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Two-dimensional (2D) materials and nanostructures have gathered significant atten-
tion due to their excellent mechanical properties [1], unique electrical and optical charac-
teristics [2,3], large surface-to-volume ratio, and chemical and environmental stability [4].
These features have led to the discovery of a large new family of 2D materials and a vast
range of possible applications ranging from optoelectronics and electronics to energy con-
version and saving applications. With the extensive catalogue of available 2D materials,
ranging from metallic layers to semiconductors and insulators, their applications hold great
promise for future innovative research in science and technology.

In recent years, many colleagues have been developing fundamental studies dedicated
specifically to the design of 2D materials in optoelectronic and green energy devices due
to their excellent opto-electrical and electrochemical performance. These research studies
sit at the interface between engineering, material science, physics, and chemistry, and the
importance of 2D materials and nanostructures in such applications calls for intensive
experimental research assisted with engineering their fundamental and interface properties
for enhancing the performance of various devices.

In this Special Issue “2D Nanostructures for Optoelectronic and Green Energy De-
vices”, we have collected nine high-quality, original research papers and one comprehensive
review paper by outstanding scientists and engineers from relevant fields, covering the
topics in optical properties and couplings in 2D nanostructures, [5–8] spectroscopic anal-
ysis in atomic scale, [9] 2D transistors, [10,11] 2D optoelectronics, [12] and 2D energy
storage applications [13,14].

The synthesis and characterization of the new fundamental properties of 2D nanos-
tructures are of fundamental importance in order to utilize the 2D nanostructures for
optoelectronic and green energy device applications. Shin et al. [6] reported interlayer
coupling effects in 2D heterostructures using low-frequency Raman spectroscopy, offering
a route to observe the quality of the interface in 2D nanostructures. Singh et al. [7] and
Pandey et al. [8] reported optical coupling in nanostructures and substrates, which can
be used in nanophotonics and detection applications. Yoon et al. [9] reported the atomic
arrangement of graphene-like ZnO examined using transmission electron spectroscopy.
A-Rang Jang [11] reported graphene contact in a 2D transistor, which was effective in low-
ering the Schottky barrier in metal-2D semiconductor contact. Sangyeon Pak [10] reported
a simple and effective fabrication route of p-type doping 2D MoS2 simply by spin coating
CuCl2 molecules.

Two-dimensional nanostructures are also found extensively in the field of energy
storage applications where nanomaterials can be used as the effective electrode materials
with a large surface area in batteries and supercapacitors. The work by Wi and cowork-
ers [13] reported layered graphite structures fabricated using the direct laser scribing of PI
substrate, which is an effective electrode material in micro-supercapacitors when integrated
with hydroquinone gel electrolyte. Such flexible micro-supercapacitors promise future
energy storage components, especially in wearable applications. Liu et al. [14] utilized
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vanadium pentoxide nanofiber/carbon nanotube hybrid films as binder-free cathodes for
zinc-ion batteries, achieving a high energy density and stable cyclability, demonstrating the
promises for large-scale energy storage applications.

Last, the Special Issue includes a comprehensive review on the applications on 2D
materials, perovskites, and 2D material/perovskite heterostructures for applications to
optoelectronic devices, including solar cells and photodetectors, nicely summarized by
Yuljae Cho and his co-workers [12]. Especially, the review summarizes various synthetic
methods for 2D materials and perovskite materials, and the photodetector performance of
various materials was adequately compared and summarized.

To summarize, this Special Issue is expected to attract and enrich readers through
featuring all of the above-mentioned research articles and review articles. Especially, we
express our sincere thanks to all the authors, reviewers, and editors that made a contribution
to this Special Issue.
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