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Abstract: The commercial application of colloidal semiconductor nanocrystals has been realized
owing to the development of composite film technology. Here, we demonstrated the fabrication of
green and red emissive CuInS2 nanocrystals embedded polymer composite films of equal thickness
by using a precise solution casting method. The impacts of polymer molecular weight on the dis-
persibility of CuInS2 nanocrystals were then systematically studied through evaluating the decrease
in transmittance and red shift of emission wavelength. The composite films made from PMMA of
small molecular weights exhibited higher transmittance. Applications of these green and red emissive
composite films as color converters in remote-type light-emitting devices were further demonstrated.
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1. Introduction

Colloidal semiconductor nanocrystals (NCs) are an emerging class of color-tunable
light conversion materials, which have the advantages of solution processing, easy disper-
sion, tunable emission spectra, and high luminous efficiency [1–5]. Recently, NCs with
excellent luminescence properties have been widely used in commercial display devices,
such as CdSe NCs, InP NCs, and perovskite NCs [6–9]. To realize the application of col-
loidal semiconductor NCs, it is an essential step to disperse NCs in a matrix. Polymer
materials, owing to their good processability and developed thin-film processes and indus-
trial equipment that can be used directly, are the best matrices for NCs [10–12]. Therefore,
dispersing NCs in polymer matrices to fabricate composite films is currently a hot research
topic. The progress in NC-based composite films enables the configuration of light sources
to change from “on-chip” to “on-surface” [13], thereby the influence of the heat released
by chips on the NCs dispersed in films can be greatly reduced. As for lighting application,
NC-based composite films can be integrated into remote-type LEDs to obtain planar light
sources [14–16]. However, the dispersibility and stability of NCs in polymers are still
the two key problems to be solved. The ligands on the surface of NCs are an important
bridge between polymers and NCs [17], so the most reported research on NCs/polymer
composites is the modification of the surface ligands to enhance the dispersibility and
stability of NCs in polymers [18–20]. For example, Baek et al. fabricated the highly photo-
stable composite films by embedding the thiol-capped perovskite NCs in a cyclic olefin
copolymer [21].

CuInS2-based NCs are a new type of low-toxic phosphor material without heavy met-
als [22–26]. The potential of CuInS2-based NCs as phosphor-converted materials for white
LED applications has been verified by Zhong et al. [27,28]. Dispersing CuInS2-based NCs
in a polymer matrix needs to overcome many problems, among which the decrease in
transmittance and red shift of emission wavelength due to the agglomeration of NCs and
self-absorption are key issues to be evaluated. Especially for the application in white LED, the
emission wavelength of NCs determines the CIE color coordinates of the fabricated devices.
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Poly-methyl methacrylate (PMMA) is one of the most excellent organic optical materi-
als generally used to make a variety of optical devices. Excellent transparency for visible
light (~92%), good environmental inertness, better thermal stability, relatively low cost,
easy processibility, etc. are considerable technologically useful properties of the PMMA
film [29]. In this paper, PMMA was selected as the matrix of CuInS2-based NCs, and
the CuInS2 NCs/PMMA composite films of equal thickness were prepared by a precise
solution casting method. Then, the effect of PMMA molecular weight on the dispersibility
and stability of CuInS2-based NCs was systematically studied by fluorescence emission
spectroscopy and UV-Vis transmittance spectroscopy. The decrease in transmittance and
the red shift in emission wavelength at 80 ◦C were further evaluated under a vacuum oven.
Finally, the green and red emissive CuInS2 NCs/PMMA composite films were applied to
a remote-type LED to achieve the uniform planar white light source. The adjustment of
polymer molecular weight plays an important role in enhancing the optical properties of
composite films. This article is a typical case of studying the dispersibility and stability
of NCs in the polymer matrix with different molecular weights, which is an important
research field where nanomaterials, interfaces, and composites intersect. It may also help
to facilitate the commercial applications of nanocrystals from the perspective of polymer
molecular design.

