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Abstract: This research work uses sp3d5s* tight-binding models to design and analyze the structural
properties of group IV and III-V oriented, rectangular Silicon (Si) and Gallium Arsenide (GaAs)
Nanowires (NWs). The electrical characteristics of the NWs, which are shielded with Lanthanum
Oxide (La2O3) material and the orientation with z [001] using the Non-Equilibrium Green Function
(NEGF) method, have been analyzed. The electrical characteristics and the parameters for the multi-
gate nanowires have been realized. A nanowire comprises a heavily doped n+ donor source and
drains doping and n-donor doping at the channel. The specified nanowire has a gate length and
channel length of 15 nm each, a source-drain device length LSD = 35 nm, with La2O3 as 1 nm (gate
dielectric oxide) each on the top and bottom of the core material (Si/GaAs). The Gate-All-Around
(GAA) Si NW is superior with a high (ION/IOFF ratio) of 1.06 × 109, and a low leakage current, or
OFF current (IOFF), of 3.84 × 10−14 A. The measured values of the mid-channel conduction band
energy (Ec) and charge carrier density (ρ) at VG = VD = 0.5 V are −0.309 eV and 6.24 × 1023 C/cm3,
respectively. The nanowires with hydrostatic strain have been determined by electrostatic integrity
and increased mobility, making them a leading solution for upcoming technological nodes. The
transverse dimensions of the rectangular nanowires with similar energy levels are realized and
comparisons between Si and GaAs NWs have been performed.

Keywords: nanowire; tight binding models; NEGF; GAA; hydrostatic strain; microelectronics;
nanotechnology; VLSI

1. Introduction

Over the last two decades in the semiconductor industry, the advanced structure of
Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), from planar to multi-gate
design, has been proposed to achieve great electrostatic control over the channel. Various
multi-gate structural designs named Double gate, Tri-gate, Pi, Omega, Top on-one side,
and Gate-all-around (GAA) devices with nanotechnology approaches have been used for
forthcoming applications. The GAA device architecture has high resistance properties. It
exhibits static control on the gate over the conduction of the channel, which plays a major
role in avoiding short-channel effects [1,2]. Natori et al. [3] have proposed GAA NW to resist
(SCEs) by improving gate length and channel length scaling (LG < 5 nm and Lch < 15 nm).
The primary benefit of GAA devices is that they have a higher ION/IOFF ratio [4]. The
reduction in OFF current (IOFF) produces a high (ION/IOFF) ratio. Batakala et al. [5] have
demonstrated the comparison between Si and GaAs GAA MOSFETs. The gain and current-
driving capacity of the GaAs material were efficient and, thus, based on this channel
material, was selected following the application field. The reduction in leakage current had
been achieved by considering major features, such as smaller threshold voltage (Vth ~0.3 V),
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channel length (Lch ≥ 10 nm), shorter gate length, high dielectric constant oxide material,
and the dopant concentration of the source, channel, and the drain, respectively [6].

Several studies have analyzed NWs with multi-gate arrangements. Wang et al. [7]
reduced the computational complexity in SiNW by the scattering effects, and an approx-
imation of the effective mass was carried out using Buttiker probes. Arun et al. [8] have
proposed SiNW and exhibit the efficiency of the electrical characteristics by oxide thickness
(tox) variation, dopant concentration, and thickness of the silicon (tsi) in the nanometer
regime, respectively. Coquand et al. [9] have presented a study of channel performance
and electrostatic control for Tri-gate nanowires by reducing gate length and channel width
dimensions to the optimum limit. The optimization in the dimensions results in a low
Subthreshold Slope (SS) and Drain-Induced Barrier lowering (DIBL). The effects of electron
confinements on thin gate cross-sections surrounded by SiO2 surface roughness have been
discussed by Ramayya et al. [10]. The electron mobility was monotonously reduced due to
the surface roughness scattering effect, which was dominant.

Cresti et al. [11] have addressed the surface roughness for an electron mobility reduc-
tion in GAA and DG nanowires. The surface roughness in the device had been chosen
by transfer characteristic parameters, electron density, and low-field electron mobility.
Jin et al. [12] have discussed the carrier scattering and backscattering mechanisms. The
backscattering decreases the flow of current, electron density, and carrier velocity when
the channel’s position varies. The carrier velocity works in the same operation in both
carrier scattering and backscattering. The carrier velocity in carrier scattering may increase
perhaps increase more in higher order than the backscattering mechanisms.

