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Abstract: In the first part of the review article “General considerations” we give information about
conventional flexible platforms and consider the advantages and disadvantages of paper when used
in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration
shows that paper, especially nanopaper, is a very promising material for the development of low-cost
flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive
materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive charac-
teristics of paper and other humidity-sensitive materials are compared. Various configurations of
humidity sensors that can be developed on the basis of paper are considered, and a description of the
mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based
humidity sensors. The main attention is paid to the consideration of such problems as patterning and
electrode formation. It is shown that printing technologies are the most suitable for mass production
of paper-based flexible humidity sensors. At the same time, these technologies are effective both in
the formation of a humidity-sensitive layer and in the manufacture of electrodes.

Keywords: paper types; advantages; disadvantages; sensing materials; selection; comparison; sensor
configuration; operation; fabrication; patterning; electrodes

1. Introduction

Lately, a new trend has appeared with the integration of sensors directly on flexible
plastic foils. Their flexibility and their simplified processing, targeting the production
on large area using roll to roll and printed electronics processing (see Figure 1), bring
new opportunities and will also reduce several technical limitations that characterize the
production processes of conventional microelectronics [1]. According to the Organic and
Printed Electronics Association (OE-A) [2], in the coming years, printing technologies and
printed electronics are expected to dominate in sectors such as the Internet of Things or IoT,
healthcare, automotive and consumer electronics.

In conventional Si microelectronics, patterning is most often done using photolithog-
raphy, in which the active material is deposited initially over the entire substrate area, and
selected areas of it are removed by physical or chemical processes. Despite its high resolu-
tion, the photolithographic process is very complex, expensive, uses extremely expensive
equipment, requires many steps, is time consuming, subtractive, and only suitable for
patterning of small areas.
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Figure 1. Schematic drawing of a roll-to-roll production line for chemical gas and humidity sensors
on plastic foil. The transducers and coating layers are coated using additive printing techniques, such
as the gravure printing of interdigitated electrodes and the local ink-jet printing of different sensing
layers. Reprinted from [3]. Published 2011 by Elsevier as open access.

In addition, the harsh conditions required to dissolve the resists, etch the underly-
ing layers, and remove the photoresist destroy the activity of most organic electronic
materials. De Rooij and co-workers [4,5] believe that the printing technology applied in
flexible electronics is experiencing a significant growth and the sensors field can benefit
from these developments with the availability of new types of materials and fabrication
processes. Printed electronics can be defined as the combination of printing processes
and ink chemistry for the manufacturing of electronic components. Compared to the
conventional lithographic processes used in microelectronics, mentioned above approach
to design of gas and humidity sensor as well to biosensors and electrochemical sensors
guarantees reduced price, new functionalities and possibility to integrate sensors where
it was impossible to imagine them a decade ago. This approach is compatible with the
new generation of electronic devices made from polymeric materials (known as organic
electronic devices), which are the future of lower manufacturing costs. This opens up a
wide range of applications for flexible sensors such as environmental monitoring, food
quality control, medicine and industrial process control [6–12]. An example of a flexible
humidity sensor made on plastic foil is shown in Figure 2.
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Figure 2. The sensor platform substrate with Pt thermometer, electrodes and connection pads. The
interdigital electrode structures realize two plane capacitive transducers, a sensing one (left) and a
reference one (right). The area reserved for the polymer sensing layer is surrounded by a dot line
frame. Reprinted with permission from [13]. Copyright 2009: Elsevier.
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In addition, flexible substrates are ideal for deployment on curved surfaces, for inte-
gration on cloths for application in wearable sensors, smart textiles, or for development
wireless radio frequency identification (RFID) tags for logistics applications [14]. In this
case no direct optical contact is required to identify an item. It leads to higher efficiency in
goods handling [15]. Plastic substrates possess also many attractive properties including
biocompatibility, light weight, shock resistance, softness and transparency [16]. More
detailed information on the achievements and prospects in the development of sensors
on plastic foil can be read in the reviews prepared by Briand et al. [3] and Mattana and
Briand [17].

Currently, a large number of flexible sensors have been developed. These include
gas and humidity sensors, photodetectors, strain sensors, pressure sensors, temperature
sensors and biosensors [18–22]. However, in this review, we will focus on the consideration
of paper-based (PB) sensors [23–26], moreover, paper-based humidity sensors.

Humidity sensors are among the fastest growing sensor markets. The global humid-
ity sensor market is predicted to grow by 7.5% per year in the coming years and reach
$1551.9 million by 2026 (https://www.researchdive.com/171/humidity-sensor-market,
accessed on October 2022). This growth will primarily be due to the miniaturization of elec-
tronic devices and the use of humidity sensors in various industries. Due to unique water
properties, humidity greatly affects living organisms, including humans and materials. The
amount of water vapour in the air can affect the human comfort, and the efficiency and
the safety of many manufacturing processes, including drying of products such as paint,
paper, matches, fur, and leather; packaging and storage of different products such as tea,
cereal, milk, and bakery items; and manufacturing of food products such as plywood, gum,
abrasives, pharmaceutical powder, ceramics, printing materials, and tablets. Moreover,
industries discussed above are only a small part of the industries where the humidity
should be controlled. In agriculture, the measurement of humidity is important for the
plantation protection (dew prevention), the soil moisture monitoring, and so on [27]. In the
medical field, a humidity control should be used in respiratory equipment, sterilizers, incu-
bators, pharmaceutical processing, and biological products. Humidity measurements on
the Earth’s surface are also essential for meteorological analysis and forecasting, for climate
studies, and for many special applications in hydrology, aeronautics, and environmental
studies, since water vapor is a key factor in both weather and climate. Therefore, humidity
control becomes mandatory in all areas of our activity, from production management to
creating comfortable conditions for our living, and to understand the nature of climate
change [23–25]. As a result, the field of application of humidity sensors is constantly ex-
panding, requiring more and more devices with improved parameters and more adapted
to new applications (Figure 3). The demand for paper-based flexible humidity sensors
is caused precisely by these circumstances. In particular, in recent years, there has been
a need for cheap flexible humidity sensors for applications such as breath analysis and
respiration rate, diaper and skin moisture monitoring, healthcare monitoring systems,
etc. [21,26,28–30]. Studies have shown that PB humidity sensors can be successfully used
in these applications [26,28,31]. One example of such an application is shown in Figure 4. It
is important to note that for such applications, humidity sensors, in addition to high sensi-
tivity, good stability, long-term durability, rapid response and recovery time, high linearity,
and exceptionally low hysteresis [18] must meet the following requirements [28]: (i) be
flexible for wearables; (ii) not use toxic substances harmful to humans; (iii) be disposable to
avoid cross-infection or contamination while monitoring the patient’s respiratory rate and
wetting the baby diaper; (iv) have low cost and simple manufacturing technology; as well
as (v) have a minimal polluting effect on the environment.

It should be noted that the field of paper-based sensors is developing rapidly, and
significant progress has been made in the development of such sensors. At present, quite a
lot of reviews on paper-based sensors have already been published [26,28–57]. But most
of them are aimed at considering electrochemical and optical sensors, biosensors, gas
sensors, and strain sensors. Humidity sensors have received less attention. At the same
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time, humidity sensors differ significantly from the sensors listed above in terms of the
principles of operation, design, and sensitive materials used. Only a few review articles
have attempted to review PB humidity sensors [26,28,29,31,49,57]. It has been shown that
PB humidity sensors do indeed hold great promise for a wide range of applications. But
in these articles, many aspects of the functioning, development, and manufacture of PB
humidity sensors are either not considered, or this consideration was carried out without
the necessary detail. This was the basis for preparing this review.
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Figure 4. (a) Photo of a volunteer wearing a PB humidity sensor patch. (b) Simulated breathing
experiments for different breathing modes and various respiratory patterns. (c) Schematic diagram of
oral and nasal airflows in four respiratory patterns. PB humidity sensors was fabricated on printing
paper. The graphite ink was screen-printed for fabrication interdigital electrode pattern. For the
purpose of distinguishing between oral and nasal respiratory signals, two graphite screen electrodes
were printed separately on both sides of the printing paper. Reprinted from [31]. Published 2022 by
MDPI as open access.
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The review is organized as follows. It consists of two parts. In the first part of
“General consideration” we give information about conventional flexible platforms and
consider the advantages of paper for humidity sensor development as both a substrate and
a humidity-sensitive material. Next, we discuss the manufacturing features of paper-based
(PB) humidity sensors, their configuration, sensing materials and electrodes. Then, in the
second part of this review “Humidity sensors performances”, we analyze the performance
of paper-based humidity sensors manufactured using different approaches. Finally, we
discuss the challenges encountered in the development and use of paper-based humidity
sensors. Possible areas of application of PB humidity sensors are not considered in this
article, since they are described in sufficient detail in the already published review articles
mentioned earlier.

2. Conventional Flexible Platforms

One of the most fundamental challenges in the design of flexible electronic systems
is the choice of substrate, because the material for such substrates must have a unique set
of properties [58]. No doubts that substrates should be flexible. Specifically, this means
that substrate must be able to bend but not crack or lose its other properties. Ideally, the
substrate could repeatedly bend without a significant long-term degradation. Along with
bending, it must be robust and cannot stretch. The substrate must withstand reasonable
processing temperatures. This means that the melting temperature of the substrate must
be sufficiently high. Additionally, the coefficient of thermal expansion (CTE) must be
sufficiently low. If the film expanded or shrank (or both) too much under the heating, the
layers deposited on the top (probably a mixture of inorganics that typically have low CTEs)
are inclined to cracking or de-adhering just as in the case of external stress. The substrate
should be thermally stable as well. Thermal stability is an important factor, primarily for
fabrication reasons, because the ability to achieve very low processing temperatures is still
the subject of investigation. The stability in aggressive environment is also required. In
addition, a flexible substrate must be smooth and sufficiently adhesive, transparent, and
above all, economically viable. There are a number of materials that meet most of these
requirements and could possibly function as a flexible electronic substrate. However, the
perfect material is not yet found and therefore at present time, when choosing a substrate,
depending on its application, compromises are necessary.