2. Materials and Methods
2.1. Materials

Copper(I) iodide (CuI, Alfa aesar, Haverhill, MA, USA, 98%), indium(III) acetate
[In(OAc)3, Alfa aesar, Haverhill, MA, USA, 99.99%], zinc acetate dehydrate [(Zn(OAc)2,
Aladdin, Shanghai, China 97%], 1-dodecanethiol (DDT, Alfa aesar, Haverhill, MA, USA,
98%), 1-octadecene (ODE, Alfa aesar, Haverhill, MA, USA, 90%), oleic acid (OA, Alfa aesar,
Haverhill, MA, USA, 90%), oleylamine (OLA, J&K Scientific, Beijing, China, 90%), PMMA-
15 k (J&K Scientific, Beijing, China), PMMA-350 k (Heowns, Tianjin, China), PMMA-550 k
(Alfa aesar, Haverhill, MA, USA) were used without further purification.

2.2. Synthesis of CuInS2-Based NCs

Green and red emissive CuInS2-based NCs with emission peaks of 528 nm and 630 nm
were prepared according to the method described by Chen et al. [22] A typical synthesis
of the CuInS2-based NCs with a PL peak centered at 528 nm is as follows. Step I: CuI
(0.19 g, 1 mmol), In(OAc)3 (1.16 g, 4 mmol), and Zn(OAc)2 (0.44 g, 2.5 mmol) were mixed
with 10 mL DDT, 2 mL OA, and 20 mL ODE in a 100 mL three-necked flask. The mixture
was heated to 220 ◦C and maintained for 15 min under nitrogen flow. Step II: 5 mL DDT
was slowly injected into the as-prepared solution. An amount of 30 mL Zn stock solution
[10.56 g Zn(OAc)2 in 10 mL OLA and 20 mL ODE] was then added drop-wise into the
reaction mixture in 15 batches at intervals of 15 min. Step III: The resulting colloidal solution
was cooled to room temperature and precipitated by adding excess acetone. The flocculant
precipitate was centrifuged at 8000 rpm for 5 min, and the supernatant was decanted.
Step II and step III were repeated twice. Step IV: The precipitate was then dispersed in a
nonpolar solvent (toluene, chloroform). The washing process was repeated three times,
and the precipitate was dried to a powder for further application. A typical synthesis of
the CuInS2-based NCs with a PL peak centered at 630 nm is as follows. Step I: CuI (0.19 g,
1 mmol) and In(OAc)3 (1.16 g, 4 mmol) were mixed with DDT (5 mL), OA (2.5 mL), and
ODE (25 mL) in a 100 mL three-necked flask. The solution was then heated to 220 ◦C to
form a deep red colloidal solution. Step II: A fixed amount of Zn stock solution (2.64 g
Zn(OAc)2, 10 mL OLA, and 10 mL ODE were, drop-by-drop, added into the reaction
mixture in 10 batches at intervals of 15 min. Step III: The resulting colloidal solution was
cooled to room temperature and precipitated by adding excess acetone. The flocculant
precipitate was centrifuged at 8000 rpm for 5 min, and the supernatant was decanted. The
washing process in step IV was the same as before.
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2.3. Preparation of CuInS2 NCs/PMMA Composite Films

Step I: A transparent PMMA polymer solution was prepared by dissolving PMMA
(5 g) in chloroform (40 mL) under ultrasound. Step II: A transparent CuInS2 NCs solution
was prepared by dissolving CuInS2 NCs (0.0329 g) in chloroform (5 mL). Step III: An
amount of 5 g of PMMA polymer solution and the above transparent CuInS2 NCs solution
were mixed uniformly under ultrasound. Step IV: The mixed CuInS2 NCs/PMMA solution
was transferred to an ultra-flat glass Petri dish. The solvent was naturally evaporated
at room temperature for about 10 h. Then, the composite film embedded with CuInS2
NCs was peeled off the glass substrate and placed in a drying oven of 40 ◦C for 2 h until
the solvent was completely evaporated. Green and red emissive CuInS2 NCs/PMMA
composite films with different mass fractions were prepared by changing the weight of
CuInS2 NCs, and the molecular weight of PMMA was added.