Numerous studies have been done on the transport characteristics, charge density
distributions, and doping concentrations of SiNWs, which have been discussed both em-
pirically and theoretically [13–16]. The carrier densities for various cross-sections (square,
circular, elliptical, and rectangular) using Poisson Schrodinger (PS) and Drift Diffusion
(DD) simulations had been investigated with variations in the gate length and channel
position being discussed [17]. The source/drain connections were kept wider than the
channel to decrease access resistance. The framework for single and double-gate nano
MOSFETs using the NEGF coupled mode technique for NWs with six variants had been
provided by Svizhenko et al. [18]. The coupled mode effects for nonuniformity of the
transverse potential profile greatly impacted multi-gate nanowires. The transport calcu-
lations and the electrical properties, such as the transmission coefficient for Si and GaAs
with different orientations using NEGF mechanisms, had been discussed elaborately by
Luisier et al. [19–21].

Using Density Functional Theory (DFT)-based techniques, the electronic characteristics
of mechanical and crystalline properties of nanomaterials whose accuracies and efficiencies
were reported when it is subjected to the temperature [22,23]. Kumarasinghe et al. [24] have
investigated the electronic properties of pure and doped Si nanowires with dimensions
up to 10 nm using large-scale Density Functional Theory (DFT) modeling. Three steps are
used in modeling: (1) relaxation of the NW unit cell using the DFT method and extraction
of the Hamiltonian and overlap matrices, (2) mode space transformation of the imported
Hamiltonian matrices, and (3) non-orthogonal NEGF transport calculations using the mode
space Hamiltonians, in a way that is self-consistent with the Poisson’s equation.

The Tight Binding (TB) methodology had been used by many researchers to address
all the nanowire features that ultimately depend on the electronic structures. All varieties
of nanowires and nanotubes (semiconducting, metallic, oxide, and others) were carried
over in this method. The majority of research focuses on calculating the sub-band electronic
structure of technological semiconductors and its relationship to factors such as shape,
composition, and orientation, respectively [25].

Morioka et al. [26] have presented the electronic band structures of rectangular Si NWs
using sp3d5s* tight-binding models. This method considers one excited s* orbital, p orbitals
{px, py, and pz}, and d orbitals {dyz, dzx, dxy, d3z

2
-r

2, and dx
2

-y
2}. The x, y, and z coordinate

axes are set at [100], [010], and [001], respectively. The part of each atomic orbital typically
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depends on the nanowire’s width. The symmetrical character of the d001 orbital has the
same width dependence configuration of p001, but the magnitude of orbital d001 was found
to be lesser, about nanowire based from p001.

This work concentrates on designing a novel nanowire-based on GaAs material to
use in RF hybrid applications. To improve the ION and IOFF ratio, various methodologies
have been utilized. The usage of high-
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dielectric material, such as La2O3, has shown
various enhancements to create an optimal design to be used in RF application setups. This
paper has been organized as follows. The basics of NEGF modeling have been discussed in
Section 2. The proposed nanowire structure with six variants has been discussed in Section 3.
The mathematical modeling of lanthanum oxide with the self-consistent methodology and
the division of the 3D problem into 1D transport and 2D Schrodinger equations were
investigated in Section 4. Section 5 discusses the lt and analysis of the work. Finally,
Section 6 concludes the work and recommends the future aspects.

2. Basics of NEGF Modeling

The electronic properties of hydrogen-passivated compound semiconductor nanowires
grown in different crystallographic orientations, specifically the band structures, band gaps,
and effective electron masses, were discussed previously [27–30]. Horiguchi et al. [31] have
discussed the Silicon nanowire bandgap dependency on the wire width using effective mass
theory calculations and using the boundary conditions envelope between wire confinement
potential and the barrier height confinement potential’s finiteness. Several authors have
presented nanoscale modeling using green’s function, quantum transport modeling, density
matrix calculation, and analyzing electronic devices in equilibrium conditions [32–35].

Seone et al. [36] have proposed the Gate-All-Around (GAA) Si nanowire MOSFET and
the impact of current variability on the channel’s surface roughness was analyzed using
3-D real-space non-equilibrium Green’s function. Mazumder et al. [37] have proposed GAA
GaAs TFET, which works under the tunneling phenomenon. The maximum ION/IOFF ratio
of TFET is achieved by adjusting the few electric gate insulator and GAA TFET channel
architecture, which were been investigated to provide the best band-to-band tunneling
and potential amplification. Montazeri et al. [38] have demonstrated the band structure for
III–V compound semiconductor nanowires using k.p theory calculations. The calculation of
the strain is used to determine the particular nanowire structure, and it had been employed
using the elastic theory. The resulting calculated strain was called hydrostatic strain,
which depends on the proportions of structural dimensions and is independent of the
total size. Ren et al. [39] have modeled nanoscale MOSFETs and estimated the scattering
and backscattering coefficients using the scattering theory. The critical length and carrier
velocity at the source’s end and the channel’s start were identified using transport models.
The ballistic, dual-gate nano transistors used for digital applications with a proper choice
of the gate oxide thickness and scaling limit down to 10 nm were discussed [40,41]. Several
studies have incorporated the operation of the nanowire in a ballistic regime using analytic
models [42–45] and numerical simulations [46,47]. In the simulation study, the density
of states, the electron density, and the conduction band energy (Ec) variations along the
position of the channel were investigated [48].