At present, for substrates, flexible materials such as polyimide (PI), polydimethyl-
siloxane (PDMS), polyester (PE), polyethylene naphthalate (PEN), polytetraflouroethylene
(PTFE), and polyethylene terephthalate (PET) are the most commonly reported ones [59–62].
PI is a widely preferred material as a substrate due to its chemical stability, radiation resis-
tance, electrical insulation, and temperature stability. Polyimides maintain their properties
during continuous use to temperatures from cryogenic to 232 ◦C and for short excursions,
as high as 482 ◦C. As a result, polyimides are suitable for processing around 350 ◦C. Ther-
moset polyimides exhibit very low creep and high tensile strength. PET is another widely
employed flexible substrate [63], owing to its good adhesion properties, low manufac-
turing cost, and commercial availability [64]. Depending on its processing and thermal
history, PET may exist both as an amorphous (transparent) and as a semi-crystalline poly-
mer. However, the glass transition temperature of these polymers is only in the range
of 100–300 ◦C. Such low temperatures significantly limit the manufacturability of these
films and require the development of new processing methods. PTFE allows for processing
steps in the 250 ◦C range. PTFE has also excellent dielectric properties. Especially for
conditions requiring tolerance to high temperature and stability of chemical properties,
the PI substrate would be a better choice compared to PET and PTEF [65]. Meanwhile,
Briand et al. [3] believe that polyimide will only be used for applications with specific
requirements regarding temperature and the robustness of the substrate: most devices will
be produced on PET and PEN substrates.
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3. Paper as Flexible Substrate for Humidity Sensors

As follows from the previous discussion, the flexible organic materials play the irre-
placeable roles in the substrates of flexible sensors because of their excellent flexibility and
stability [66]. However, on the one hand, these organic substrates are difficult to degrade,
resulting in electronic pollution [67]. For instance, plastics, such as PET (polyethylene
terephthalate), are hazardous for the environment because plastic debris is a major source
of marine pollution resulting in a rapid decline of global biodiversity [68]. On the other
hand, the weak affinity between the sensing materials and organic substrates often leads
to the detachment of the sensing materials during the deformation process, which greatly
limits their durability [69]. Active materials, when coated on the top surface, cannot firmly
adhere to the raw substrates, and even diminutive architectures can crack or tear during
handling, bending, or stretching. Some developers note another disadvantage of polymer
substrates, which is their limited active surface area [70]. The functional layers are formed
on the surface of the substrate and therefore the intrinsic 3D architecture of materials such
as paper cannot be exploited. Thus, the study of other flexible substrate materials is an
important strategy for the development of high-performance flexible sensors. Paper has
become one of the objects for such research [70,71].

3.1. Paper Types

Paper is a three-dimensional sheet formed by connecting cellulose fibers of different
lengths through hydrogen bonds between hydroxyl groups. Paper is made from raw
materials containing plant fibers through pulping, blending, and processing, and can be
folded and cut as desired [72]. The cellulose fibers in paper are thinner than a micron but
their length can be as much as tens of millimeters [73]. During the pulping process, various
fillers such as pigments and chemical additives are added to give the paper different
characteristics. For example, (i) adding mineral fillers such as calcium carbonate and
clay to pulp can improve light scattering, ink absorption, and paper smoothness; (ii) by
adding pulp such as starch, gum and rosin, the absorption of liquid by paper can be
reduced and the strength of paper can be increased; (iii) addition of pigment coating can
improve the smooth of surface and reduce pore size [70,74,75]. During the final processing,
calendering and drying are used to form and dewater, and finally, the paper is given
different appearances and sizes to achieve different applications [76]. The longer fibers
that form the paper give it good strength, while the shorter fibers fill the gaps between the
longer fibers, reducing pore size and making the paper opaque. In addition, cellulose fibers
have a high aspect ratio, resulting in anisotropic properties [76]. By varying the length,
diameter, and physicochemical properties of cellulose, paper properties such as porosity,
density, and mechanical strength can be controlled [74].

The most common types of paper used in the development of humidity sensors are
filter paper, nitrocellulose paper and office paper. Filter paper made from pure cellulose
has various properties. Important parameters are wet strength, porosity, particle retention,
volume flow, compatibility, efficiency and capacity. According to the quality of the filter
paper, it is divided into qualitative filter paper and quantitative filter paper. Qualitative
filter paper is often used in qualitative analysis. The reason is that qualitative filter paper
produces more cotton fibers if it is used for filtering. Quantitative analysis filter paper
is made in such a way that the paper does not react with common chemicals during the
production process. As a result, it produces fewer impurities and is used in quantitative
analysis. There are different grades of filter paper depending on the size of the pores. In
total, there are 13 different grades of the filter paper. The largest pore size is grade 4; the
smallest pore size—grade 602 h; the most commonly used grades are 1 to 4. Quality grade
1 filter paper has a pore size of 11 µm.

Nitrocellulose is a cellulosic compound produced by treating common cellulose with
a sulphuric/nitric acid mixture, resulting in the substitution of (-OH) groups to (-NO3)
groups in the polymer structure. Nitrocellulose surface is more homogeneous, smoother
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and has fewer and narrower pores in comparison to chromatographic cellulose-based paper
surface [77].

Office paper can be understood to mean any commercially available commercial paper
commonly used for office purposes. This category of paper-based substrates includes plain
uncoated paper, coated photo paper (glossy or matte), card paper, and the like. As a rule,
mineral fillers, such as calcium carbonate, chalk, and clays, are added to the paper base,
usually in an amount of 10–20%, to fill the voids at the intersections of the fibers [78,79].
Additives such as starch, gum, and rosin can be added to paper to reduce liquid absorption
and improve paper strength. To make the surface of the paper appear whiter and brighter,
fluorescent bleaches (such as stilbenes) are often added during the papermaking process.
The use of fillers improves the sheet shape, optical properties, printing properties of paper
and reduces production costs. However, the gas permeability of the paper also decreases
at the same time. It is the fillers and pigments that create a smooth and even surface with
improved printing properties. Glossy paper is especially distinguished by these qualities.
Thus, the type, shape, size and relative combination of filler and pigments are the main
factors that determine the properties of office paper [80] and the final characteristics of
paper as a platform for humidity sensors.

In addition to the above types of paper, it is also necessary to highlight the so-called
nanopaper [71,81–83]. Nanopaper is a thin composed sheet mainly of densely packed
nanostructures (such as nanocellulose, nanochitin, nanochitosan, nanographene, polymer
nanofibers, carbon nanofibers, etc.). The most common is nanopaper based on nanocel-
lulose. Three approaches are used to obtain nanocellulose: mechanical treatment, acid
hydrolysis, and enzymatic hydrolysis [84]. The nanocellulose can be divided into two
categories: cellulose nanocrystals (CNC) and cellulose microfibrils (MFC) also called cellu-
lose nanofibrils (CNF) [82]. Nanopaper has significantly better physicochemical properties
compared to ordinary paper [85–87]. Nanopapers made from the aforementioned nano-
materials are structured assemblies of nanomaterials that can bridge the gap between the
nanoscale properties of such nanomaterials and their macroscopic engineering applica-
tions. Up-to-date, a number of nanopaper were developed in order to create products
with additional functionalities including protected papers [88], low-gas permeable pa-
pers [89], transparent papers [90], superhydrophobic papers [91], fireretardant papers [92],
antimicrobial papers [93], conductive papers [94], magnetic papers [95], sensor papers [96],
shape-memory paper [97], and papers for energy harvesting and energy storage [98].

The experiment showed that a wide variety of paper types can be used to develop
sensors [75]. The characteristics of some of them are listed in Tables 1–3.

Table 1. Microstructure and characteristics of some cellulose papers.

Paper Type SEM Images or Photograph Remarks

Whatman #1 filter paper
(Chromatographic paper). Reprinted
with permission from [99]. Copyright
2015: Elsevier.
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Table 1. Cont.

Paper Type SEM Images or Photograph Remarks

Nanocellulose paper. Reprinted with
permission from [100]. Copyright 2016:
American Chemical Society.
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Table 2. Cont.

Characteristics Cellulose Nanopaper Traditional Paper Plastic Paper

Optical transparency at 550 nm (%) 90 20 90

Max loading stress (MPa) 200–400 6 50

Coefficient of thermal expansion (CTE) (ppm K−1) 12–28.5 28–40 20–100

Printability Good Excellent Poor

Young modulus (GPa) 7.4–14 0.5 2–2.7

Bending radius (mm) 1 1 5

Renewability High High Low

Source: Reprinted with permission from [104]. Copyright 2013: American Chemical Society.

Table 3. Comparison of properties and cost for classical printed electronics substrates (plastic and
conventional paper) and cellulose nanopaper.

Parameter/Material PET Conventional Paper Cellulose Nanopaper
(Based NFCs)

Cellulose Nanopaper
(Based TEMPOCNFs)

Surface Roughness (nm) ≈0.5–2 ≈10 ≈2–40 ≈0.2–0.5

Young modulus (GPa) ≈2–2.5 ≈2 ≈10 ≈10–13

Coefficient of thermal
expansion (ppm K−1) 50–200 — ≈8–13 ≈7.2–7.9

Paper Transparency Yes No Yes Yes

Price (€ m−2) 4–6 6–7 15–200 200–500

Scale-up Yes Yes No No

Source: Reprinted with permission from [82]. Copyright 2016: Royal Society of Chemistry.

3.2. Advantages and Limitations of Paper-Based Substrates

Paper-based sensors are considered to be a new alternative technology for making
simple, low-cost and flexible electronic devices [26,70,71,74,105]. In particular, the unique
properties of paper [106–109], such as its versatility, commercial availability, high quantity,
low cost, small thickness, high porosity, adequate biocompatibility for bioassays, high
thermal stability for robust applications, high mechanical strength to resist wear and tear,
and elevated Young’s modulus values make also paper a promising sensor platform for the
development of portable and disposable analytical devices for many applications, including
clinical diagnostics, food quality control, and environmental monitoring [73,110,111]. For
example, already in the early 20th century paper began to be used in chromatography [112],
and in 1956 the first paper-based sensors were developed [113]. It was device for the
semi-quantitative detection of glucose in urine. Since then, such detection devices have
been further developed. Paper-based pregnancy tests were developed [114], and in 2007
a paper-based microfluidic device [115] was developed that could simultaneously detect
both glucose and protein in artificial urine. Compared to the substrate materials of other
microfluidic detection platforms, the paper used in these devices has the advantages of
low cost, flexibility, and the ability to passively transport fluid due to capillary action [116].
In addition, the various properties of paper, such as thickness, porosity, roughness and
wettability, make it possible to precisely regulate the microfluidic behavior to meet various
requirements [117]. Cellulose fibers can also be chemically functionalized, in other words
the properties of wood cellulose fibers such as hydrophilicity, permeability, reactivity, etc.
can be tailored according to specific applications [110]. Comparative characteristics of
paper and the most common substrates used in the development of humidity sensors are
given in the Table 4.
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Table 4. Comparison of cellulose paper with traditional materials as substrates.

Property
Material

Glass Silicon Polydimethylsiloxane (PDMS) Cellulose Paper

Surface profile Very low Very low Very low Moderate

Flexibility No No Yes Yes

Structure Solid Solid Solid, gas permeable Fibrous

Surface-to-volume ration Low Low Low High

Fluid flow Forced Forced Forced Capillary action

Sensitivity to moisture No No No Yes

Biocompatibility Yes Yes Yes Yes

Disposability No No No Yes

Biodegradability No No To some extent Yes

High-throughput fabrication Yes Yes No Yes

Functionalization Difficult Moderate Difficult Easy

Spatial resolution High Very high High Low to moderate

Homogeneity of the material Yes Yes Yes No

Price Moderate High Moderate Low

Initial investment Moderate High Moderate Low

Source: Reprinted with permission from [108]. Copyright 2013; Springer.

