of permeability in the range of γ< 0; otherwise, Nux is less affected in the
range of γ > 0.
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Nomenclature

u, v, w The velocity components
ue, ve, we The external flow velocities
a, b The strain shear rates
T∞ The ambient temperature
T0 The characteristic temperature
K The permeability of porous media
k The conductivity in temperature
cp The coefficient of specific heat capacity
A Coefficient for non-spherical nanoparticles in the effective viscosity relation for

nanoparticles of different shapes
B Coefficient for non-spherical nanoparticles in the effective viscosity relation for

nanoparticles of different shapes
n Shape factor
C fx, C fy Coefficients of skin friction
Nux Nusselt number
A1, A2 Coefficients from hybrid nanofluids
Pr The Prandtl number
Rex, Rey The local Reynolds numbers
w1 Mass of first nanoparticles of hybrid nanofluids
w2 Mass of second nanoparticles of hybrid nanofluids
w f Mass of base fluid
Greek symbols
ρ The fluid density
µ The dynamic viscosity
φ, φ1, φ2 Volume fraction of hybrid nanofluids
ψ Sphericity of nanoparticles
γ Ratio of shear–strain rate
σ Coefficient of permeability
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