3. Design of Proposed Novel GaAs Nanowire

The generic structure of the proposed nanowire has been designed with a rectangular
cross-section with dimensions of 35 nm × 4.5 nm. The source and drain of the Si and
GaAs-based nanowire material have a continuous n+ donor impurity concentration of
(2 × 1020 cm−3) and n donor doping of (1 × 1020 cm−3) at the channel. The channel
direction in this situation is longitudinal to the <001> z-axis, ‘x’ determines the channel
width, and ‘y’ determines the current flow into the nanowires, as shown in Figure 1a. The
electron movement in the longitudinal z direction is based on Kinetic Energy (Ez) and is
called Transmission Probability T (Ez). The proposed nanowire dimensions are listed in
Table 1.
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Table 1. Physical dimensions.

Device Parameters Proposed Nanowire

Tox (upper) nm 1
Tox(lower) nm 1

Channel Length (Lch) 15 nm
Channel Width (Wch) 2.5 nm
Channel Height (Hch) 2.5 nm

Source Length (LS) 10 nm
Drain length (LD) 10 nm

S/D n + Donor doping (cm−3) 2 × 1020

n channel doping (cm−3) 1 × 1020

Shape Rectangular
Transport 100

Confinement and Y direction 010

The Landauer formula, as in reference [3], yields the following description of the
drain current:

IDS =
e

πh ∑
nv ,n

∞∫
0

dEzT(Ez)× [ f (EFL, E)− f (EFR,E)] (1)

f (EF, E) = [1 + exp((E− EF)/kBT)]−1 (2)

E = Env ,n(zmax) + Ez (3)

where ‘n’ is the quantum number that matches the confinement in the wire cross-section;
EFL, and EFR (=EFL − eVDS), where EFL and EFR are the fermi energy levels at the source
and drain. Equation (2) is the Fermi-Dirac Distribution. Env, n in Equation (3) fits into the
particular valley nv, where nv = 1, 2, 3, represents the energy confinement level at the top
barrier on the channel as (Etop = EFL + kBT). In Figure 1b, the potential energy distribution
is along the z-axis, where the maximum energy at the uppermost oxide interface from the
channel is represented as Emax. The Landauer equation can be simplified as follows:

IDS =
ekBT
πh ∑

nv ,n
ln
(

1 + exp((EFL − Env,n)/kBT)
1 + exp((EFR − Env,n)/kBT)

)
(4)
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Equation (4) determines the current IDS where confinement energy levels at the oxide
interface top barrier zmax exist. Multiple gates or very thin film structures were necessary
to control SCEs in III–V technologies, as suggested previously [3]. There are six variants
shown in Figure 2. Each variant differs in the number of gates and their arrangement with
natural length, as shown in Table 2.
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Table 2. Gate variant arrangement.

Gate Variant No. of Gates ñ Natural Length λn

Double Gate 2 1.149
GAA 4 0.8129

Omega Gate 3.4 0.8817
Pi Gate 3.14 0.9175

Top Gate 1 1.625
Tri-gate 3 0.939

The natural length λn can be calculated by:

λn =

√
εsi

ñεox

(
1 +

εoxtsi
4εsitox

)
tsitox (5)

where ‘ñ’ is referred to as the effective number of gates. The idea was to design devices with
both doped and undoped channels that use mid-gap gate material and yields the highest
gate efficiencies for sub-10 nm technology [27,28]. The device’s short-channel behavior has
been enhanced by raising the equivalent gate number ‘ñ’ and by maintaining the size of the
gate length (approximately) five to ten times greater than that of the natural length λn.

Scaling is possible with GAA devices because they are built with the gate in contact
with the channel on all sides. The main benefit of GAA devices is that they have a higher
ION/IOFF ratio. Owing to the asymmetric characteristics of the electrostatic control, the
tri-gate arrangement results in a lower gate-controlled charge and is 25% smaller when
compared to the GAA SiNW for the specific W/H ratio because there are more channel
sides placed towards the gate contact.

When the gate voltage VG = 0 V, the potential in three-dimensional form has been
distributed out over the length of the NW, as shown in Figure 3, which is represented in
the order of Double gate, GAA, Omega, Pi, Top, and Tri-gate respectively. Three different
effective masses (ml, mt, mt), (mt, ml, mt), and (mt, mt, ml) have been considered for the x,
y, and z directions. The (ml) and (mt) are the longitudinal and transverse effective masses
whose value is equal to 0.98 m0 and 0.19 m0. The mass (m0) is called free electron mass.
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The sub-bands in the z longitudinal direction are more energetic than those in the
valley pairs along x and y whose transport mass (mt) is less than longitudinal mass (ml).
To simulate ∆ valley for the electrons near the Z [001] direction for Si, the effective masses
(mx, my, and mz) obtained for valleys 1, 2, and 3 are (0.19, 0.19, and 0.98), (0.38, 0.38, and
1.17), and (0.57, 0.57, and 1.36), respectively. Similarly, the effective masses (mx, my, and
mz) for GaAs NW obtained for valleys 1, 2, and 3 are (0.067, 0.067, and 0.542), (0.134, 0.134,
and 0.069), and (0.201, 0.201, and 0.676), respectively.

