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Abstract: In recent years, the increasing energy requirement and consumption necessitates further
improvement in energy storage technologies to obtain high cycling stability, power and energy density,
and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to
their attractive features, such as composition, tunable structure, and large surface area which make
them potential materials for energy storage applications. This review focuses on the establishment
of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over
time, as well as their applicability in several electrochemical energy storage systems, such as fuel
cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different
synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications.
Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid
storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst
material to improve the performance parameters of energy storage devices. Finally, this review
outlines and discusses the prospects, future challenges, and further direction for research and
applications of metal oxide nanosheets.

Keywords: batteries; energy storage; fuel cells; metal oxide nanosheets; molecular-scale integration;
supercapacitors

1. Introduction

In recent times, the rapid development in technologies, commercialization, and in-
dustrialization have caused a substantial increment in the requirement of global energy
consumption [1–3]. Fossil fuels are at the top of energy sources despite having a lot of
negative issues. Even, according to statistics in 2019, 84% of the total global energy was
generated from fossil fuels such as natural gas, coal, and oil. Due to the use of fossil fuels
for energy production, several negative impacts are occurring, such as global warming,
rise in sea level, soil pollution, water pollution, and air pollution which cause significant
harm to flora and fauna. Researchers are working with great concern to minimize the
use of such fossil fuels for which they have carried out approaches to utilize renewable
sources for the fulfillment of energy requirements. However, the development of these
approaches to utilize renewable sources are not sufficient. Additionally, to utilize green
sources it’s required to develop efficient energy storage devices so that it can be possible
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to use the energy from such storage devices whenever power and energy are required.
Nowadays, molten salt nanofluids are used as thermal energy storage (TES) materials for
concentrated solar power (CSP) plants for large scale power generation. However, the
appropriate synthesizing of molten salt for enhanced specific heat capacity is becoming an
obstacle in its application [4]. Electrochemical energy storage is the most popular way to
store energy for further use and there are several systems including fuel cells, supercapaci-
tors, and batteries which are applied to store energy thermochemically. Researchers are
working towards advancements in energy storage textiles to enhance the wearability and
electrochemical performances and stability of batteries, and supercapacitors for improving
their applicability for several purposes [5]. Wearable energy storage devices prepared
using MO nanosheets can be integrated with bioenergy from biofluids, and bioenergy from
human motions, and these integrated mechanisms possess attractive potential for building
self-driven body-worn electronic devices [6]. Nano structure-enhanced electrochemical
energy storage devices can be integrated with self-operated sensors toward self-sustainable
gadgets for the management of health and wellbeing [7].

Due to possessing a high energy density and attractive kinetics, thermochemical
energy storage is the preferred system. Fuel cells possess better energy conversion poten-
tial than supercapacitors and batteries, but the limitations of fuel cells include a shorter
lifespan, less durability, and high cost due to applying several expensive catalysts [8,9].
Supercapacitors possess higher cyclic stability, better energy, and power density, and better
kinetics for charging and discharging than batteries, but these are limited to lower en-
ergy density and lower specific capacitance [10,11]. To enhance the lifecycle, durability,
and stability of the electrode material, the phase transition reaction should have potential
reversibility and there should also be a proper space where atomic-level reactions can
take place [12]. Therefore, to utilize the concept of electrochemical energy storage (EES),
two-dimensional (2D) metal oxide electrodes are one of the best solutions that can increase
the cyclic lifetime, power, and energy density of storage devices [13,14]. Two-dimensional
MO nanosheets (MO-NSs) are rapidly emerging due to their applicability in EES devices
and their ability to ameliorate performance parameters. Due to the variable valence states
of these 2D materials, MO-NSs possess rich redox reactions. This feature assists to improve
the storage capacity of suitable electrode materials used in batteries and supercapacitors.
Two-dimensional MO nanosheets possess less volume change, more active sites, and less
diffusion length compared to metal oxide nanostructures. These features assist to improve
the electrochemical energy storage performance by enhancing cycling stability, specific
capacity, surface area, and capacitance retention.