During the research and use of paper, it was found that the three-dimensional porous
structure throughout the thickness of the paper with a large surface area makes it easy
to absorb functional reagents, and, most importantly, allows selective processing of two
sides of the paper with different or the same functions [118]. In addition, cellulose, which is
insoluble in classical organic solvents, gives paper excellent chemical stability [119]. Paper
consisting of only cellulose also exhibits higher dimensional stability with temperature
change and lower thermal expansion than most plastics [120], which is advantageous for
electronic components since the use of paper does not introduce complex thermal parasitic
effects into the behavior of electronic devices.

Paper as a dielectric material can be used in numerous sensing devices, especially
capacitive-type sensors. In addition, the unique three-dimensional hierarchical architecture
of cellulose fibers with different length scales allows the accommodate various active materi-
als in substrates, opening up great opportunities for the development of advanced electronic
devices. In this regard, in recent years, research has been carried out aimed at studying the
possibilities of using paper substrates for the development of various sensors [121–123].
PB sensors such as gas sensors [26,29], temperature sensors [124], all-paper piezoresistive
sensors for human motion detection [125], nanocellulose paper sensors for multichannel
biological detection [126], pressure sensors [125], humidity sensors [26,29,127] and strain
gauges [26] were developed. In addition, paper can be made thin, lightweight and flexible
depending on its pulp processing. In addition, paper is combustible and biodegradable
material, which greatly simplifies the recycling process [128]. It can be easily stored, trans-
ported and disposed [72]. Widely established as a recyclable material, paper products have
a recovery rate of about 70 percent. According to a report by the United States Environ-
mental Protection Agency on municipal solid waste (MSW), in the United States, paper
waste constitutes 27.4% of the total MSW. However, the MSW recovery is dominated by
paper at 51% [129]. The paper recycling process has significantly matured over the past
decades. It saves tremendous amount of energy and reduces deforestation.

Moreover, cellulose fibres can be functionalized, thus changing properties such as
hydrophilicity, if desired, as well as its permeability and reactivity [130]. The surface of
the paper can be easily manipulated by changing the printing conditions, coating and
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impregnation. In addition, it can be produced in large quantities. Depending on the
main goal to be achieved in paper-based sensors, the fabrication methods and the analysis
techniques can be tuned to fulfill the needs of the end-user. For example, it has been
reported that by filling inter-fiber space using transparent materials with reflective constant
that is closed to the cellulose (≈1.5), it is able to fabricate transparent papers [74]. Reducing
the diameter of cellulose fibers from micro-meters (≈20 µm) to nanometers (≈20 nm) will
increase paper transparency [105].

Of course, paper substrates are inferior to plastic ones in terms of mechanical strength,
resistance to aggressive environments, and manufacturability. The inherent surface rough-
ness and porosity complicate the fabrication of devices on paper, especially when their
size is reduced. However, there are paper processing methods that can significantly
improve the properties of its surface [131]. For example, it has been shown that laser abla-
tion [132] can be used to improve paper surface morphology and change surface energy,
and plasma polymerization can be used to create hydrophobic polymer chains on the paper
surface to make it water repellent [133]. Other interesting examples include the ability
to improve the hydrophobicity of a paper surface by coating with organic or inorganic
nanoparticles [134–136].

In addition, the large pore size in the paper results in poor thermal performance [137].
Moreover, cellulose itself is also prone to decomposition at temperatures above 100 ◦C [138–140].
Excess heating easily warps papers and degrades the quality of the cellulose structure. The
upper limit of temperatures used for curing must be lower than 150 ◦C for a short period
(such as 10 min). The degradation of cellulose results in a reduction in the mechanical
strength of the paper [141]. This means that paper-based sensors are low temperature
operated devices, and paper cannot be used in the high temperature processes often used to
deposit humidity sensitive materials. This severely limits the types of deposition processes
that can be applied to paper and the number of sensitive materials that can be used in PD
humidity sensors.

Ongoing research also shows that paper substrates cannot replace plastic ones in all
devices. But, in specific applications, paper substrates can undoubtedly find applications.
For example, the high porosity of the paper makes it possible to incorporate materials that
have properties that are important for sensor applications, but which are difficult to fix on
plastic substrates. In addition, continuous pore channels, allowing for efficient diffusion
of gaseous molecules throughout the film matrix, provide maximal exposure of sensing
material to the gaseous analytes and thus makes it possible to enhance the sensor signal
and accuracy [142].

Yao et al. [75], Hu et al. [143], and Singh et al. [144] believe that paper-based devices
provide an inexpensive technology for fabrication of simple and portable diagnostic sys-
tems that can be immensely useful in resource-limited settings. The use of paper-based
sensors will allow low-income regions to significantly expand the range of medical services
provided at a low cost. Standard medical tests performed in centralized laboratories are ei-
ther not available in such countries or are too expensive for most citizens. At the same time,
paper-based sensors, inexpensive and easy to operate, could be used in resource-limited
environments. Paper-based detection platforms also have great potential for use in remote
areas and during emergency situations, where fully-equipped facilities and highly trained
medical staff are absent.

3.3. Paper Selection

As we can see, there are a variety of paper materials available to the user. However, it
cannot be said that paper of all types is a universal material suitable for all applications.
Different types of paper have different properties and therefore the choice is based mainly
on the fabrication steps required in developing a device and also on the specific applica-
tion area [108,110,145,146]. In particular, the filter paper (the Whatman® cellulose range,
Maidstone, UK) is most suitable for developing microfluidic sensors due to its wicking
ability [147]. The range of Whatman® filter papers is popular due to the choice of paper



Nanomaterials 2023, 13, 1110 12 of 45

with the required porosity (pore size of 11–25 µm) to control particle retention and flow
rates [148,149]. The difference between paper grades lies on the coarseness and packing
of the cellulose fibres. Different grades allow different sampling and assay settings to be
applied. Due to the porosity of Whatman® filter papers, flow rate, and particle retention,
this paper is suitable for fabricating electrochemical devices capable of storing the reagents,
filtering the sample, enabling reactions to occur, and flowing the detectable product to-
wards the electrochemical testing area [150]. Paper towel also has properties similar to filter
paper. Paper towel is cheaper than filter paper and possesses a high porosity, which makes
it a viable material for analysis of a wide range of analytes [151,152].

Nitrocellulose, obtained from the partial nitration of cellulose, enhances the porous
property of cellulose and changes the material from hydrophilic to hydrophobic due
to the presence of nitro groups. It has smaller pores than those of Whatman Grade 1
paper. Nitrocellulose membranes exhibit a high degree of non-specific binding towards
biomolecules and are suitable for immobilization of enzymes, proteins and DNA [122,153].
In addition, nitrocellulose membranes are smooth and have a reasonably uniform pore size,
which results in a more stable and reproducible liquid flow within the paper. This makes
hydrophobic nitrocellulose suitable for the development of various biosensors. Bioactive
paper has also been used in biosensors. In the bioactive paper, the paper matrix is modified
with biomolecules. This facilitates the adsorption of biomolecules. One of the challenges
of using nitrocellulose is related to the difficulty of working with this paper because it is
fragile and difficult to handle. In addition, the oxidation of nitro groups is observed [109].
These shortcomings have significantly limited the use of this paper.

We must not also forget about office paper. The structure of office paper can be used
in various configurations. For example, due to the non-degradability and relatively smooth
surface of glossy paper, it is a good substitute for filter paper especially when modifying
nanomaterials onto a surface rather than within the fibre matrix is necessary [154]. In
addition, due to the lower porosity of the office paper, electrodes can be formed directly on
the surface without penetrating deep into the paper. Moreover, the ordinary A4 printing
paper has been found to be the most widely used for making PB flexible humidity sensors
due to its good mechanical flexibility, rough and porous structure, good hydrophilicity, and
easy availability [26]. Santhiago et al. [155] showed that it is possible to develop wearable
devices based on office paper, which should be foldable and flexible. Chromatographic
filter paper has high fragility after wetting

Conventional paper is known to have disadvantages such as optical opacity, high
surface roughness, and low mechanical strength and low stability in aqueous media,
which may hinder further development of paper-based sensor devices for special appli-
cations [122,156]. On the other hand, it has been found that nanopaper, mainly made
from densely packed renewable natural nanomaterials, not only has many of the ad-
vantages of conventional paper, but also eliminates many of its disadvantages, offering
much higher transparency, better chemical, thermal and mechanical stability, much lower
thermal expansion and lower surface roughness [156,157]. Besides, nanopaper main-
tains its structure in the aqueous media, compared with conventional paper. This makes
nanopaper an excellent platform for the production of high-performance paper-based
sensors [158]. The potential application of nanopapers for humidity sensing was reported
by Li et al. [159]. Giese et al. [160] developed cellulose nanopapers undergo rapid and
reversible changes in color upon swelling, which show potential applications in humidity
sensing. Nogi et al. [161] used cellulose nanopapers with a high surface smoothness as a
substrate for the antenna to transmit and receive signals, which is an important component
of a satellite, computer, or other radio-frequency identification (RFID)-based devices. As
for the disadvantages of cellulose nanopaper, they usually include the following [162]:
(i) poor retention in fibrous materials; (ii) relatively high cost; (iii) negative effect on paper
drainage and drying, (iv) increased tear susceptibility, and (v) high energy consumption
in production. This is what limits the widespread use of cellulose microfibers (CNFs)-
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and cellulose nanocrystals (CNCs)-based substrates for the development of cheap flexible
humidity sensors.

In addition to the examples above, unusual paper substrates such as carbon fiber
paper (CFP) and paper hybrids can be found in paper-based sensor designs. Carbon fiber
paper is a composite paper composed of carbon fibers and polymeric carbon. Its production
process begins with polymerization and carbon fiber formation, followed by carbonization,
papermaking, resin impregnation, molding, and a final heat treatment step [163]. CFP
has been primarily explored as a building material for electrodes, due to its exceptional
conductivity, high chemical stability, and good mechanical properties. Limitations of CFP
include low electrochemical activity and small surface area [164]. It has been reported that
cardboard can also be used as an alternative to paper. Its use was first proposed in [165],
where laser pyrolysis of organic compounds present in cardboard formed a highly ordered
graphite-like structure used as a conductive electrode.

A discussion of the advantages of certain types of paper for the development of
flexible devices can be found in published reviews. In particular, Liu et al. [71] sum-
marized the diverse paper substrate options and fabrication techniques for PB electron-
ics. Barhoum et al. [83] and Naghdi et al. [158] reviewed the flexible and multifunctional
nano-papers and analyzed their possible applications. Zhang et al. [70] reviewed the
micro/nanostructured papers as substrates for flexible electronics. Mahadeva et al. [166]
considered paper as platform for energy and sensing applications.

As follows from this consideration, the mechanical, chemical and electrophysical
properties of each paper type differ from each other due to differences in the material
composition and manufacturing processes. As a result, it is hard to generalize a set of
properties for paper as the constituents of paper vary among different types of paper [72].
For example, printing paper has some cellulose fiber with a large amount of filler material.
The filler material can either be natural materials (limestone, clay, and talc) or synthetic
alternatives (precipitated calcium carbonate, titanium dioxide, and gypsum). The quantity
and type of filler materials define the structure, thickness, and appearance of the paper [167].
The filler dictates the cost of production, refractive index, paper strength, brightness, energy
required for drying, friction, pore size, and burn rate of the paper [168–170]. Fillers can
negatively affect the strength, retention, abrasion, dusting, and sheet two-sidedness. Thus,
the diversity in the types and quantity of filler material used in each type of paper is
what makes the properties of paper (in general) so diverse. This has remained a challenge
for researchers to theoretically identify the properties of the paper which they used in
their research.