4. Mathematical Modeling of the Nanowire with La2O3

The proposed multi-gate device is a 3-D-dimensional nanowire with a source and
drain doping concentration of 2 × 1020 cm3. The source and drain are made of silicon or
gallium arsenide that has been highly doped with n+ atoms. The device’s effective mass
Hamiltonian has been denoted by the notation:

H3Dψ(x, y, z) = Eψ(x, y, z) (6)

H3D = − h2

2m∗x

∂2

∂x2 −
h2

2
∂

∂y

(
1

m∗y

∂

∂y

)
− h2

2
∂

∂z

(
1

m∗z

∂

∂z

)
+ V(x, y, z) (7)

where the conduction band edge profile is represented by V (x, y, z) [26], and m∗x, m∗y, and
m∗z are the effective masses:

V(x, y, z) = EC1/2(x, y)− φ(x, y, z) (8)

where EC1/2 (x, y) is the band gap of the nanowire core material (Si/GaAs), the point (x,
y) links to the dioxide region, and (x, y, and z) corresponds to space potential. Due to the
movement of electrons in the z-direction, the effective core mass in the transport direction
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is m*z, and the effective oxide masses are represented by m*x = m*x (x,y) and m*y = m*y (x,y),
respectively.

The wavefunction of the three-dimensional Hamiltonian (x, y, and z) in the longitudi-
nal z direction is given as:

ψ(x, y, z) = ∑
m

ϕb(z)ψb(x, y; z) (9)

The bth mode eigen function ψb (x, y; z) represented in two-dimensional (2D) Schro
dinger equation is given as:

H2Dψ(x, y; z) = Eb(x)ψb(x, y; z) (10)

where

H2D = −h2

2
∂

∂x

(
1

m∗x(x, y)
∂

∂y

)
− h2

2
∂

∂y

(
1

m∗y(x, y)
∂

∂y

)
+ V(x, y; z) (11)

H2D = −h2

2
∂

∂x

(
1

m∗x(x)
∂

∂x

)
− h2

2
∂

∂y

(
1

m∗y(y)
∂

∂y

)
+ V(x, y; z) (12)

Under boundary conditions, the wave functions at the margins of the two-dimensional
(2D) cross-section plane is known as uncoupled mode space method, which eliminates the
coupling among several modes (or sub-bands), and ϕb (z) satisfies as follows:{

− h2

2m∗z

∂2

∂z2 + Eb(z)
}

ϕb(z) = Eϕb(z) (13)

The Schrodinger Equation (13) with open boundary conditions describes the 1-D
transport problem, and further, the NEGF technique [31] has been used to solve it. The
primary notation for the sub-band b using 1-D Green’s function (Gb) is as follows:

Gb = [E− H1D
b −∑ S.b−∑ D.b]

−1
(14)

where

H1D = − h2

2m∗z

∂2

∂z2 + Eb(z) (15)

ΣS,b and ΣD,b are the S/D self-energies of sub-band b, respectively. The 1D charge
density nk

1D(z) in the bth sub-band is then obtained via:

n1D
b (x) =

1
2π∆x

∫
dE fsGΓS.bG†

b + fDGkΓD.bG†
b (16)

where ∆x is the lattice spacing, and ΓS,b and ΓD,b are defined by:

ΓS.b = i
(
∑S.b−∑†

S,b

)
, (17)

ΓD.b = i
(
∑D.b−∑†

D,b

)
, (18)

The Fermi Distribution functions and the Fermi Energies at the source and drain are
given as follows:

fSD(E) =
1

1 + e(E−ESD
F )/kBT

(19)

The 3-D quantum charge density has been employed in Poisson’s equation after
one-dimensional (1D) charge densities of each sub-band are resolve as follows:

n3D(x, y, z) = ∑
k

n1D
b (x)|ψb(x, y; z|2 (20)
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∇2φ(x, y, z) = − q
∈

(
ND(x, y, z)− n3D(x, y, z)

)
(21)

Equation (21) determines the potential and doping profile (ND) of (x, y, and z). The
current in Equation (22) is calculated using the Landauer–Buttiker formula, once self-
consistency and charge distributions are attained:

ID = 2
q
h∑

b

∫
dETb(E)( fs(E)− fD(E)), (22)

where the Transmission Probability Tb (E) for sub-band ‘b’ is given by:

Tb(E) = Tr(ΓS.bGbΓD.bG†
b ) (23)

4.1. Numerical Approaches

The two-dimensional (2-D) Schrodinger equations and the 1-D NEGF equation numer-
ical solutions have been presented. The mass discontinuity across the lanthanum oxide
(La2O3) contact has been included in the 2-D Schrodinger equation using the following
k-space approach.