Two-dimensional metal oxide nanosheets possess a thickness of only a few atomic thin
layers. Compared to 1D and 3D nanostructure materials, they possess several conveniences
and limitations. Having a larger surface area is a major convenience of 2D nanosheets that
exhibit much more reactivity than 1D and 3D nanostructures, and this feature makes them
more promising for energy storage applications, such as fuel cells, supercapacitors, and
batteries. These 2D nanosheets are also more suitable in sensors and flexible electronics
compared to 1D and 3D nanostructures due to their flexibility feature [15,16]. However,
the high cost of 2D nanosheets is the main barrier to the synthesis and fabrication of
these nanosheets and these problems have limited the wide application of 2D metal oxide
nanosheets in energy storage systems [17]. Overall, metal oxide (MO) nanosheets possess
some uncommon attractive features that make them useful for electrochemical energy
storage, but their preparation and manipulation processes may stand as a barrier during
application in some cases.

Researchers have developed a lot of methodologies to synthesize 2D metal oxide
nanosheets using top-down and bottom-up approaches [18–21]. Figure 1 illustrates the
number of publications on metal oxide nanosheets from 2010 to 2022. The chemical
vapor deposition, sol-gel method, and exfoliation with some merits and demerits are the
most used approaches by researchers. In the sol-gel approach, a precursor is used to
prepare a gel which is further heated to prepare nanosheets. In the case of chemical vapor
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deposition, the main advantages includes its capability to generate high-quality nanosheet
materials with a large surface area. However, its low yield limits its wide application [22,23].
Exfoliation can also synthesize a massive amount of 2D nanosheets by applying mechanical
or chemical intercalation to weaken the interlayer and molecular forces [24]. In recent
years, hydrothermal and electrophoretic synthesis approaches have gained much research
interest as these methodologies can provide a high yield, as well as good dimensional
control [21,25,26].
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The previously published literature reveals massive conveniences which make MO
nanosheets attractive for energy storage applications including energy density, chemical
stability, semi-conductivity, redox properties, flexibility, power density, and larger sur-
face area [14,27,28]. Moreover, researchers and scientists have published a lot of articles
documenting the applications of MO nanosheets as electrode material in EESs such as
supercapacitors, fuel cells, and batteries [29–32]. According to the author’s knowledge,
there is no literature on the several types of MO nanosheets, their synthesis protocols, and
applications. Therefore, this review paper approaches to provide sufficient information
about MO nanosheet advancements over time, their applicability in several EES devices,
synthesis, and manipulation approaches by reviewing more than 170 papers.

2. Synthesis Approaches of MO Nanosheets
2.1. Top-Down Synthesis

Top-down synthesis of MO nanosheets is a process of creating metal oxide nanosheets
by breaking down the bulk metal oxide materials into smaller, nanoscale particles. This
method contrasts with the bottom-up synthesis, that creates metal oxide nanosheets by
assembling smaller molecules or atoms into larger structures. Mechanical exfoliation is
one of the most used top-down techniques for producing MO-NSs. This method involves
physically exfoliating the bulk metal oxide materials using techniques, such as sonication,
grinding, or ball milling [33]. These techniques use mechanical forces to break down
the bulk material into smaller, thinner sheets. The resulting metal oxide nanosheets are
typically of high quality and have a high degree of crystallinity. Singh et al. [34] proposed
a new top-down process to prepare 2D- MnO2 nanosheets in stirred media mills. They
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applied analytical grade manganese dioxide for nano milling experiments, and to increase
the stability of the MnO2 nanosheet, they employed polyacrylic acid sodium salt. More
details about the experiment can be found in Patel et al [35].