4. Configuration of Paper-Based Humidity Sensors and Mechanisms of Their Operation:
General Consideration

In terms of device architecture, the humidity sensor comprises a sensing/transduction
layer over a substrate with electrodes placed for physical interfacing. As a rule, paper-
based humidity sensors are developed in two modifications that differ in their sensing
mechanisms. These are capacitive and resistive. There are also impedance-based humidity
sensors, but they are much less common. Other humidity sensors that show responses at
different frequencies like quartz crystal microbalance (QCM) [171], surface acoustic wave
(SAW) and Lamb wave types have been reported [172], but they are usually constructed
from rigid platforms.

The most common way to manufacture paper-based (PB) humidity sensors is to apply
a humidity-sensitive material to the surface of a paper substrate. It is assumed that the
paper in such a sensor is a passive element, and the sensor performances are controlled
by humidity-sensitive material. It is clear that not every material can play the role of
humidity-sensitive material in paper-based humidity sensors.
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4.1. Sensing Materials

According to [23–25,173], the ideal characteristics of a humidity-sensitive material are
such properties as high sensitivity to water vapor, i.e., excellent affinity for water molecules
and large active surface area, low cross sensitivity to other gases in the atmosphere, long
service life, fast and reversible interaction with analytes, no long drift, efficient low cost
technology, high reproducibility and good adhesion, i.e., uniform and strong bonding to
the surface of the substrate. Experiment has shown that various types of sensing materials,
including carbon materials and their derivatives (carbon nanotubes (CNTs), graphene oxide
(GO), reduced graphene oxide (rGO)) [174–178], metal oxide semiconductors [179,180],
organic materials [181,182], metal sulfides [183], and others [184], can be used for fabricating
PB humidity sensors.

Carbon materials have been extensively studied as humidity-sensitive materials for
flexible devices due to their high surface area, low toxicity, high electron mobility, mechani-
cal compliance and good chemical stability [185]. Graphene is currently the most studied
carbon-based material. But, it has an important drawback. Its deposition requires high
temperatures, which are unacceptable in the manufacture of paper-based sensors. As a
result, graphene is typically deposited on a rigid substrate prior to being transferred to a
flexible substrate [186,187], which makes it difficult to manufacture cheap sensors. At the
same time, graphene oxide (GO) is a derivative of graphene that offers the possibility of
room temperature deposition using techniques as simple as coating and self-assembly. In
addition, unlike graphene and reduced GO (RGO), GO is strongly hydrophilic and proton
conductive, which makes it a superior material for water vapor sensing like the typical
proton conducting material. Therefore, it is graphene oxides that are commonly used in the
development of humidity sensors [177]. The sensing mechanism between a carbon-based
material (CNTs and GO) and water molecules depends on the presence of hydrophilic
functional groups on its surface such as hydroxyl groups. Graphene oxide is naturally
functionalized with hydrophilic groups such as hydroxyl (-OH) and epoxy (=O) [188].
Upon its exposure to humidity, water molecules bind with the hydroxyl (-OH) and epoxy
(=O) functional groups with binding energies of 0.201 and 0.259 eV respectively, thus
withdrawing electrons from the graphene oxide [189]. As a result, graphene oxide becomes
less conductive when exposed to a reducing gas such as water. Thus, the GO’s hydrophilic
functional groups (hydroxyl and epoxy) enhance the adsorption and desorption of water
molecules and thus enhance the sensitivity of the material. Numerous active sites, such
as defects, and vacancies are also able to capture water molecules and provide a sensory
response to the appearance of moisture.

The common advantages of sulfide-based nanomaterials like MoS2, VS2, WS2, ZnIn2S4,
and CdS in humidity sensing are their rich hydrophilic surface sites, which allow the
occurrence of proton transition induced by the absorbed water molecules as long as the
humidity level is increased. Additionally, due to the ultrathin 2D layered semiconductors,
it is possible to create transparent humidity sensors.

Like metal sulfides, nanomaterials based on metal oxides also have hydrophilic prop-
erties necessary for use in humidity sensors [190]. Nanomaterials based on metal oxides
with excellent electronic properties are mainly used for flexible resistive or impedance
humidity sensors [191].

Polymers is another group of materials widely used in the manufacture of humidity
sensors [192]. Polymers are distinguished by low cost, simple synthesis, high stability,
high transparency, superelasticity, outstanding mechanical properties, and the presence
of various functional groups, such as –COOH, –OH, and –NO2 [193]. The humidity
sensitive properties of polymers are mainly determined by the hydrophilic characteristics
of functional groups, which can form rich hydrogen bonds with water molecules [194].

Humidity sensing properties of materials used for humidity sensor fabrication are
discussed in sufficient detail in [23–25,195–198]. Humidity has been found to affect material
properties through various interactions such as hydrogen bonding [199], intramolecular con-
tacts [200], electrostatic interactions [201], hydrophilic and hydrophobic interactions [202],
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chemical bonding [203], etc. As previously stated, different materials are sensitive to
humidity of the air. However, the conventional metal oxides gas sensing materials that
usually require high temperature for synthesis are difficult to be used for fabricating PB
humidity sensors because the paper substrate is not resistant to high temperature [26].
From metal oxides, only materials that can be synthesized at low temperature can be used
in PB humidity sensors. This ability, in particular, has ZnO [204].

As it was indicated before, the paper begins to degrade at temperatures above 100 ◦C,
placing severe limitations on the quality of crystalline semiconductors that can be grown
directly on the paper. Therefore, in many cases, developers prefer to use a polymer and
carbon-based materials as sensing material. However, it is known that polymer- and
carbon-based humidity sensors have limitations in many applications. For resolving above
problem with deposition of crystalline material, three various approaches for overcoming
temperature restriction have been proposed [205]. The first approaches are crystallization
methods, in which an inorganic semiconductor is found that can be deposited onto paper,
and subsequently crystallized at low temperatures. An example is the conversion of amor-
phous material into polycrystalline one via laser crystallization. The second method is the
wet-transfer, or ‘bottom-up’ methods. Single-crystalline material is prepared at high tem-
peratures, then synthesized material is transferred onto the paper at ambient temperatures
in the form of solution or paste and then it is exposed to low temperature treatment, admis-
sible for substrate used [206]. The local ink-jet printing is also a very promising method
for the preparation of different sensing layers [207]. The third approach is dry-transfer
method, involving the relocation of semiconductor materials or fully fabricated devices
from inorganic substrates to the paper, using poly(dimethylsiloxane) (PDMS) stamps or
soluble glues. We need to note that all mentioned above methods can be used for the
manufacture of humidity sensors.

The roughness and porosity of the papers tend to hamper the performance of some
electronic devices such as transistors and diodes; on the contrary, the roughness and
porosity are attractive here because they increase the contact area with the ambient air
and promote the adhesion to sensing materials used. Similar to the methods of forming
sensitive material on polymer flexible substrates, the main methods of applying sensitive
materials used in the fabrication of PB humidity sensors include handwriting [176,180,208],
spin-coating [209], vacuum filtration [178,210], drop-casting [175,182], printing [211–213]
and soaking treatment [182]. Due to the rough, porous, and hydrophilic surface of paper,
the handwriting and vacuum filtering are relatively unique to PB sensors compared to
ceramic and organic substrates. At that, in the manufacture of PB humidity sensors, high-
temperature methods of direct growth of high-quality thin-film sensitive materials on a
paper substrate, such as chemical vapor deposition (CVD), are generally not applicable.
When fabricating PB humidity sensors, the method of printing sensitive materials should
be preferred. Meanwhile, the rough and porous surface of the paper also creates problems
in the manufacture of PB sensors using this technology. This technology requires high
printability of sensitive materials (e.g., size of the particles, heat resistance, dispersion, and
surface energy). Among these fabrication methods, handwriting (painting, drawing) and
drop-casting are often used due to their simple and inexpensive processes [26].

It is clear that when designing flexible humidity sensors, developers very often fail to
strike a balance between humidity sensitivity and response/recovery rate due to inherent
properties of the materials used. Therefore, various strategies have been developed to
optimize performances of humidity sensors, such as chemical treatment, alloying, transition
to nanocomposites, structural engineering, Joule heating, etc. [190,214–217].

4.2. Sorption Isotherms

The main process that determines the sensory response to moisture is the adsorption
of water vapor on the surface of the active material. Adsorption processes of water vapour
taking place in porous media usually is described by an adsorption isotherm [218–221].
Although, in the literature many types of isotherms for different absorbents and adsorbed
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media can be found, most of them can be classified into one of the five or six isotherms
classes originally formulated by Brunauer [220]. The original types of isotherms are
presented in Figure 5. Type I is characteristic for purely microporous adsorbents such
as zeolites or activated carbon, type II for nonporous or purely macroporous materials,
type III for the rare cases of nonporous adsorbents with very small interactions between
the adsorbent and the adsorbed medium. Type IV isotherm characterizes mesoporous
adsorbents and is very common, contrary to the type V which presents a relatively rare case
of mesoporous adsorbents with small interactions with the adsorbed medium. Type VI is
very rare; the adsorption process is realized here in several separated steps. As we can see,
an adsorption isotherms are non-linear. This means that capacitive humidity sensors—as
well as other absorption-based humidity sensors, typically show a non-linear behavior as a
function of relative humidity (RH).
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In porous materials used in humidity sensors, such as paper, the adsorption isotherms
are almost exclusively of type II, i.e., with an S-shape [222,223]. Typical adsorption isotherm
of water vapor on the surface of the paper is shown in Figure 6. At low relative humidity,
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the molecules of water are bound in one layer to the surface of pores by van der Waals
forces. This phase of adsorption expresses the relatively fast moisture increase in the initial
regions of the curve. The molecules of the first adsorbed layer have a character similar to
the liquid phase. Before the end of the adsorption in the first layer, further layers appear.
This process is characteristic for a plane surface of the adsorbent and bigger pores where
the curvature of the adsorbed film does not affect the gas pressure of the adsorbent above it.
This phase is characterized by the linear part of the isotherm. The final phase is the water
vapour condensation.
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It is important to take into account that at desorption, we sometimes get a different
dependence of the water content on the relative humidity than at adsorption [221]. The
desorption isotherm always lies above the adsorption isotherm. This effect is called hys-
teresis. When the humidity sensor is operating, this effect is manifested in the fact that the
sensor readings, depending on the direction of the change in humidity, in the direction of
increasing or decreasing, may differ. Hysteresis is typical for isotherms of types IV and V
(Figure 5), but it is often observed for isotherms of type II. Hysteresis is caused by two main
mechanisms. First, this is the hysteresis of the contact angle, which is much smaller during
adsorption than during desorption. Probable reasons for this fact are water contamination
of a solid surface, surface roughness, or immobility of the surface water layer [225]. The
second mechanism is related to the delayed desorption of water vapor from nanopores.
Theoretically, hysteresis can also be caused by a third factor, namely, irreversible processes
occurring during water adsorption, but it is assumed that in most cases this factor is much
less significant than the two previous ones [226].