4.1.1. K-Space Solutions of Two-Dimensional Schrodinger Equations

Let’s first rewrite Equation (25) as follows:

ψ(x, y) = ψb(x, y; z) (24)

where Ak’s are expansion coefficients and |K〉 is a basic set. The eigenvalue problem is
solved by substituting Equation (24) in Equation (10) and multiplying 〈L\ by the equation
sides:

∑
K

H2D
LK AK = Eb AL (25)

where HLK
2DAK = 〈L\H2D|K〉. In the standard k-space solution [19]:

|K〉 =

√
2
Lx

√
2
Ly

sin(kix) sin(k jy) (26)

Here, Lx and Ly are the cross-side section’s lengths in the x and y directions, respec-
tively.

ki =
πi
Lx

(i = 1, . . . Nx) (27)

k j =
π j
Ly

(j = 1, . . . Ny) (28)

The corresponding grid numbers in the x and y directions are Nx and Ny. It must be
noted that the K index is derived with the indices i and j by the formula K = (Nx (i − 1) + j)
in Equation (26).

A rectangular cross-section with core/oxide interfaces at (x1 and x2) and (y1 and y2),
respectively (see Figure 4). Equation (29) defines the effective asymmetrical masses at the
core/oxide interfaces for the Hamiltonian using HLK

2D and it is given as follows:

H2D
LK = H0

LK + H(x)
LK + H(y)

LK (29)

where

H0
LK =

4
LxLy

Lx∫
0

Ly∫
0

dxdy sin(kux) sin(kvy)

(
h2k2

i
2m∗x(x, y)

+
h2k2

i
2m∗y(x, y)

+ V(x, y)

)
× sin(kix) sin(k jy) (30)
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H(x)
LK =

2h2ki
LxLy

(sin(kux1) cos(kix1)− (sin(kux2) cos(kix2))

(
1

m∗core,x
− 1

m∗ox

)
×

y2∫
y1

dy sin(k jy) sin(kvy) (31)

H(y)
LK =

2h2k j

LxLy
(sin(kuy1) cos(k jy1)− (sin(kvy2) cos(k jy2))

(
1

m∗core,y
− 1

m∗ox

)
×

x2∫
x1

dx sin(kix) sin(kux) (32)

where m∗core,x and m∗core,y are the effective core masses in the x and y directions. The u and v
are the indices that are mapped with L in a parallel fashion to the index K, respectively.
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4.1.2. Product Space Solutions of 2-D Schrodinger Equations

From Figure 4, the rectangular cross-section with effective mass is represented as fol-
lows:

m∗x(x, y) =

{
m∗x(x) if y1 ≤ y ≤ y2
m∗ox if y < y1 or y > y2

(33)

where

m∗x(x) =

{
m∗core,x if x1 ≤ x ≤ x2
m∗ox if x < x1 or x > x2

(34)

For a good approximation, it is written as follows:

m∗x(x, y) = m∗x(x) for 0 ≤ y ≤ Ly (35)

The oxide region on either side of the core has been considered as (y1 < y < y2) and the
amplitude in the top and bottom of the oxide regions are considered as (y < y1 and y > y2),
respectively. The band gap of the oxide materials is substantially wider than that of the
core material. Equations (36) and (37) define the effective masses in the y direction:

m∗y(x, y) = m∗y(y) for 0 ≤ x ≤ Lx (36)

where

m∗y(y) =

{
m∗core,x if y1 ≤ y ≤ y2
m∗ox if y < y1 or y > y2

(37)
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The adjacent side of the oxide effective mass regions is inappropriate for the above
reasons. Therefore, it is written as under good approximation:

H2D = −h2

2
∂

∂x

(
1

m∗x(x)
∂

∂x

)
− h2

2
∂

∂y

(
1

m∗y(y)
∂

∂y

)
+ V(x, y) (38)

The following equation is the product-space solution:

|K〉 = χi(x)ξ j(y), (39)

Equation (40) determines the 1D Schrodinger equation in the x direction, where χi is
the ith Eigen function:{

−h2

2
∂

∂x

(
1

m∗x(x)
∂

∂x

)
−V(x)

}
χi(x) = ∈i χi(x) (40)

where

V(x) =
1

y2 − y1

y2∫
y1

dz V(x, y) (41)

ζj(y) is the jth eigen function and V(x,y) is the confinement potential for the following
1-D Schrodinger equation in the y-direction:{

−h2

2
∂

∂y

(
1

m∗y(y)
∂

∂y

)
−V(y)

}
ξi(y) = ∈i ζ j(y) (42)

where

V(x) =
1

y2 − y1

y2∫
y1

dz V(x, y) (43)

Substituting Equation (39) in Equation (38) and obtaining Equations (40)–(43).

