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Abstract: Low threshold current and polarization-stabilized 795 nm vertical-cavity surface-emitting
lasers (VCSELs) are fabricated by integrating a surface grating of high polarization selectivity and
high reflectivity. The rigorous coupled-wave analysis method is used to design the surface grating.
For the devices with a grating period of 500 nm, a grating depth of ~150 nm, and a diameter of
the surface grating region of 5 µm, a threshold current of 0.4 mA and an orthogonal polarization
suppression ratio (OPSR) of 19.56 dB are obtained. The emission wavelength of 795 nm of a single
transverse mode VCSEL is achieved at a temperature of 85 ◦C under an injection current of 0.9 mA.
In addition, experiments demonstrate that the threshold and output power also depended on the size
of the grating region.

Keywords: vertical-cavity surface-emitting lasers; surface grating; miniature atomic clock

1. Introduction

Vertical cavity surface emitting lasers (VCSELs) are increasingly relevant for minia-
turization and high integration applications, such as localized surface plasmon resonance
(LSPR) sensors [1] and chip-scale atomic clocks (CSACs) [2], owing to a range of advantages
including their compact package size, low threshold current, low power consumption, high
modulation bandwidth, high-quality beam, and natural single longitudinal mode [3]. In
all-optical coherent population trapping (CPT) atomic clocks, VCSELs are utilized as an
attractive light source. However, to ensure the accuracy of the clock frequency and avoid
introducing noise, the properties of the VCSEL must be stable over time, including its
power, wavelength, and polarization [4]. To generate a pure circularly polarized light, the
VCSEL must operate in a single polarization mode and pass through a quarter-wave plate
(QWP) [4,5]. This is crucial in CPT atomic clocks, as the circular polarization is essential to
excite atomic transitions from the ground state to the excited Zeeman sublevels. This pro-
cess creates a CPT effect between the two ground state sublevels, resulting in the generation
of a CPT clock signal [6]. However, the lack of an inherent polarization selection mechanism
in VCSELs remains an issue due to their isotropic gain, cylindrical symmetrical resonator,
and polarization-independent reflectivity. The conventional VCSELs based on GaAs and
InP substrates produce linearly polarized light along [011] or

[
011
]

at a certain injection
current due to residual stress or electro-optic effect after fabrication [7], but the polarization
of the VCSELs is not stable. Changing the driving current, temperature, or strain applied
on the active region may lead to a polarization mode switching from one to another with a
wavelength difference of ~100 pm between the polarization modes [8]. If the polarization
of a VCSEL suddenly changes from the expected to the orthogonal direction, the resulting
circular polarization will abruptly switch from right-circularly polarized to left-circularly
polarized. This sudden change in polarization orientation will introduce noise into the
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clock signal, potentially affecting its accuracy. Therefore, a polarization-stabilized VCSEL
with high polarization extinction ratio is critical for CPT atomic clocks to minimize noises.

Since the phenomenon of polarization switching of VCSELs was observed by Chang-
Hasnain in 1991 [9], schemes based on different mechanisms have been proposed to control
the polarization of VCSELs over the past few decades, e.g., polarization-dependent gain,
asymmetric resonator, polarization-dependent reflector, and external optical feedback.
Polarization-dependent gain can be introduced by applying anisotropic stress [10,11], grow-
ing epitaxial layer on (311B) substrates [12], and asymmetrically injecting current [13]. Rect-
angular [14], rhombus, and dumbbell mesas [15] are used to form asymmetric resonators
introducing anisotropic gain or loss to achieve polarization control. Polarization-dependent
mirror is usually realized by etching the surface grating with a certain period and depth in
the cap layer of the VCSELs, producing an anisotropic reflectivity for the top distributed
Bragg reflector (DBR) mirror. The polarization mode with higher reflectivity will preferen-
tially lase and be the dominant polarization mode. Superior polarization stability has been
achieved by integrating surface grating without significantly affecting the prime perfor-
mance of the 895 nm VCSELs [16–20]. External optical feedback is also an effective way
to control the polarization but requires a complex optical feedback structure and enlarges
the device volume [21–23]. Among these polarization control technologies for VCSELs,
the surface grating is the most promising one because of its advantages of monolithic
integration, compatibility with standard VCSELs manufacturing processes, and high polar-
ization stability. So far, most of the surface grating VCSELs have been focused on 850 nm or
894.6 nm VCSELs in data communication or cesium atomic clock, where the grating period,
grating depth, and duty cycle typically are 600 nm, 60 nm, and 0.5, respectively [19,24,25].
However, 795 nm VCSELs have attracted more attention because of their applicability for
rubidium atomic clocks, which provide a stable time and frequency reference for a variety
of applications such as mobile and wired telecommunication infrastructure, broadcasting
products, defense applications, calibration equipment and scientific instrumentation [26].
Investigations on 795 nm VCSELs have focused on improving their high-temperature
performance, typically at 80 ◦C [27,28], or achieving stable single-mode operation at a
wavelength of 795 nm with high output power at elevated temperatures [29,30]. However,
there has been relatively less attention paid to the polarization control of 795 nm VCSELs.
Without establishing a polarization selection mechanism in the device, a VCSEL will lase in
a random polarization mode depending on the operating current and temperature [30]. In
our previous work [31], the 795 nm in-phase surface grating VCSELs were designed and
fabricated to stabilize the polarization, achieving a single mode and single polarization
operation with an orthogonal polarization suppression ratio (OPSR) of 16.6 dB, which
indicated a reasonably high polarization stability. However, that came at the cost of a
33.3% increase in the threshold current, which is caused by the lower reflectivity of the top
distributed Bragg reflector (DBR) mirror after etching the grating. This paper proposes an
anti-phase surface grating structure to minimize the increase in threshold current associated
with the etching of the surface grating.