4.3. Paper as Humidity Sensing Material

It is important to note that the properties of paper make it possible to use it not only
as a substrate in the development of humidity sensors, but also as an active humidity
sensitive material. The experiment showed that the paper has a hydrophilic surface. In
brief, cellulose paper has a large amount of hydrophilic –OH groups that can adsorb water
molecules. At low relative humidity, only a small amount of water molecules is absorbed
by -OH groups via hydrogen bonds, resulting in a slight increase in paper conductivity [26].
At high relative humidity, a large number of physisorption water molecules are adsorbed
on the paper surface, which contributes to the formation of a larger number of conductive
ions and an increase in ionic conductivity of the paper. For instance, at a relative humidity
(RH) of 70–80%, paper absorbs up to 10–15% of its weight in water and up to 35 w% at
100%RH (see Figure 7a). Since the moisture content of the paper in the investigated RH
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range (0–90%) was linearly dependent on RH (Figure 7a), the resistivity of the papers
is exponentially dependent on the moisture content. The exponential dependence of
resistivity on paper moisture content is well known, but different mathematical expressions
for this dependence have been proposed [227,228]. In most cases, the dependence of surface
and volume resistivity of the paper on RH is described by expression:

R = Ae−RH/B, (1)

where A is the resistivity at zero moisture content and B is a factor which reflects the
sensitivity of the paper resistivity to the moisture content or to the RH at which the paper
was conditioned. Since the ionic conductivity of the paper is proportional to the amount of
water adsorbed on the surface of the cellulose fibers, then such properties of paper made
it possible to use it as a humidity-sensitive material for the manufacture of PB humidity
sensors [28,229–233].

Nanomaterials 2023, 13, x FOR PEER REVIEW 19 of 48 
 

 

was conditioned. Since the ionic conductivity of the paper is proportional to the amount 

of water adsorbed on the surface of the cellulose fibers, then such properties of paper 

made it possible to use it as a humidity-sensitive material for the manufacture of PB hu-

midity sensors [28,229–233]. 

 

Figure 7. (a) Moisture content in 160 g/m2 paper in dependence on RH. 1—Data extracted from [234], 

2—[235]; 3—[236]; 4—[237]; (b) Effective moisture diffusivity of bleached kraft paperboard (BKP) at 

23.9 °C and atmospheric pressure. Adapted with permission from [224]. Copyright 2003: ACS. 

Studies have shown that humidity sensitive properties of the paper can be improved 

by surface and bulk modification and functionalization [108,166]. For example, the salt 

content in the paper changes the conductivity through hygroscopic effects. Results 

demonstrating this effect have been presented in [238]. It was also established that ionic 

addition not only increases the number of available free ions but also changes the water 

state and the paper structure, which influence the ionic motion in an electric field [234]. 

At that O’Sullivan [239] established an interesting regularity in the effect of salt content 

on the conductivity of paper. He concluded that the conductivity of cellulose (cellophane, 

which is hydrated cellulose) containing 1% or more salt is determined primarily by the 

moisture content, but when salt content is clearly below this limit, salt content also be-

comes an important factor for the level of conductivity. 

As mentioned earlier, the dielectric properties of paper also change when water va-

por is adsorbed [46], which makes it possible to design paper-based not only resistive ones 

[209], but also capacitive ones [232] and impedance humidity sensors [240]. It is important 

to note that the use of paper in its natural form as a humidity-sensitive material is indeed 

an important advantage of paper in the development of inexpensive and easy-to-manu-

facture moisture sensors, since in this case the paper in the humidity sensors simultane-

ously plays the role of both substrate and sensitive material. It should be taken into ac-

count that paper is not only a cheap alternative to other humidity-sensitive materials, but 

also provides high sensitivity and speed due to its porous structure. 

With regard to moisture transport in the paper, as a result of the studies carried out, 

it was concluded (see Table 5) that moisture can migrate in paper by a number of transport 

mechanisms, such as (i) vapor-phase diffusion in the inter-fiber pore space, (ii) Knudsen 

diffusion in pores of diameters less than 10 nm, (iii) surface diffusion over fiber surfaces, 

(iv) bulk-solid diffusion within fibers, and (v) capillary transport [241,242]. The first two 

mechanisms occur in the gas phase, whereas the other ones occur in the condensed state 

of the liquid (adsorbed, absorbed, and liquid water, respectively). Liang et al. [241] found 

gas-phase transport to be the dominant mode of moisture movement, whereas condensed-

phase or bound-water movement could occur when the moisture content (MC) was high. 

Nilsson et al. [242] concluded from their experimental work that moisture transport in 

paper occurred via gas-phase diffusion at RH levels below 58% rather than via the 

Figure 7. (a) Moisture content in 160 g/m2 paper in dependence on RH. 1—Data extracted from [234],
2—[235]; 3—[236]; 4—[237]; (b) Effective moisture diffusivity of bleached kraft paperboard (BKP) at
23.9 ◦C and atmospheric pressure. Adapted with permission from [224]. Copyright 2003: ACS.

Studies have shown that humidity sensitive properties of the paper can be improved by
surface and bulk modification and functionalization [108,166]. For example, the salt content
in the paper changes the conductivity through hygroscopic effects. Results demonstrating
this effect have been presented in [238]. It was also established that ionic addition not only
increases the number of available free ions but also changes the water state and the paper
structure, which influence the ionic motion in an electric field [234]. At that O’Sullivan [239]
established an interesting regularity in the effect of salt content on the conductivity of paper.
He concluded that the conductivity of cellulose (cellophane, which is hydrated cellulose)
containing 1% or more salt is determined primarily by the moisture content, but when salt
content is clearly below this limit, salt content also becomes an important factor for the
level of conductivity.

As mentioned earlier, the dielectric properties of paper also change when water vapor
is adsorbed [46], which makes it possible to design paper-based not only resistive ones [209],
but also capacitive ones [232] and impedance humidity sensors [240]. It is important to
note that the use of paper in its natural form as a humidity-sensitive material is indeed an
important advantage of paper in the development of inexpensive and easy-to-manufacture
moisture sensors, since in this case the paper in the humidity sensors simultaneously plays
the role of both substrate and sensitive material. It should be taken into account that paper
is not only a cheap alternative to other humidity-sensitive materials, but also provides high
sensitivity and speed due to its porous structure.

With regard to moisture transport in the paper, as a result of the studies carried out, it
was concluded (see Table 5) that moisture can migrate in paper by a number of transport
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mechanisms, such as (i) vapor-phase diffusion in the inter-fiber pore space, (ii) Knudsen
diffusion in pores of diameters less than 10 nm, (iii) surface diffusion over fiber surfaces,
(iv) bulk-solid diffusion within fibers, and (v) capillary transport [241,242]. The first two
mechanisms occur in the gas phase, whereas the other ones occur in the condensed state
of the liquid (adsorbed, absorbed, and liquid water, respectively). Liang et al. [241] found
gas-phase transport to be the dominant mode of moisture movement, whereas condensed-
phase or bound-water movement could occur when the moisture content (MC) was high.
Nilsson et al. [242] concluded from their experimental work that moisture transport in
paper occurred via gas-phase diffusion at RH levels below 58% rather than via the transport
of absorbed water molecules. However, according to an earlier study of Ahlen [243], the
transport of water in the condensed or bound state could be significant even at RH levels
as low as 30–40%. Hashemi et al. [244] observed the in-plane diffusivity of moisture in
paper to be a strong function of its MC. Gupta and Chatterjee [224] have also shown that
the moisture diffusivity of paper strongly increases with moisture (see Figure 7b). A more
detailed analysis of the processes that control moisture migration in paper can be found
in [224,245,246].

Table 5. Possible mechanisms for moisture transport through paper.

Transport Mechanism Transported Phase Place of Transport
Transport Coefficient

Dependence on
Temperature Dependence on RH

Gas diffusion Gas phase The pores Proportional to T1.76 Independent (apart from
the effects of swelling)

Knudsen diffusion Gas phase Pores with diameters
less than 10 nm Proportional to T1/2 Independent (apart from

the effects of swelling)

Surface diffusion Adsorbed phase Surface of the
fibers

Increases with
increasing RH

Bulk-solid diffusion Absorbed phase Within the fibers Increases with
increasing RH

Capillary transport Condensed phase The pores Only when pores are filled
with water

Source: Reprinted with permission from [242]. Copyright 1993: Taylor and Francis.

One of the results of the conducted research is the establishment of a direct correspon-
dence between water vapor diffisivity and the paper density. The effective water vapor
diffisivities measured for different types of paper are shown in Figure 8. It is seen that
the diffisivities range in a wide interval from 2.1 × 10−8 m2/s to 5.4 × 10−6 m2/s, which
means that the diffusion of water vapour through the paper/pulp grades is reduced by
between 5 and 1400 times compared with the diffusion of water vapour in air. The highest
value for effective vapour diffisivity was found in the filter paper, and the lowest value in
the lightweight coated (LWC) paper, which had been coated and calendered.

4.4. Capacitive Paper-Based Humidity Sensors
4.4.1. Mechanism of Sensitivity

Capacitive sensors are the most commonly used humidity sensors and have the
advantage of being quick and simple to react to humidity. Capacitive sensors are linear and
can operate over a wide humidity range. In addition, capacitive sensors are less sensitive
to bending strain and temperature. In the simplest case, a capacitive-type sensor consists of
two parallel plates. In such a structure, the capacitance between two electrodes is given by
the Equation (2):

C = εrε0
A
d

(2)
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where εr and ε0 are the relative and vacuum permittivity constants, respectively, A is the
plate surface area, and d is the plate distance. It can be seen from this equation that there are
only three ways to change the capacitance of this device: (1) change the distance d between
the two plates, (2) change the overlap area A between the two plates, and (3) change the
dielectric permittivity of the material between the plates. This means that capacitive sensors
can detect only those gases and vapours that affect these parameters. Water vapour can
exert such influence and therefore by measuring the change in the capacitance, the presence
of the water vapours in the air can be detected. In particular, if we take into account that
the dielectric constant of water is 80, and paper, depending on the type, lies in the range
of 2–4, it will be clear that the adsorption of water can lead to a significant change in the
dielectric constant of the paper. In comparison, polymers have a dielectric constant of
3–6, metal oxides have a dielectric constant of 3.6–9, and carbon-based materials have a
dielectric constant that varies between 6–15. It is clear that the lower the dielectric constant
of the dielectric used and the greater the proportion of the space between the electrodes
is occupied by water, the greater will be the effect, which is manifested in increasing the
capacitance. In other words, high adsorption capacity and high porosity, which can be
filled with water, are important parameters for materials suitable for the development of
capacitive humidity sensors.
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It is important to note that for a noticeable change in capacitance, water in a dielectric
material must be in a free state, since only free water molecules have dielectric properties
close to those of liquid water, while bound water exhibits dielectric properties characteristic
of ice. According to Evans [247] and Matzler and Wegmuller [248], fresh water ice has a
permittivity of 3.17–3.19, which is significantly less than that of water. Unfortunately, water
condensation on the surface of a solid, i.e., the appearance of fresh water occurs at 100%
humidity. However, in the presence of pores in the material, especially in the nanoscale
range, the situation changes dramatically. According to the basic theory of adsorption on
a porous matrix [249], when the vapor molecules are first physicosorbed onto the porous
material, capillary condensation will occur even at low air humidity if the pores are narrow
enough. The critical size of pores for a capillary condensation effect is characterized by the
Kelvin radius (Equation (3)). In the case of water, the condensation of vapour into the pores
can be expressed by a simplified Kelvin equation [250]:

rK =
2γVMcosθ

ρRTln(%RH/100)
(3)
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where γ is the surface tension of vapour in the liquid phase, VM is molecular volume, θ is
contact angle, and ρ is the density of vapour in the liquid phase. Equation (3) was obtained
for case of cylindrical pores [251]. Thus, the condensation occurs in all pores with radii up
to rK, the Kelvin radius, and under a constant water vapour pressure or relative humidity.
The smaller rK or the lower the temperature, the easier capillary condensation occurs, i.e.,
at lower air humidity, free water is formed in the pores of the dielectric.