H2D
∣∣K〉 = −ξ j(y) h2

2
∂

∂x

(
1

m∗x(x)
∂χi(x)

∂x

)
− χi(x) h2

2
∂

∂y

(
1

m∗y(y)
∂ξ j(y)

∂y

)
+ V(x, y)χi(x)ξ j(y)

= (∈i + ∈j +V(x, y)−V(x)−V(y))
∣∣K〉 (44)

By multiplying 〈L\ in Equation (44), we obtain:

H2D
LK = ∈L δLK +

〈
L\(V(x, y)−V(x)−V(y))

∣∣K〉 (45)

where
∈L = ∈i + ∈j (46)

After resolving the Schrodinger equations, the eigenvalue problem and the product-
space solution have been found. Equations (40) and (42) illustrate one dimensional (1-D)
version of the k-space solution approach, which was introduced in the previous section
and has been employed in the modeling.

5. Analysis of the GaAs-Based Nanowire

There are six possible structures that have been considered in the simulated NWs.
Two distinct materials (Si and GaAs), the Double Gate (DG), Gate-All-Around (GAA),
Omega, Pi, Top, and Tri-gate variants have been discussed. Figure 2 depicts the rectangular
structure with the physical dimensions of all six variants. The crystallographic orientation z
<001> direction has coincided with the channel transport direction. The design parameters
of the nanowire, listed in Table 1, have been considered for modeling. The conduction
band margins of the NWs for different dielectrics had been addressed previously [49].
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Higher gate dielectric constant materials have lower conduction band edges. The SiO2 has
a greater conduction band edge than La2O3 when used as a gate dielectric oxide. Thus,
lanthanum oxide (La2O3) has been chosen as a better choice for a gate dielectric oxide
and it is one of the best reasons to provide conduction at lower energies. The Si and
GaAs rectangular nanowire simulations have been designed with the same wire length
(Lwire = 35 nm). Figure 5 shows the comparison between the first and last state energy. The
first and sixteenth energy levels of conduction band electrons in a rectangular wire differ
by 22% at the left contact of the fermi level EFL = −5 eV.
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Based on the full-band model (sp3d5s*) model, Figure 6 illustrates transmission co-
efficients for the 2.5 nm wire in the conduction band. The conduction band reaches high
transmission when the thickness of the wire get decreases, as shown previously [50,51].

The ballistic current has been calculated by a comparison of the transmission and
energy. The transmission steps depend on the channel and have high transmission regions
at an energy E = 2.6 eV. The energy differences are nearly parallel; the higher transmission
obtained for both Si and GaAs nanowires are 2.8892 eV and 3.5768 at 2.6 eV. Hence, the
GaAs is 1.23 times greater than Si NW. Maximum transmission can be achieved with
an increase in wire dimension. Higher transmission had been achieved using different
orientations with an increase in gate bias, as shown previously [20]. The transmission
spectrum has been fixed with zero gate bias (VG) and a drain voltage (VD) of 0.6 V. When
the gate voltage increases, higher transmission is achieved due to the lowering of the
barrier. To normalize the current density in ballistic conditions, the effective width (Weff) is
assumed to be four times the channel width (Wch), as shown previously [11,52].
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Nanowire.

Figure 7 shows the normalized current density spectra (iz/iz, avg) calculated by
(T × (fL − fR)), where T is the transmission and (fL − fR) are the left and right fermi level
contacts. The normalized current density distribution is uniform in the GaAs NW, and this
uniformity occurs when the Wagner number (Wa > 5), as shown previously [53].
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The one-dimensional electron density (N1D) along the channel has been plotted against
Si and GaAs NW. The comparison has been noticed specifically at the midchannel ‘z’. The
NEGF calculations are made to compute electron density and the electrostatic potential at
the interface. At zero gate bias, there is no creation of a potential barrier and electrons to
penetrate the channel. The electron density (N1D ~ 1 × 1020) cm−3 has been obtained in the
OFF state when VG = 0 V at the source and decreases more at the midchannel. The electron
density increases at the midchannel due to three reasons: (a) Surface Roughness, (b) Higher
Gate bias voltage (VG > 0.3 V), or (c) when channel doping is greater than source-drain
doping. Here, the middle of the channel has a low electron concentration, which maintains
a higher concentration at the drain. The electron densities are uniform throughout the
height of the channel, and the GaAs have attained a higher electron concentration at the
midchannel than Si NW, as shown in Figure 8.
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The conduction band energy depends upon the function of both y and z, which is a
function of width and length, whereas the sub-band energy minima depends on length [33].
Using the relationship with the carrier velocity, it is concluded that the frequency of electron
transmission and channel length are inversely proportional with each other. Thus, the
saturation current (ION) increases when the channel length gets reduced. The carriers can
travel more easily through shorter gate lengths and channel lengths in comparison to a
longer channel, as shown previously [45]. The conduction band edge profiles for the GAA
variant by fixing VD = 0.5 V and VG have been varied between 0 and 1, as shown in Figure 9.
The device gets off at low gate voltages. When gate voltage increases, the potential barrier
gets lower, and the energy attained by the electrons will move faster from source to drain
and gets lowered with an increase in drain bias.