In this paper, the thickness of the cap layer is increased by λ/4 to a total thickness of
3λ/4 to meet the requirement of anti-phase gratings [18]. The experimental results show
that a high OPSR and a low threshold current are realized in the devices with a larger
surface grating region, while the output power degrades with the increasing size of the
surface grating region. The fabricated surface grating 795 nm VCSELs show a low threshold
current comparable with the device without gratings, and the OPSR reaches 19.56 dB.

2. Device Design and Fabrication

Figure 1 shows the schematic diagram of the device structure. The surface grating
is etched in the cap layer on the top DBR mirror. Relative dichroism (RD) is usually
used to estimate the intensity of polarization stability, which is defined by the following
formula [16,24]

RD =

(
1−

G‖
G⊥

)
× 100% (1)
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where G‖ and G⊥ are the threshold gains of polarization modes parallel and orthogonal to
the ridges of the grating, respectively. The output is dominated by the parallel polarization
mode when RD > 0 due to the threshold gain of the parallel mode being smaller than that of
the orthogonal polarization mode. For RD < 0 the dominant emission mode is orthogonal
polarization. The threshold gain is defined by [32]

gth = αa +
1

Γrda

[
αi(Leff − da) + ln

1√
RtRb

]
(2)

where αi and αa are intrinsic losses in the passive and active regions, respectively, Γr
is the optical confinement factor, da is the total thickness of the active layers, Leff is the
effective cavity length and Rt and Rb are the reflectivity of the top and bottom DBR mirrors,
respectively. The reflectivity of the top DBR mirror with the integrated surface grating for
the two polarization modes are calculated by the rigorous coupled-wave analysis (RCWA)
method [33]. The dependences of RD on grating periods and depths are calculated by
Equations (1) and (2). The calculation results are plotted in Figure 2.
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Figure 2. Dependence of relative dichroism (RD) on grating depth with the grating period as a
parameter. The duty cycle is 0.5.