Considering that condensed water has the maximum effect on the capacitance, it
becomes obvious that it is the pore size and porosity of the humidity-sensitive material that
determine the sensitivity of the capacitive humidity sensor. The smaller the pore size is, the
lower is the sensitivity threshold, i.e., at a lower humidity level, capillary condensation and
an increase in capacity begin. At that, the greater the porosity and open pores volume are,
the greater is the amount of condensed water and the greater is the range of capacity change
when interacting with water vapour. It is important to note that capillary condensation
can occur in all humidity sensitive materials used in the manufacture of humidity sensors,
which by definition must be porous. These include paper, which has a porous structure
with pore sizes varied from 0.7 nm to 8 µm. However, it should be borne in mind that the
reduction of pore diameter will influence simultaneously the kinetics and hysteresis of
sensor response, i.e., the response time and the magnitude of hysteresis will increase.

A change in capacitance associated with a change in the distance between the elec-
trodes is also possible if the interaction with water vapor is accompanied by a swelling
effect. This effect in cellulose paper was observed by Olejnik et al. [252]. However, the
swelling effect is most pronounced in the interaction of water vapor with polymers. There
are several mechanisms to the process of swelling, which include hydration and the for-
mation of hydrogen bonds [253–255]. Schematically, they are shown in Figures 9 and 10.
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In reality there is a balance between the forces of retraction and the tendency for the
chains to swell to infinite dilution. The degree of cross-linking has a direct effect on the level
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of swelling of the polymer and the strength of the network, i.e., increased cross-link density
= decreased swelling capacity. This means that the swelling effect has strong dependence
on the technology of polymer synthesis. Regarding a swelling rate, experimental studies
have shown that for a rapid effect, the polymer should be a macro-porous (the large pores
with size in the range of 0.1–1 µm), or even super-porous, i.e., along with high porosity,
polymer should have interconnected open-cell structure [256]. In this case the swelling is
very fast and this effect is sample size-independent.

One should note that, the position and the shape of an adsorption isotherm, shown in
previous section, strongly depend on the temperature [221]. At higher temperatures, the
transport of water molecules is faster, the bonds can be released more easily, and therefore
both adsorption and desorption isotherms corresponding to higher temperatures are lower
(or shifted to the right) as compared to those corresponding to lower temperatures (some
water molecules already bound on the solid surface can be released, polymolecular layers
on the pore walls are thinner). Therefore, the capillary condensation occurs (all other condi-
tions being the same) at higher relative humidity. All this leads to the fact that the readings
of capacitive humidity sensors, like other humidity sensors, are temperature-dependent.

4.4.2. Configuration of Capacitive Humidity Sensors

In classical capacitive sensors a humidity sensitive material is placed between two,
the top and bottom, electrodes (see Figure 11a). This is so called the parallel plate structure.
The sensor material is made very thin to achieve a large signal change with humidity. In
order to ensure the access of water vapour to the humidity sensitive material, the upper
electrode must be a water vapour permeable, i.e., porous. This also allows water to easily
exit the sensitive material, allowing for quick drying and easy sensor calibration. As a
rule, inert conductive materials, stable in the presence of water vapour, are used to form
these electrodes. The simplest solution is the deposition of a thin film of gold or platinum,
which at a thickness of 10–20 nm has sufficient water molecules permeability. In the case of
using paper characterized by high porosity and surface roughness, this thickness should be
increased. Metal film perforation can also be used. In addition, this approach provides the
best reproducibility of the parameters. There are a huge number of such options. Two of
them are shown in Figure 12a,b. An intermediate solution is to provide the top electrode
with a fine mesh.
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However, the experiment showed that when using the configuration of a plane-parallel
capacitor, certain technological difficulties arise for the implementation of PB humidity
sensors with better sensor characteristics. To achieve the maximum capacitive response to
humidity and reduce the effect of parasitic capacitance, the thickness of the sensitive layer
should be minimal, and the area of the upper electrode occupied by the conductive material
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should be maximum, since this area determines the capacitance value. A minimum sensing
layer thickness is also required for fast response. But the requirement for fast response
contradicts the requirement for increasing the area of the electrodes. This is due to the fact
that the diffusion of water vapor under the top electrodes is in most cases the phenomenon
that determines the response rate. If water diffuses rapidly into the thin sensing layer from
the surface to the bottom electrode, then in metal plated areas water diffuses sideways
under the top electrodes, and this diffusion rate can be quite low. In other words, sensitivity
and response time are inversely related: if the structure is optimized for faster response,
then the sensitivity will decrease, and vice versa. Therefore, the choice of the optimal
structure is a compromise between these requirements.
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trodes in parallel plate capacitive humidity sensors, (c) interdigital electrodes in coplanar capacitive
humidity sensors. Adapted from [229]. Published 2014 by MDPI open access.

As a result of the research, we came to the conclusion that the configuration of planar
sensor, when both electrodes are in the same plane (Figure 11b), is better suited for the
development of capacitive humidity sensors. In this case, the electrodes can be formed
both on the surface of the sensitive layer and preliminarily on the surface of the paper
substrate before applying the sensitive layer. Various configurations of such sensors have
been tried [258,259], but the most optimal option was of coplanar interdigital (ID) sensor
(see Figure 12c). The term “interdigital” refers to a digit-like or finger-like periodic pattern
of parallel in-plane electrodes [260] that used to build up the capacitance associated with
the electrical fields that penetrate into a material sample. These designs, allowing for a
uniform electrical distribution in the dielectric and give the possibility for the water vapor
to diffuse freely into the dielectric (see Figure 11b). Experience has demonstrated that ID
electrodes provide the optimal balance of sensitivity and manufacturing yield [24]. The
planar interdigital sensor works on the same idea as a two parallel plate capacitor, with
electrodes that open up to enable one-sided contact with the sensing material. The electrode
separation specifies the width of the empty area between consecutive electrodes [259].

As a result of testing the capacitance-type IDE sensors, it was concluded that achieving
the maximum signal requires a certain ratio between the thickness of the sensitive material
and the IDE geometry, since the electrodes’ periodicity and the thickness of the sensitive
coating layer impact the response of a capacitance-type IDE sensor [183,261]. In particular,
it was observed that the electrodes should have the largest feasible thickness and the
smallest possible width for optimal effectiveness [24].

4.5. Resistive Humidity Sensors

The humidity measurement in resistive sensors is based on the change in resistance
or conductivity of a humidity-sensitive film produced by contact of humidity sensitive
material with water vapor. The presence of water vapor modifies the electrical conductivity
(or conductance) of the sensing layer by phenomena such as adsorption, chemical reactions,
diffusion, and swelling (in the case of polymers) that occur on the surface or in the bulk
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of the sensing layer. This modulation may be quantified as a change in current, resistance
or conductivity that are proportional to the water vapor concentration in the surrounding
environment [24].

In principle, the basic mechanism of conductivity in the majority flexible humid-
ity sensors can be explained by the Grotthuss reaction, which is usually simplified as a
proton-hopping process [262]. It usually refers to the dynamic process of charge transfer
within humidity sensitive materials in a humid atmosphere. Since the signal intensity
of a humidity sensor reflects the number of water molecules adsorbed on the surface of
sensitive materials, the hydrophilic properties of active materials play a vital role in terms
of sensitivity performance. As a rule, the process of absorption of water molecules can be
divided into two stages (see Figure 13). First, the first layer of water molecules is adsorbed
on the surface of active materials by chemical bonding with hydroxyl groups or surface
defects. As RH increases, more layers of water molecules are formed on the surface of
sensitive layer through physical adsorption. Since water molecules are easily ionized in an
electrostatic field, hydroxyl and proton ions are spontaneously generated and transferred
between neighboring water molecules. This greatly facilitates the transfer of charge carries
and thereby changes the output of the humidity sensors.
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Measurements in resistive sensors are usually carried out with a constant voltage
applied to the electrodes. It is important to note that, just like in capacitive humidity
sensors, the ID electrode configuration is the most optimal when manufacturing resistive
humidity sensors.

4.6. Impedance Humidity Sensors

Impedance humidity sensors are a type of devices that operate on the basis of a change
in impedance. A sinusoidal voltage is applied to the humidity sensor in the frequency
domain from subhertz to megahertz, and the impedance is calculated by measuring the
current. The advantage of this type of humidity sensors is that they can accurately de-
tect relatively low humidity. But, as a rule, this requires professional high-performance
impedance spectroscopy. Despite the relative complexity of the measurement process,
studies have shown that this method not only allows one to estimate the level of humidity,
but also provides useful information about the mechanism of interaction of water vapor
with the material [264].
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Typically, impedance-based humidity sensors are configured identically to resistive
sensors. Since measurements in impedance-based humidity sensors are carried out on
alternating current, detectable changes in impedance are the result of changes in both
capacitance and resistance of the sensing element [240]. Generally, the impedance decreases
gradually as the operating frequency increases. The impedance curve tends to flatten out
at higher frequencies, indicating that the impedance is independent of relative humidity in
this frequency range [181]. This is due to the fact that the polarization of water molecules is
difficult to keep up with the rapid change in electric fields at a higher frequency. Therefore,
it is best to measure humidity at a relatively low frequency.

Typical the complex impedance plots (CIPs) of paper-based humidity sensor without
additional humidity-sensing element is shown in Figure 14a. In low humidity environment,
the impedance plot presents an arc shape with a large radius of curvature, which indicated
that the sensor operates as a capacitance-type device (Figure 14b). As the RH increases to
75%RH, the Rez-Imz curve becomes a complete semicircle, and the equivalent circuit (EC)
of the sensing film is consistent with that of a parallel capacitor and resistor (Figure 14c).
The appearance of the resistance branch indicates that a conducting path forms inside
the sensing film (Figure 13d). This occurs when the hydrophilic cellulose fibers adsorb a
large number of water molecules by chemical adsorption and form a discontinuous layer
of water.
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5. Features of Fabrication of Paper-Based Humidity Sensors

Paper is fundamentally different from the substrates used in the production of classical
microelectronic devices. Therefore, the technologies used in conventional Si technologies
are not applicable or have significant limitations for use in the manufacture of paper-based
detector. This means that the development of paper-based devices requires new approaches
and new technologies.