The conduction band energy decreases at the midchannel when gate voltage VG
increases from 0 to 1 V. Each band energy differs with a voltage of 0.1 V. Due to a higher
impurity concentration than that of the channel, a sudden peak charge density (ρ) of
6.75 × 1026 Coul.m−3 was produced at the source and drain when VG = 0 V. With the
increase in gate voltage VG = 0.5 V, the charge density (ρ) over the length of the channel
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decreases from 6.48 × 1026 Coul.m−3 to 6.24 × 1026 Coul.m−3 from the source to the
midchannel and then increases when it reaches near the drain terminal, as shown in
Figure 10. The charge density increases at the midchannel when gate voltage increases
from 0 to 1 V with voltage difference of 0.1 V.
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Table 3 shows the comparison modeling results of Si and GaAs Trigate NW. Though
the geometrical dimensions are identical for Si and GaAs NW, the accumulation of electrons
in GaAs NW is 11% more when it varies with gate voltage when compared to Si NW. Hence,
it is evident from the results that the increase in electron density of GaAs NW results in
a decrease in current density, which shows that the current density depends upon the
property and nature of the material and is independent of electron density. The inversion
charge shifts away from the interface in the charge on the quantum modulation effect on
Si and GaAs NW, which has been demonstrated to have no impact on the Subthreshold
Slope (SS), as shown previously [54]. The log-scale (ID-VGS) transfer curve with VGS at
the subthreshold region has been used to calculate the Subthreshold Slope (SS), which is
defined as −[d(log10ID)/dVG].

Table 3. Comparison results of Si and GaAs Tri-gate NW.

Parameter Si NW GaAs NW

IDmax(A) 6.08 × 10−8 8.20 × 10−8

Transmission 2.889 3.576
Normalized Current Density 1 1.06 × 10−6

Electron Density, N1D(#/cm3) 1.76 × 1020 1.98 × 1020

ION (A) 5.6 × 10−13 8.21 × 10−7

IOFF (A) 3.75 × 10−23 2.62 × 10−15

ION/IOFF 1.49 × 1010 3.13 × 108

Subthreshold Slope SS (mV/decade) at VG = 0.1 V to 0.6 V 8 mV to 107 mV 8 mV to 99 mV

The transfer characteristic curve for Si NW is shown in Figure 11. The GAA device
has the highest ON current of 4.09 × 10−5 A. Our simulation results of 15 nm Si NW are
compared with GaAs NW. Figure 12 shows the transfer characteristics curve for Si and
GaAs Tri-gate NW. Here, the ION current of the GaAs Tri-gate nanowire is 10−7 A (VS = 0 V
and VD = 0.6 V), and with the silicon nanowire is 10−13 A (VS = 0 V and VD = 0.6 V). This
analysis shows that the gallium arsenide nanowire, due to its larger ION current, has more
advantages over other types of devices. The results of ION, IOFF, and ION/IOFF are identical
values in the simulation results of the Double Gate and Omega variants, as shown clearly
in Table 4 comparison results.

It was observed previously [55] that when the gate length increases to 35 nm, the
ION/IOFF ratio remains high in GAA NWs compared to all other gates. The Omega and
the Double gate NWs modeling results remain the same and high when compared to the
Ω -gate MoS2FET [56,57], which are shown in Table 4. The GAA has a smaller leakage
current than any other gate and a higher conduction band energy of 8% and 37% (at 15 nm)
than the Tri-gate and Pi gate. Thus, the GAA Si NW also shows a good Subthreshold Slope
(SS) of 176 mV/dec, which is 39% greater than the Tri-gate NW. Therefore, the GAA device
has been chosen as a better electrostatic control device.

Our proposed method has been compared with a previous study [11], where channel
length (Lch = 15 nm) and oxide thickness (tox = 1 nm) are the same. Hence, it has been
observed that the increase in the gate length (LG ≥ 15 nm) and silicon dioxide material
(SiO2) material leads to an increase in leakage current. Thus, in our proposed method, the
OFF current (IOFF) has been reduced by various parameters, such as (1) oxide material with
high dielectric constant, (2) gate length scaling, and (3) low threshold voltage.