A similar dependence of |RD| on grating depth is observed for either positive or
negative RD, i.e., the |RD| increases first and then decreases with the increasing grating
depth. It can be seen from Figure 2 that the largest RD (87.21%) is obtained for the grating
with a period of 500 nm and a depth of 140 nm. A high RD is maintained when the depth is
increased up to 200 nm, allowing a larger tolerance for the grating depth, which is beneficial
to the fabrication of the device and the improvement of the yield. In addition, the threshold
gain of the device designed in our previous work, i.e., the grating period and depth are
200 nm and 70 nm, respectively, is about 2100 cm−1, but it is about 900 cm−1 in this work,
which is a ~57% reduction compared with the prior work. Consequently, the 795 nm surface
grating VCSELs designed and fabricated in this work show a higher OPSR and a lower
threshold current.
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The epitaxial structure was grown on n-type (100) GaAs substrates by low-pressure
metal-organic chemical vapor deposition (LP-MOCVD). The thickness of the cap layer
composes of layers of λ/4-thick GaAs and λ/2-thick Al0.3Ga0.7As, meeting the condition
of anti-phase [18]. The bottom and top DBR mirrors consist of 46.5 pairs Si-doped and
28 pairs C-doped Al0.3Ga0.7As/Al0.9Ga0.1As layers, respectively. A 20 nm-thick linearly
composition-graded interface layer was inserted between the high and low Al-composition
AlxGa1−xAs layers to reduce the series resistance. The active region with three 6.2 nm-
thick Al0.073Ga0.927As quantum wells separated by 5 nm-thick Al0.39Ga0.61As barriers is
sandwiched between two separate confinement layers. First, the surface gratings with
a period of 500 nm, a depth of ~150 nm, and a duty cycle of 0.5 were fabricated using
electron beam lithography (EBL) and inductively coupled plasma (ICP) etching techniques.
Devices with surface grating periods of 200 nm, 700 nm, and 900 nm were also fabricated
for comparison. To investigate how the size of the grating region affects the performances
of VCSLEs, the diameters of the surface grating were varied from 2 µm to 5 µm. High-
resolution positive photoresist, polymethyl methacrylate A2 resin with a molecular weight
of 950 K, of approximately 130 nm was applied to the wafer by spinning coating for EBL.
ICP etching was performed using Cl2 and BCl3 to form the surface grating at an etch rate
of 10 nm/s. Atomic force microscopy (AFM) was used to analyze the profile of surface
gratings. The AFM image of the fabricated surface grating is plotted in Figure 3. Then
circle mesas with a diameter of 20 µm were etched to expose the layer of Al0.98Ga0.02As,
which was then laterally oxidized to form an optical and electrical confinement aperture of
~4 µm by a selective wet oxidation process [34]. For planarization, the positive polyimide
photoresist FB5410 from Fujifilm was coated on the P-side and cured for 1 h at 350 ◦C in
a furnace. Subsequently, Ti/Pt/Au contact metals were deposited on the P-type topmost
cap-layer by electron beam evaporation (EBE). Finally, the GaAs substrate was lapped to a
thickness of ~150 µm, and the N-type contact metals of AuGe/Ni/Au were deposited using
EBE, followed by rapid thermal annealing processing to form ohmic contacts. VCSELs
without surface gratings were also fabricated as reference devices.
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3. Results and Discussion

The light-current-voltage (L-I-V) characteristics of fabricated VCSEL chips were mea-
sured using a test system based on the LabVIEW platform, utilizing a source meter Keithley
2401 and a Newport power meter 1936-R. A Thorlabs LPNIRE100-B polarizer with a wave-
length range of 600 to 1100 nm and a polarization extinction ratio of 400:1 was positioned
between the VCSELs chip and the power sensor. The polarizer was oriented either per-
pendicular to or parallel to the grating ridges to measure the output powers of the two
polarization directions. The optical powers were detected at normal incidence. Further-
more, the lasing wavelength of VCSEL chips were measured using an optical spectrum
analyzer AQ6317. The thermal plate was utilized to control the chip temperature during
the measurements.

Figure 4a shows the room temperature (RT) polarization-resolved L-I-V characteristics
curves of reference devices (without gratings). The polarization of the reference device
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switches at 1.5 mA and 2 mA. The phenomenon of polarization switching is often observed
in conventional VCSELs due to the lack of a polarization control mechanism as mentioned
earlier. In contrast, Figure 4c shows that the surface grating VCSELs produce a stable output
polarization parallel to the grating ridge in the current range from threshold to thermal
rollover for all the surface grating region diameters (Dg) at RT. Dg and Do are the diameters
of the surface grating region and the oxide aperture, respectively, as illustrated in Figure 4b.
From Figure 4c, it can be seen that the output power decreases from 1.1 mW to 0.23 mW
as Dg increases from 2 µm to 5 µm at an injection current of 5 mA. The slope efficiency
of the device decreases from 0.42 mW/mA to 0.11 mW/mA, and the threshold current
decreases from 0.6 mA to 0.4 mA with the Dg increasing from 2 µm to 5 µm, as shown
in Figure 4d. The grating period of 500 nm is larger than the critical value (234 nm for
GaAs) of sub-wavelength grating, which introduces the diffraction loss [35], consequently,
the output power and slope efficiency are lower compared with the previous results. The
as-grown reflectivity of the top DBR mirror calculated by the transfer matrix method [36]
is ~94%, lower than the normal device (99.4%) due to the addition of λ/4 thickness to the
top layer, but it can be raised to more than 99% by etching the grating, depending on the
grating period and depth. Therefore, when Dg < Do, the region of the emission window
without grating (Do-Dg) has a lower reflectivity (higher diffraction loss) compared to the
grating region, thus the threshold current decreases with the increasing Dg. When Dg ≥ Do,
the oxide aperture is completely covered by the grating region, a constant high reflectivity
is achieved, so the threshold current does not decrease further with Dg exceeding 4 µm as
shown in Figure 4d, while the output power keeps decreasing because the diffraction loss
increases with Dg, as shown in Figure 4c.
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Figure 4. (a) Polarization-resolved light-current-voltage (L-I-V) characteristics of reference devices.
(b) Schematic diagram of the surface grating (Dg) and oxide aperture (Do). (c) Polarization-resolved
L-I-V characteristics of VCSELs for different surface grating diameters with a grating period of 500 nm.
(d) Dependence of threshold current (Ith) and slope efficiency (SE) on Dg extracted from (c). The
device was tested at room temperature (RT).
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The OPSR is defined by [24]