2.4. Characterizations of CuInS2 NCs/PMMA Composite Films

Ultraviolet-visible (UV-vis) transmittance spectra of the CuInS2/PMMA composite
films were recorded on a UV-6100 spectrophotometer (Mapada Instruments Co., Ltd.,
Shanghai, China). The PL emission spectra of the CuInS2 based NCs dispersed in chlo-
roform and CuInS2/PMMA composite films were taken using a FP-380 luminescence
spectrometer (Gangdong Sci. & Tech. Development Co., Ltd., Tianjin, China). The absolute
photoluminescence quantum yields (PLQYs) of composite films were determined using a
PMA-12 calibrated multichannel spectrometer (Hamamatsu Photonics, Hamamatsu, Japan)
with an C9920-02 integrated sphere (Hamamatsu Photonics, Hamamatsu, Japan). The lumi-
nance characteristics were obtained by a Photo Research PR680 spectroradiometer (Photo
Research, Chatsworth, CA, USA). The CuInS2 NCs in chloroform and PMMA (ultrathin sec-
tion samples) were analyzed using a JEOL-JEM 2100F TEM machine (JEOL, Tokyo, Japan)
operating at an acceleration voltage of 200 kV. The ultrathin section samples were prepared
using Leica EM UC7 ultramicrotome (Leica Microsystems, Wetzlar, Germany).

3. Results and Discussion
3.1. Solution Casting Method for CuInS2 NCs/PMMA Composite Films

Chloroform is a commonly used solvent for both PMMA and CuInS2 NCs, which was
chosen for the fabrication of composite films. As illustrated in Figure 1, a typical solution
casting method to fabricate CuInS2 NCs/PMMA composite films involved four stages.
In stage I, green emissive CuInS2 NCs with an emission wavelength of 528 nm and red
emissive CuInS2 NCs with an emission wavelength of 630 nm were separately dissolved in
chloroform to prepare a transparent CuInS2 NCs solution. The TEM images of green and
red emissive CuInS2 NCs were shown in Figure S1, and the average sizes of green and red
emissive CuInS2 NCs are 5.6 ± 0.6 nm and 4.1 ± 0.2 nm, respectively. In stage II, the weight
of the polymer solution and volume of CuInS2 NCs solution were calculated according
to the mass concentration of the desired composite film. In stage III, when the solvent
evaporated at room temperature, the as-fabricated composite film is very flexible owing to
the small amount of solvent remaining in the film. One can mold the composite films into
various shapes, such as the curved shape of a lampshade. In stage IV, the composite films
will harden by further drying in an oven to remove the solvent completely. The composite
films are difficult to separate from the mold if the solvent is completely evaporated. The
equal thickness of composite films can be achieved by the precise weighing process, as well
as by the fixing and leveling of the glass Petri dish mold.
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Figure 1. Schematic illustration of the fabrication of CuInS2 NC-embedded PMMA composite films.

3.2. Optical Properties of Green Emissive CuInS2 NCs/PMMA Composite Films

Four sheets of PMMA films of different molecular weights were prepared by adopt-
ing the same solution casting method, and the thicknesses were measured as 0.154 mm,
0.155 mm, 0.153 mm, and 0.154 mm respectively. The results verify the feasibility of prepar-
ing thin films with the same thickness by the solution casting method. Subsequently, we
tested the transmittance spectra and fluorescence emission spectra of PMMA films with
different molecular weights. It can be seen, from Figure S2, that the transmittances of
PMMA films with different molecular weights are basically the same in the visible light
range (~92%), and there is no obvious fluorescence emission in the visible light range.

Transmittance and emission wavelength are the two most important optical param-
eters to be evaluated for light conversion films. We have quantitatively analyzed the
correlation between the mass concentration of CuInS2-based NCs in PMMA and the emis-
sion wavelength. The emission wavelength of the composite film red-shifted as the mass
concentration of CuInS2 based NCs increases. The emission wavelength of the composite
film is 541 nm when the mass concentration of CuInS2 based NCs reaches 10%. Com-
pared with the emission wavelength of CuInS2 NCs toluene solution (559 nm) with equal
mass concentration, it is obvious that the red shift of CuInS2 NCs in PMMA is relatively
smaller. Therefore, the red shift of CuInS2-based NCs caused by the agglomeration and
self-absorption can be effectively reduced by dispersing them into the polymer matrix.

In order to better reveal the optical properties (transmittance and emission wavelength)
of the CuInS2 NCs/PMMA composite films, PMMA of four different molecular weights was
used for comparison experiments. Figure 2 provides an overview of sixteen composite films
prepared by dispersing green emissive CuInS2 NCs in PMMA with different molecular
weights. From left to right, the mass concentration of CuInS2 NCs increases, and from top
to bottom, the molecular weight of PMMA increases. As the mass concentration of CuInS2
NCs increases, the transmittance of the as-fabricated composite film decreases, and the
appearance color of the composite film changes from light green to yellow.