Table 5 summarizes the Si NW GAA variant with existing SiNW for an S/D doping
concentration of 2 × 1020 cm−3. According to modeling results, the GAA NW has achieved
a high ION/IOFF ratio (1.06 × 109) when the width-to-height (W/H) ratio dimensions
are equal to 1. For fixed gate and drain voltages, the small (W/H) ratio changes in the
geometrical dimensions result in a low ION/IOFF ratio, a high electron density, Subthreshold
Slope (SS), and Drain Induced Barrier Lowering (DIBL). The smooth and rough surface in
the channel also differs between ON and OFF currents. However, the ION/IOFF ratios are
the same in both cases, the smooth surface produces a high ON current (1 × 10−6 A) as in
Ref. [32].
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Table 4. Comparison results of Si NW variants.

Parameter DG GAA OMEGA PI TOP TRI

ION (A) 4.04 × 10−5 4.09 × 10−5 4.04 × 10−5 3.46 × 10−5 1.99 × 10−5 3.38 × 10−7

IOFF (A) 4.35 × 10−14 3.84 × 10−14 4.35 × 10−14 3.62 × 10−13 5.03 × 10−8 5.64 × 10−13

ION/IOFF 0.92 × 109 1.06 × 109 0.92 × 109 0.95 × 108 0.95 × 103 0.6 × 106

Conduction band Ec in eV at 15 nm −0.310 −0.309 −0.310 −0.330 −0.424 −0.334
Charge density ρ (Coul.m−3) at 15 nm 6.42 × 1023 6.24 × 1023 6.42 × 1023 1.01 × 1024 4.6 × 1024 1.01 × 1024

Normalized current density 1.03 × 1029 1.08 × 1029 1.03 × 1029 1.06 × 1029 1.07 × 1029 1.08 × 1029

Subthreshold slope (mV) 106 176 106 107 115 108
No. of nodes 9 9 10 10 10 9

No. of iterations 21 21 21 16 16 15
NEGF simulation time in secs 0.277 0.159 0.278 0.250 0.173 0.543

Schrodinger simulation time in secs 0.323 0.333 0.365 0.369 0.348 0.879
Poisson simulation time in secs 0.666 0.582 0.690 0.758 0.711 4.061

Table 5. Comparison of various Si nanowires with conventional nanowires.

Nanowire Oxide (nm) Lch (nm) LG (nm) VGS, VDS (V) ION (A) IOFF (A) ION/IOFF
[4] HFO2 5 20 (0.6, 0.6) 4.5 × 10−5 0.1 × 10−6 4500
[6] SiO2 15 5 (1, 0.5) 1 × 10−5 8.8 × 10−16 0.11 × 1011

[8] SiO2 11 10 (1, 1) 0.87 × 10−3 3.4 × 10−12 0.25 × 109

[12] SiO2 15 15 (0.3, 0.5) 1.22 × 10−5 3 × 10−11 0.40 × 106

[36] SiO2 6 6 (0.6, 0.001) 1 × 10−6 1 × 10−13 1 × 107

[49] La2O3 10 10 (1, 0.5) 5.5 × 103 0.84 × 10−8 6.54 × 1011

[51] SiO2 5 6 (0.6, 0.6) 9.8 × 10−7 3.4 × 10−13 2.88 × 106

This work La2O3 15 2 (1, 0.6) 4.09 × 10−5 3.84 × 10−14 1.06 × 109

This work La2O3 15 2 (0.6, 0.6) 2.11 × 10−6 3.84 × 10−14 0.55 × 108

6. Conclusions and Future Recommendations

The electrical characteristics of the NWs shielded with Lanthanum Oxide (La2O3) ma-
terial and the orientation with [001] z using the Non-Equilibrium Green Function (NEGF)
method were analyzed. Using the NEGF technique, the performance of Silicon and Gallium
Arsenide Nanowires with multi-gate structural arrangements, the electrical characteristics,
and their parameters are computed. The comparison between all the nanowire variants was
simulated. The semi-empirical tight-binding technique (sp3d5s*) was used to determine
the transmission coefficient of Silicon and Gallium Arsenide nanowires for [001] orienta-
tions. The transverse dimensions of rectangular nanowires with similar energy levels have
been examined, and the comparisons between Silicon and Gallium Arsenide NWs were
investigated. The III–V compound semiconductor, such as GaAs NW, shows an attractive
simulation in a few parameter results, such as transmission and electron density, compared
to Silicon NW. Considering the issue of leakage current reduction, Silicon NWs are more
suitable than Gallium Arsenide NWs.

In future work, the comparison between the same wire (Si or GaAs) with different
orientations and the same orientations for different materials (Si and GaAs) should be
investigated. The problems solved by Gallium Arsenide have focused on III–V compounds
along with Silicon or IV–IV compounds, which could be used for applications such as
energy storage, flexible electronics, and biomedical devices. Additionally, the develop-
ment of new synthesis techniques may lead to the production of nanowires with novel
compositions and improved properties.
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