OPSR = 10× log

(
P⊥
P‖

)
(3)

where P⊥ and P‖ are the optical power of the polarization mode orthogonal and parallel
to the grating ridges, respectively. The size of the surface grating region also affects the
OPSR, as shown in Figure 5a. The OPSR slightly increases with the increasing Dg. When
Dg = 5 µm, the OPSR of the device reaches 19.56 dB once the injection current is above
the threshold current. OPSRs of the devices with different grating periods are shown in
Figure 5b. It can be seen that the device with a 500 nm grating shows the best polarization
control, which is consistent with the calculated results shown in Figure 2.
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Figure 5. (a) OPSR of VCSELs for different surface grating areas with a period of Λ = 500 nm.
(b) OPSR of VCSELs with different grating periods at Dg = 5 µm.

The lasing peak wavelength (λpeak) of a VCSEL changes with temperature and injection
current. Figure 6a shows the temperature dependence of the peak wavelength at different
injection currents. For an injection current of 1 mA, the emission wavelength is 791.8 nm at
26 ◦C, and its red-shift with increasing temperature reaches 795.14 nm at 85 ◦C. The fitted
temperature coefficient is 0.055 nm/K and 0.058 nm/K for injection currents of 1 mA and
4 mA, respectively. This temperature coefficient difference indicates a higher wavelength
red-shift rate at a higher injection current level. Figure 6b shows the emission spectra of
a 500 nm-period surface grating VCSEL at 85 ◦C at different injection currents. It can be
seen that the device remains a single transverse mode operation below 3 mA. The peak
wavelength shifts at a rate of 0.38 nm/mA in the current range of 1 to 3 mA. Taking into
account the temperature and injection current dependence of VCSEL lasing wavelength,
the VCSEL emission wavelength at 85 ◦C can be tuned to 795 nm by adjusting the injection
current to 0.9 mA, as shown in Figure 6c, which corresponds to the D1 line of the rubidium
atomic clock [37].

Figure 7a shows the light-current (L-I) curves of inverse surface grating VCSELs
measured under different temperatures. The slope efficiency decreases from 0.28 mW/mA
to 0.19 mW/mA and the threshold current increases from 0.5 mA to 0.64 mA as the
temperature increases from 25 ◦C to 95 ◦C. The dominant polarization remains in [011]
direction and the OPSR at an injection current of 1 mA is around 18 dB in the temperature
range investigated, as shown in Figure 7b, indicating a stable polarization even at a high
temperature.
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Figure 8 shows the polarization-resolved spectra of the device at a temperature of
85 ◦C and an injection current of 0.9 mA. It can be seen that the peak-to-peak OPSR
reaches 26.8 dB. The fabricated grating VCSELs demonstrate the characteristics of low
power consumption, single transverse mode, and high polarization stability, showing the
promising potential of being applied to chip-scale rubidium atomic clock systems.
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4. Conclusions

In conclusion, based on the calculation of the polarization characteristics of the inverse
surface grating VCSELs by RCWA, the optimized grating parameters of 795 nm VCSELs
are designed. Subsequently, surface grating VCSELs are fabricated and characterized. The
results demonstrated that an OPSR of 19.56 dB is achieved for VCSELs with a grating
period, depth, and duty cycle of 500 nm, 150 nm, and 0.5, respectively. Experiments found
that the slope efficiency, output power, threshold current, and OPSR of the surface grating
VCSELs were affected by the size of the surface grating region. The slope efficiency and
threshold current decrease with the increasing Dg, while the threshold current remains
constant for Dg ≥ Do. A larger grating area would be beneficiary to the improvement of
the OPSR of the devices. The grating size dependence of the device performance provides
another parameter for VCSEL design.
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