It is difficult to evaluate the dispersibility of CuInS2 NCs in PMMA with different
molecular weights by the naked eyes. Therefore, we tested the transmittance and fluo-
rescence spectra of these composite films. Figure 3a,b show the transmittance spectra of
CuInS2 NCs/PMMA composite films with a mass concentration of 1% and 2%, respectively.
It is obvious that the dispersion of CuInS2 NCs is the best in PMMA with a molecular
weight of 15 k, since the composite film has the highest transmittance. Figure 3c,d show
the fluorescence spectra of CuInS2 NCs/PMMA composite films with a mass concentration
of 1% and 2%, respectively. The emission spectra are partly enlarged to demonstrate the
red shift of the emission wavelength more clearly. It can be seen from the figure that the
red-shift of emission wavelength is the smallest when the CuInS2 NCs were dispersed
in PMMA with a molecular weight of 15 k. Combined with the light transmittance and
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emission wavelength of the composite films, we believe that green emissive CuInS2 NCs
have the best dispersion in the PMMA of 15 k. The poor dispersion of CuInS2 NCs in the
polymer matrix will cause a decrease in light transmittance and a red-shift of emission
wavelength. In low-molecular-weight polymers, the molecular chains of the polymers
are relatively free to move, and the entropy changes required for polymer penetration are
usually low [30–33]. Therefore, the molecular chains penetrate easily with the short-chain
ligands (OLA) on the surface of CuInS2 NCs to establish the interface equilibrium.
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From the data in Figure 2, it is apparent that the CuInS2 NCs with high mass concentra-
tion can still be uniformly distributed in the PMMA matrix, although the light transmittance
is low. The CuInS2 NCs dispersed in PMMA can maintain ~80% of the original PLQYs.
The ordered agglomeration of CuInS2 NCs in PMMA will not cause serious fluorescence
quenching owing to the slow solvent evaporation at room temperature [34,35].

3.3. Optical Properties of Red Emissive CuInS2 NCs/PMMA Composite Films

The dispersibility of green emissive CuInS2 based NCs in PMMA is obviously affected
by the molecular weight of PMMA. However, the light transmittance of the composite
film is not high, even though the mass concentration of CuInS2 NCs is very low (1%),
which will increase the error of quantitative analysis. In this part, the red emissive CuInS2
NCs/PMMA composite films with high transmittance were applied to analyze the effect of
molecular weight on optical properties.

Figure S3 shows the red emissive CuInS2 NCs/PMMA composite films prepared by
using the same solution casting method. It can be seen from Figure S3 that the transmittance
of the as-fabricated composite films exceeds 60% when the mass concentration of red emissive
CuInS2 NCs in PMMA reached 5%. However, the transmittance of the green emissive CuInS2
NCs/PMMA composite film with the same mass concentration is only 5%. We attributed
this improvement in transmittance to the quality of ligands on the surface of CuInS2 NCs.
The red emissive CuInS2 NCs were only covered once by a ZnS shell during the synthesis
process, but the green emissive CuInS2 NCs were covered by ZnS shells three times during
the synthesis process. It should be noted that the CuInS2 NCs need to be cleaned before each
covering process to remove the (organic) residuals and by-products from the surface of NCs,
so the number of ligands on the surface will decrease, which has been confirmed by Akdas
et al. by using nuclear magnetic resonance spectroscopy [36]. The reducing of surface ligands
leads to the weak dispersibility of CuInS2 NCs within the polymer matrix.

Looking at Figure S3, it is apparent that the red emissive composite film made from
low molecular weight PMMA (15 k) has the highest light transmittance. Instead, the
composite film made from high molecular weight PMMA (550 k) has the lowest light
transmittance, which is consistent with the results of green emissive CuInS2 NCs/PMMA
composite films. The thickness of the four red emissive composite films was measured as
0.156 mm, 0.153 mm, 0.154 mm, and 0.155 mm, respectively. Therefore, the effect caused by
thickness can be excluded.