5.1. Patterning

Given the scope of paper devices, in their manufacture, it is necessary to search for
technologies and materials that meet the criteria of low cost, simplicity and efficiency of
the production process [265,266]. Techniques used for patterning reported in the literature
include photolithography, analogue plotting, inkjet printing and etching, plasma treatment,
paper cutting, wax printing, flexography printing, and screen printing [75,108,122,265,266].
Experiment has shown that laser treatment can also be applied for this purpose. In particu-
lar, de Aranjo et al. [165] reported the first example involving the use of a single-step CO2
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laser scribing process to pattern nanostructured electrodes on paper, providing a green
solution for reagentless mass-scale production.

With respect to photolithography commonly used in microelectronics, there is a possi-
bility of damage to the photoresist when paper is bent or folded when photolithography is
used to make paper-based sensors. To overcome the problem associated with photolithogra-
phy, Bruzewicz et al. [267] proposed the use of an elastomeric polydimethylsiloxane applied
to paper using a plotter. This allowed the paper device to be rolled up without destroying
the photoresist. In addition, this method is highly reproducible and uses inexpensive mate-
rials, and thus is suitable for even the most basic of research laboratories where sensors
with an element size of ~1 mm are being developed. The advantages and disadvantages
of technologies implemented in the manufacture of paper-based sensors are listed in the
Table 6. As you can see, all methods have both advantages and disadvantages [75,144], and
therefore, patterning methods must be chosen depending on the type of material used and
the type of modification required [268]. If the stripe resolution needs to be in the millimeter
range, screen printing or pencil drawing may be the best choice. However, while the former
allows mass production with satisfactory reproducibility, pencil drawing is more suitable
for proof-of-concept than for scalable processes. If micrometric strips are required, inkjet
printing offers a great advantage given that patterns can be drawn (and redrawn) with
common software. Of course, photolithography and plasma processing provide the highest
resolution. However, the requirements for photoresists, solvents, and special equipment,
make them less suitable for ‘real’ cost-effective fabrication of humidity sensors [268].

Table 6. Advantages and disadvantages of the main fabrication techniques for paper-based sensors.

Procedure Advantages Disadvantages

Wax printing Low-cost, easy fabrication, short
fabrication time Low resolution, unstable upon heating

Photolithography High resolution, suitable for
large-scale production

Expensive and sophisticated equipment,
expensive reagents, instability against
bending or folding

Inkjet printing Efficient, reduced cross-contamination,
rapid fabrication, high resolution

Expensive ink printer, different inks are
needed, the heating is required

Screen printing Low cost and simple operation
Low resolution, rough microfluidic
channel walls, different molds need to be
customized according to needs

Laser cutting Simple Specialized equipment is needed

Plasma treatment Use of cheap plate-making agent, low
material cost

Plasma reactor is needed, need to
customize the mold according to needs

Polydimethyl-Siloxane (PDMS) printing Low-cost, flexible Low resolution, sophisticated equipment
for fabrication of molds

Knife plotting No hydrophobic modification materials
are required

X–Y knife plotter is required, possibility
of tearing paper during cutting

Hot Embossing Short fabrication time, efficient Specialized equipment

Hydrophobic silanization Low-cost, rapid fabrication Limitation with simple designs

Origami and Kirigami Intricate and innovative designs,
simple fabrication

Source: Data extracted from [75,144].

As for the description of patterning technologies listed in Table 6 and suitable for
the manufacture of PB humidity sensors, they are described in detail in many review
articles [25,75,144,269], and therefore will not be considered in this review.
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5.2. Electrodes

Electrodes play an important role in humidity sensors, especially those of the resistive
type. The resistance of the electrodes should be as low as possible. Therefore, for their man-
ufacture it is necessary to use highly conductive materials. For example, Arena et al. [154]
used integrating multi-walled carbon nanotube electrodes. Steffens et al. [270] developed a
low-cost sensor using graphite interdigitated electrodes. A simple and scalable method
to fabricate graphene-cellulose paper was reported by Weng et al. [271]. Carbon based
materials have become a popular choice in electrode fabrication for sensors due to their
low cost, high conductivity and availability. Conductive materials are also used, such as
metal nanoparticles (Ag, Au, Pt, Pd, etc.). However, the most common among them in
the manufacture of humidity sensors are still silver electrodes [64,151,272]. Copper has
also been of interest owing to the high conductivity of bulk copper and the lower price
compared to silver. However, instability of the copper particles in environmental conditions
is a major drawback to the use of copper in conductive metallic inks, and several researches
have focused on the protection of copper particles [273].

Metallic particle inks offer the highest level of conductivity. To obtain a high level of
conductivity, an additional post treatment of annealing (~100–250 ◦C for several minutes)
is usually required. This leads to the formation of a continuous interconnected phase
between the metallic particles after the elimination of all the insulating components present
in the ink (stabilizing agents, other additives, etc.). Silver is the most widely used metal so
far owing to its high bulk conductivity and high resistance to oxidation. As a result, Ag
nanoparticle inks have excellent low electrical resistance, when they are printed and cured
on paper substrates. Most of the conductive silver inks are based on spherical nanoparticles
or flakes. These inks exhibit a high conductivity but the obtained printed tracks and layers
are usually opaque and brittle.

Carbon-based materials such as carbon nanotubes (CNTs), graphite and graphene are
another group of materials successfully used to make electrodes on the surface of paper.
For example, Hu et al. [69] fabricated a highly effective conducting paper electrode with
robust chemical and mechanical stability using the simple conformal coating of CNTs-ink
onto commercial photocopy paper. However, experiment has shown that for practical
applications, the use of composites based on carbon-based materials is more promising.
Hu et al. [274] fabricated a highly conducting porous composite of the nanocellulose fibers
and CNTs for application as high-performance electrodes by simply uniformly mixing of
the two components. Hu et al. [69] have also shown that due to the continuous electrical
conduction pathways formed by combining CNTs with silver nanowire, the composite
CNTs-Ag NWs allows the formation of electrodes with very good electrical parameters
and mechanical flexibility (see Figure 15). The sheet resistance of the electrodes increased
only slightly (<5%) even after bending to a 2 mm radius 100 times. Hu et al. [69] believe
that this inspiring result is likely ascribed to the joint impact of the flexibility of individual
CNTs, the strong binding between the CNTs and the cellulose, and the porous architecture
of the cellulose paper, which can greatly mitigate the applied bending strain. Addition-
ally, the strong attraction of the cellulose fiber to the CNTs provided high film stability
against damage (e.g., scratching and peeling off). The conductive performance of flexible
graphene-cellulose paper electrode is also acceptable, and only 6% decrease was found
after 1000 repeated bending tests [271].

In some publications, conductive polymers such as poly(3,4-ethylenedioxythiophene)
(PEDOT) [275] or polyaniline (PANI) [276] are also used to form conductive layer and elec-
trodes. The conductivity, flexibility and transparency of these materials are different [82].
Conductive polymer and carbon particles inks differ from metal inks as they possess a
moderate conductivity (about 100 times lower as compared to silver), but can exhibit
transparency and flexibility. These inks do not require any annealing treatment, allowing
the printing on flexible substrates such as plastics, which cannot withstand high temper-
atures [277,278]. Some details about specific inkjet conductive materials are discussed
in [82,279].
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Figure 16 summarizes the conductive particles and their length scales as compared to
nanocellulose. The conductive particles are generally selected by (i) the printing process due
to specific physico-chemical ink properties and particles dimensions and (ii) the required
performance for end-use application in terms of flexibility, transparency and conductivity.
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As with conventional substrates, a variety of methods can be used to fabricate paper-
based electrodes [280]. For example, various printing technologies can be used [212,269,281]
and magnetron sputtering [282]. In particular, Nee et al. [147] and Dungchai et al. [283]
used screen-printed electrodes on paper for electrochemical analysis. Cinti et al. [151] used
inkjet printing technology to form carbon black electrodes. Inkjet printing technology has
also been used by Gasper et al. [232] for the formation of silver interdigitated electrodes in
the production of capacitive humidity sensors (see Figure 17). Hu et al. [284] used inkjet
printing to fabricate arrays of nanoporous gold electrodes on cellulose membranes. An
advantage of inkjet-printed electrodes is that electrode thickness can be tuned by printing
multiple layers to lower resistance and improve robustness [285]. Inkjet printing also
eliminates some of the waste involved in screen and stencil printing and provides better
resolution, which may become important for intricate patterning. Ink is deposited in the
desired areas, thus removing the need of using masks, and the thickness of the deposited
materials can be precisely controlled [275]. Due to the already automated nature of this
technique and reduced waste, inkjet printing electrodes would be able to move to large-
scale production efficiently. Gaspar et al. [232] noted also that usually in the process of
applying ink to the surface of the paper substrate, some of the ink immediately saturates
the paper fibers and penetrates into the paper. This not only promotes the drying process
by increasing the evaporation rate of the ink solvent, but also improves adhesion. At the
same time, it improves the high resolution of the print by avoiding bleeding on the surface
of the substrate, improving the definition of edge line roughness.
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~185 nm. Silver (Ag) nanoparticle colloidal ink (ANP 40LT15C) was used. Reprinted from [232].
Published 2017 by MDPI as open access.

The limitations of inkjet printing are especially due to the specific ink physicochemical
properties requirements for allowing droplet ejection and the restriction in the particle size
(<1 µm) for avoiding nozzle clogging [286]. In these technologies, a wide range of carbon
and silver inks can be used to produce electrodes [147,272,283]. In particular, commercial
CCI-300 Ag-ink (Cabot, Inc.) having an Ag nanoparticle diameter in the range of 30~50 nm
in ethylene glycol/ethanol as the main solvent can be used to form electrodes. You can also
use silver nanoparticle ink (DGP 40LT-15C, Sigma-Aldrich, Sigma-Aldrich, MO, USA). Au,
Cu and Pt nanoparticle inks can also be used to form electrodes [279,287]. Yao et al. [288]
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found that in order to produce high-quality electrodes using printing technology on an
office paper substrate, pre-treatment of the paper is necessary to remove inactive additives
and increase its porosity. They suggested the following procedure: immerse a sheet of
printing paper in an aqueous solution containing 0.3 M hydrochloric acid (HCl) for about
10 min, then rinse thoroughly with deionized water and allow to dry at room temperature.
Pretreatment typically results in a reduction in both weight and thickness due to the
removal of mineral fillers and fluorescent bleaching agents, resulting in a more porous
open structure, which is often useful for paper-backed electrodes. Courbat et al. [289]
for improving the quality of the electrodes, before printing with Ag-ink, the paper was
dehydrated at 110 ◦C for 2 h, without using any surface pretreatment.