In addition, two molecular weights of PMMA were blended as the polymer matrix to
further reveal the influence of molecular weight on the optical properties of composite films.
The thickness of the as-fabricated composite film was measured as 0.158 mm, 0.156 mm,
0.155 mm, 0.155 mm, and 0.156 mm, respectively. Molecular weights of 550 k and 15 k were
selected because their corresponding composite films have a maximum and a minimum
transmittance. The mass concentration of red emissive CuInS2 NCs in PMMA was set
to 20%. Two molecular weights of PMMA were mixed in volume ratios of 1:4, 1:1, and
4:1, respectively. It can be seen, from Figure 4, that the composite film prepared with
550 k PMMA still has the lowest transmittance. However, the light transmittance of the
composite film prepared with blended PMMA (550 k/15 k = 1/4) is the highest. It can be
concluded that the hybrid of PMMA with different molecular weights can improve the
dispersion of CuInS2 NCs in PMMA. Based on the “Bimodal Surface Ligand Engineering”
of nanocrystals reported by Li et al. [37], we explain this phenomenon with a “Bimodal
Molecular Weight Strategy” for the case that CuInS2 NCs were dispersed within a polymer
matrix composed of two molecular weights. On the one hand, the polymer chains with low-
molecular-weights can more easily interpenetrate with the organic ligands on the surface
of CuInS2 NCs to guarantee the interfacial compatibility of NCs and polymers; on the other
hand, the polymer chains with high-molecular-weights can prevent the agglomeration of
CuInS2 NCs by inhibiting their free movements.
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Figure 4. Transmittance spectra of red emissive composite films (20 wt% CuInS2 NCs) prepared by
blending PMMA with different molecular weights.

3.4. Dispersibility of CuInS2 NCs in Green and Red Emissive Composite Films

To further analyze the reasons for the differences in transmittance and red-shift of
composite films, in this paper, the CuInS2 NCs/PMMA composite films were further
characterized by TEM. The ultrathin section samples for TEM test were prepared using
Leica EM UC7 ultramicrotome. Figure 5a,b are the TEM images of green and red emissive
CuInS2 NCs in PMMA matrix respectively. It is obvious that the green emissive CuInS2 NCs
underwent more severe agglomeration in the PMMA matrix, and the size of the aggregates
in PMMA matrix is 10–30 nm. In contrast, the red emissive CuInS2 NCs maintain a good
monodispersity in the PMMA matrix, and the size of the CuInS2 NCs in the PMMA matrix
is around 4 nm.
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3.5. Vacuum Thermal Stability of Red Emissive CuInS2 NCs/PMMA Composite Films

The effect of temperature on the dispersion of CuInS2 NCs in PMMA was evaluated by
vacuum heating. The use of a vacuum drying oven can prevent the composite films from
being affected by oxygen and water. In the beginning, the red emissive CuInS2 NCs/PMMA
composite films with different molecular weights were placed in a vacuum drying oven at
80 ◦C for 5 h, and the light transmittance and fluorescence spectra were recorded. It can
be seen, from Figure 6a, that the transmittance of the composite films decreased greatly.
After that, the composite films were placed into the vacuum drying oven at 80 ◦C again
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for another 25 h, and the light transmittance and fluorescence spectra were recorded. It
can be seen from the green line in the figure that the decrease in the light transmittance of
the film is not as serious as before, which means the spatial distribution of CuInS2 NCs
within the PMMA gradually tends to be stable during the long-term heating process. After
heating for 30 h, the transmittance of the composite film prepared with pure 15 k PMMA
decreased by 44.9%, but the one prepared with pure 550 k PMMA decreased by only 26.4%.
The decreasing transmittance of the composite films decreased with the increase in the
concentrations of 550 k PMMA, which were 40.9%, 33.8%, and 30.5%, respectively. The
specific transmittances and emission wavelengths are summarized in Table 1.
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Figure 6. Spectral changes of red emissive composite films (5 wt% CuInS2 NCs) prepared by blending
PMMA with molecular weights of 550 k and 15 k. (a) The transmittance spectra before and after
heating at 80 ◦C; (b) The fluorescence emission spectra before and after heating at 80 ◦C.

Table 1. Transmittances and emission wavelengths of the composite films before and after heat
treatment under vacuum drying oven.

M.W. of PMMA T% T% @ 30 h WL WL @ 30 h Red-Shift

15 k 76.25 42.01 658.8 nm 666.4 nm 7.6 nm
550 k/15 k 1:4 75.68 44.69 661.4 nm 666.6 nm 5.2 nm
550 k/15 k 1:1 73.58 51.12 661.2 nm 669.4 nm 8.2 nm
550 k/15 k 4:1 73.52 48.66 659.2 nm 668.8 nm 9.6 nm

550 k 68.67 50.53 662.4 nm 667.2 nm 4.8 nm

It can be seen from Figure 6b that the fluorescence emission peaks of the composite
films have a slight red-shift after heating in the vacuum-drying oven for 30 h. The red-shift
of the composite film prepared with pure 550 k PMMA is the smallest (4.8 nm). This can be
attributed to the difficult displacement of PMMA chains with large molecular weights, so
the agglomeration of CuInS2 NCs dispersed in the PMMA is not easy to occur.

3.6. Application of CuInS2 NCs/PMMA Composite Film in Remote White LEDs

The emergence of the remote-type LED greatly improves the possibility of CuInS2
NCs/PMMA composite film being applied in white LED. Figure 7a shows the schematic
diagram of the white LED with remote structure by combining the blue LED chips and
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the dual-layer CuInS2/PMMA composite films. The surface of the reflector cup in this
configuration is diffuse, and the reflected light has a Lambertian distribution for a diffuse
reflector cup [38]. In this paper, a blue light chip (emission peak at 455 nm) of 10 W was
used as the excitation light source, and a combination of 20 wt% green emissive CuInS2
NCs/PMMA composite film and 5 wt% red emissive CuInS2 NCs/PMMA composite film
were selected to prepare high-quality white light. As shown in Figure 7b, the emission
spectrum covers a very wide wavelength range, the luminance of the white light is 621 lm,
the color coordinate of the white light is (0.33, 0.34), the color temperature is 5608 K, and the
color rendering index Ra is 90. The luminance of the original blue LED before integrating
the dual-layer CuInS2/PMMA composite films is 402 lm. High-quality white LEDs can be
obtained by using CuInS2 NCs/PMMA composite films of two wavelengths, which are
attributed to the relatively broad emission spectra of CuInS2 NCs. In addition, embedding
the CuInS2 NCs of two emission wavelengths into two layers of composite films is beneficial
to improve the luminous efficiency of white LEDs, since the serious mutual absorption
among CuInS2 NCs of different emissions can be avoided. That is, the green light excited
by the blue light will be absorbed by the red emissive CuInS2 NCs.
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Figure 7. (a) Schematic diagram of the white light LED with remote structure by combinating the
blue LED chip and the dual-layer CuInS2/PMMA composite film; (b) the white light spectrum and
the corresponding color coordinate of remote white LED in the inset.

4. Conclusions

In this paper, the green and red emissive CuInS2 NCs embedded polymer composite
films of equal thickness were fabricated by using a precise solution casting method. The UV-
Vis transmittance spectra and emission spectra of all the CuInS2 NCs/PMMA composite
films were measured and analyzed. The experimental results show that the transmittance of
the composite films is the highest, and the corresponding red shift of the CuInS2 NCs is the
smallest when the molecular weight of PMMA is 15 k. As the mass concentration of green
emissive CuInS2 NCs exceeds 5%, the transmittance of the composite film decreases to a
very low level, but the film still maintains high PLQYs due to the ordered agglomeration.
From the viewpoint of improving the dispersibility (transmittance) of CuInS2 NCs in the
polymer, it is better to select a polymer matrix with small molecular weights, but a polymer
matrix with large molecular weights exhibits relatively better vacuum thermal stability.
The blending of PMMA with different molecular weights as the matrix of the composite
films can simultaneously improve the dispersibility and thermal stability of CuInS2 NCs.
High-quality planar white LEDs with color coordinates of (0.33, 0.34), color temperature of
5608 K, and color rendering index of 90 have been realized by simultaneously integrating
the red and green emissive CuInS2 NCs/PMMA composite films to the remote-type LED
modules. More importantly, the versatility of this molecular designing strategy would
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open up a door to enhance the dispersibility and stability of functional NCs within PMMA
or other polymers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13061085/s1, Figure S1: TEM images of green and red
emissive CuInS2 NCs; Figure S2: Transmittance and fluorescence spectra of PMMA films with
different molecular weights; Figure S3: Transmittance and fluorescence spectra of PMMA films with
different molecular weights.
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