It was also found that in the manufacture of silver contacts, post-treatment drying at
room temperature of about 25 ◦C followed by treatment at T ~ 150 ◦C is necessary to achieve
maximum conductivity. At that only less than 2 min of drying time at this temperature
was required to achieve the best electrical conductivity [290]. It was also found that
photon annealing may be a better option in the manufacture of Ag-based electrodes [291].
When using photon sintering methods, the effect of nanoparticle displacement during
annealing is practically absent. The photon energy is more localized and efficient, which
means that solvent evaporation and nanoparticle coalescence occur at almost the same rate,
preventing nanoparticles from moving to the edges of the printed lines, providing a more
uniform electrode thickness. Another common effect when using thermal sintering is crack
formation, or microcracking [292], resulting in disruptive and non-conductive structures.
Paper has a low thermal expansion when compared to polymers, and that is the main
reason why the crack formation due to substrate shrinkage is almost non-existent [293]. It
was also found that electrodes made with other materials also require heat treatment at
60–90 ◦C for several minutes after printing. It was also found that electrodes made with
other materials also require heat treatment at 60–90 ◦C for several minutes after printing.

Experiment has shown that besides surface pre-treatment and post-deposition thermal
treatment [294,295], there are many additional factors that must be clarified when using
paper substrates for preparing electrodes using printing technology. Wetting, spreading
or permeability behavior of nanoparticles inks is quite different from plastic substrates.
It is necessary to control the spreading or permeation of the inks. Another concern is the
interface reaction or the compatibility of the papers with the ink during curing. The papers
must maintain its structure while forming a strong interface during curing.

Hand painting is also a frequently used electrode preparation method. Liu et al. [71]
drew conductive traces with high conductivity, remarkable foldability and stability on
paper by using prepared AgNW-GO ink and a ballpoint pen, and verified the performance
of the electrode. It is found that graphene oxide (GO) can work as the dispersing, associate
thickening, stabilizing, adhesive, oxidation-resistant, and mechanical reinforcing agents
simultaneously to formulate a drawable conductive ink with silver nanowire (AgNW).
Liu et al. [71] believe that this method can be used to quickly prepare electrodes without
any expensive equipment. But major disadvantages of this approach include the influence
of the painter, low repeatability and the inability to draw on a large scale.

With regard to the stability of Ag-based contacts, studies by Liu et al. [71] showed that
electrodes made using AgNW-GO ink not only have low resistance, but also have increased
stability compared to electrodes based on AgNW-PVP, AgNP, and AgMF inks. As it is seen
in Figure 18, after accelerated test at 60 ◦C in air over 30 days, the resistance of AgNP-Ink
and AgMF-Ink electrodes has a tendency of slight increase over testing time and reaches to
1.8 and 1.6 times their initial values. However, the resistance for AgNW-PVP-Ink electrode
exhibits a much greater increase and rises to 4.3 times its initial values after 30 days. It was
established that the resistance increase is mainly attributed to surface oxidation issue of
the nanoscale or microscale silver fillers caused by the attack from environmental oxygen
and sulfur [296,297]. In contrast, the resistance of the AgNW-GO-Ink electrode increased
by a mere ≈15% after 30 d. It is suggested that the GO wrapping around the AgNWs
and their junctions can work as a barrier layer to impede the AgNWs from reacting with
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environmental oxygen and sulfur [296–298]. Such long-term storage stability is important
advantage of AgNW-GO electrodes for application in paper-based electronics. Molina-
Lopez et al. [64] found that the stability of Ag-based electrodes could be improved by
passivation of printed silver electrodes with nickel.

Benefiting from the rough surface of the paper, the electrodes of PB sensors can be
prepared by simple, low-cost and solvent-free processing methods such as pencil draw-
ing [176,180,181,299,300]. Conductive graphite is the main component of the pencil, and this
is what allows the use of a pencil drawing for the manufacture of PB electronic devices [26].
Figure 19a–c shows the pencil drawing electrodes for PB sensors. It was established that
the sheet resistances of the PB electrodes fabricated by different types of pencil are dif-
ferent due to the different graphite content of the pencil lead [176,299]. In particular, it
was found that the HB pencil leads (6B−12B) are more suitable for the electrodes of PB
sensors (Table 7) [176]. Usually, the drawing is repeated 8–10 times to get continuity of the
conductive film on paper. There is no chemical interaction between paper and graphite
flakes, but graphite flakes adhere to paper due to weak van der Waals interaction with
intermolecular forces. Although the PB pencil electrodes have the advantages of simple
preparation, low cost and environment-friendly, they are affected by pencil types [176,299],
the drawing process (repetition times) [299], and even their conductive properties are
affected by bending strain [300].
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Figure 18. Plots of relative resistance change versus time for AgNW-GO-Ink, AgNW:PVP-Ink, AgNP-
Ink, and AgMF-Ink electrodes drawn on paper substrates after exposure to hot air at 60 ◦C for 30 d.
AgMF- silver microflakes; AgNP—silver nanoparticles, AgNW—silver nanowires. Reprinted with
permission from [71]. Copyright 2017: Elsevier.

Therefore, in a number of publications, another simple approach to the manufacture
of paper-based electrodes has been proposed. This approach was based on the use of
conductive adhesive tapes [26,28,175,178]. Adhesive copper foil and adhesive tape based
on conductive polyester fibers were tested (see Figure 19d,e). The experiment showed that
the electrode rigids of adhesive copper foil tapes cannot resist the continuous bending and
twisting, resulting in poor wearable flexibility and even the damage of the sensors [28].
At the same time, it was found that the flexible conductive tape based on polyester fibers
is helpful to solve the compatibility problem between the rigid electrodes and paper.
In addition to the direct formation of electrodes, such a tape, applied to the surface of
electrodes formed by various methods, significantly improves their mechanical stability
when bending paper substrates. Using this approach, a multifunctional PB humidity sensor
(see Figure 19f) was fabricated [28].
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Figure 19. (a) Fabrication schematic illustration of the pencil electrodes. Reprinted with permis-
sion from [180]. Copyright 2018: American Chemical Society; (b) Schematic illustration of the
microstructure-like randomly rough surface. Reprinted with permission from [301]. Copyright
2017: Wiley-VCH; (c) Fabrication schematic illustration of the PB electrodes using drawing method.
Reprinted with permission from [176]. Copyright 2017: American Chemical Society; (d) Photograph
of the PB humidity sensor based on copper electrodes. Reprinted with permission from [178]. Copy-
right 2019: American Chemical Society; (e) Schematic illustration of the humidity sensor built on
a cellulose paper substrate using copper electrodes. Reprinted with permission from [175]. Copy-
right 2012: American Chemical Society; (f) Fabrication process of the PB humidity sensor using
pasting method. Reprinted with permission from [28]. Copyright 2019: American Chemical Society.
(Reprinted with permission from [26]. Copyright 2020: ACS).
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Table 7. The bulk conductance of pencil leads from 1B to 12B and square resistances of pencil trace
on the printing paper. The preparation of pencil trace is analogous with the fabrication of electrodes.

Pencil B 2B 3B 4B 5B 6B 8B 10B 12B

Square resistance (Ω) 8717 6776 4163 2168 509 368 332 410 643

Source: Reprinted with permission from [176]. Copyright 2017: ACS.

Some developers believe that it is not economically feasible to use noble metals in
paper sensors, as they are expensive and non-renewable ones. To solve this problem, a
method was proposed for forming conductive electrodes using the direct CO2-laser writing
of electrodes onto TEMPO-oxidized cellulose paper [302]. As it is seen in Figure 20, while
the original TEMPO oxidized cellulose paper had a high surface resistance of approximately
109 Ω sq−1, the laser-irradiated area had a surface resistance of 108–102 Ω sq−1, depending
on the laser power. The CO2-laser-induced carbonization of polymeric materials can be
attributed to the generation of thermal energy due to the photothermal effect derived
from their lattice vibrations [303]. When subjected to CO2-laser irradiation, the polymeric
material reaches a high temperature, which causes chemical bonds such as C–O and C=O
within the polymer to break and rearrange to form a graphitic structure (Figure 21). This
approach allowed to realize an all-cellulose-derived humidity sensor. The TEMPO-oxidized
cellulose paper with sodium carboxylate groups provided a satisfactory humidity-sensing
performance [302]. Zhu et al. [302] and Lin et al. [303] believe that the CO2-laser-irradiation
process is extremely attractive for industrial use because it can be entirely performed in
ambient air without any reagents.
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Figure 20. CO2-laser-induced direct formation of electrodes on TEMPO-oxidized cellulose paper:
(a) surface resistance as a function of laser power used for laser irradiation, (b) relationship between
relative humidity and electrical resistance of laser-induced electrodes prepared at laser powers of
3.2 W. Laser scan speed: 10 cm s−1. The resistance was measured at room temperature. Reprinted
from [302]. Published 2022 by RSC as open access.

If electrodes are required that are conductive over the whole area of the paper, then
commercially available carbon paper can be used for this purpose, or metals, such as Au,
can be deposited on the whole area of the paper. Another possibility to achieve this goal
is to pyrolyze the paper by heating it to ~900–1000 ◦C in an inert atmosphere. However,
the resulting material is rather brittle [304]. It was shown that pyrolysis can also be carried
out locally using a laser [165]. It is also possible to make conductive paper by mixing
conductive materials with cellulose or by coating the surface of the paper with conductive
polymers such as PEDOT/PSS [74,279,305].
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Atomic percentages of carbon, oxygen and nitrogen as a function of laser power. These values are
obtained from high-resolution XPS. The threshold power is 2.4 W, at which conversion from PI to
LIG occurs. Reprinted from [303]. Published 2014 by Natio Portfolio as open access.

Additional information regarding the formation of electrodes on paper can be found in the
reviews by Cummins and Desmulliez [278], Hoeng et al. [82], Liu et al. [71], Yao et al. [75,280],
Zhang et al. [70], Noviana et al. [306], and Mazurkiewicz et al. [304]. Cummins and Desmul-
liez [279] considered inkjet printing of conductive materials. Yao et al. [280] summarized the
advances of paper-based electrodes for flexible energy storage devices. Mazurkiewicz
et al. [304] analyzed the features of the formation of electrodes for paper-based electrochem-
ical sensors. Hoeng et al. [82] and Zhang et al. [70] analyzed devices based on nanopaper
and features of using printing technology for their manufacture.

6. Summary

Thus, we considered the possibilities of using paper for the development of humidity
sensors and showed that paper is indeed a promising material for these applications,
not only as a substrate, but also as a humidity-sensitive material. The review showed
that all types of humidity sensors, including capacitive, resistive and impedance, can
be developed based on the paper, and all types of humidity-sensitive materials such as
carbon-based materials, solid state materials and polymers, can be used in these sensors.
At that PB humidity sensors can be highly efficient in humidity monitoring. However,
to achieve maximum sensitivity, the properties of the humidity sensitive materials used
in PB sensors must be optimized. The analysis also showed that printing technologies
are the most suitable for the formation of both a sensitive layer and electrodes on a paper
substrate. In the second part of this review, “Humidity sensors performances”, we will
already consider the specific approaches used to manufacture such paper-based humidity
sensors. In conclusion, we will analyze the problems that need to be solved in order to
promote paper-based humidity sensors on the sensor market and discuss the current trends
in their development.
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