Wang et al. applied ball milling technology to fabricate Mn3O4 nanoparticles in large
quantities for use as a cathode in Zn ion batteries [36]. To form a paste, ethanol was added
with Mn3O4 and by using zirconia milling media the paste was ball-milled for 2 h at
a rotational speed of 2000 rpm. Then, the composition was dried to separate C2H5OH
via evaporation at 80 ◦C following several characterization approaches to obtain Mn3O4
powder. The pristine and ball-milled Mn3O4 are shown in Figure 2.
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Figure 2. Illustration of the Mn3O4 characterization process. (a) XRD patterns, (b) SEM image of
the precursor Mn3O4, and (c) of the ball-milled Mn3O4, respectively. Reprinted with permission
from [36]. Copyright 2018 American Chemical Society.

Template-assisted MO-NS preparation is another top-down approach to preparing
nanosheets, nanowires, and nanocomposites. Template-assisted MO-NSs fabrication pro-
cesses are receiving much attention recently and have distinguished themselves as superior
to template-free technologies for the fabrication of nanosheets, as they possess improved
cycling stability and control over the mechanism, composition, and shape of the finally
produced nanosheet. Templates can be classified into two different types, such as soft
templates and hard templates [37]. Soft templates, such as NH4

+, amphophilic surfactants,
ionic liquids, etc., do not have fixed stiff structures and this results in problems with the
morphological product. Moreover, hard templates (colloidal silica spheres, mesoporous
materials, microporous zeolites, anodic aluminum oxide membranes, etc.) exhibit good
rigidity and stable structures that make these templates promising for utilization [38,39].
Barrer and Denny introduced the templates and templating influences through an ex-
perimental study in 196,1 where they prepared zeolites by using tetramethylammonium
hydroxide (TMAOH) as the first organic cation [40]. Template-assisted synthesis proce-
dures can be applied for preparing several metal oxide nanosheets for use as energy storage
devices. This approach is also applicable to preparing 2D-TiO2 which is widely used in
Li-ion batteries. Xue et al. experimented with a surfactant-supported exfoliation approach
to synthesize 2D-TiO2 nanosheets [41]. TiO2 nanoparticles were mixed with tetrabutylam-
monium hydroxide (TBAOH) and reacted at 130 ◦C for 24 h to formulate a TiO2 nanosheet
as shown in Figure 3A. The TBAOH not only acted as an alkaline solution but also as an
agent to prevent the accumulation of nanosheets (Figure 3B) and the thickness of TiO2 was
found as 0.40 nm.
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Figure 3. (A) Illustration of the synthesis approaches of the Ti00.87O2/N-doped graphene superlattice.
(B) XRD patterns of (i) Ti0.87O2/PDDA-graphene superlattices and (ii) Ti0.87O2/N-doped graphene
superlattices. (C) SEM and (D) HRTEM images of Ti00.87O2/PDDA-graphene superlattices. (E) SEM
and (F) HRTEM images of Ti0.87O2/N-doped graphene superlattices. (G) High-resolution spectrum
of N 1s in Ti0.87O2/N-doped graphene superlattices. Reprinted with permission from [42]. Copyright
2018 American Chemical Society.

Xiong et al. synthesized Ti0.87O2 nanosheets via an exfoliation approach and they
used layered titanate crystals as raw material [42]. Layered titanate crystals were also
applied using this approach and for the same purpose in previous works [43,44]. A
solid-state calcination approach was applied to obtain the layered titanate crystals of
K0.8Ti1.73Li0.27O4. Following stirring K0.8Ti1.73Li0.27O4 in HCL solution for 2 days, the
protonic form H1.07Ti1.73O4·H2O was achieved. Once the T0.87O2 nanosheet was obtained,
it was mixed dropwise under continuous stirring on a hypothetical model from which a
Ti0.87O2/PDDA-graphene superlattice was obtained and this superlattice was annealed for
2 hours at 600 ◦C to obtain a Ti0.87O4/N-doped graphene superlattice. The overall process
is depicted in Figure 3 that includes several steps of the synthesis process.

Solid-state grinding is a mechanical process used to produce metal oxide nanosheets. It
involves reducing the size of bulk metal oxide materials through the application of physical
force. This force can be generated through various methods such as ball milling or mechan-
ical grinding. Anbao et al. developed a novel approach to solid-state grinding reaction
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at room temperature where they prepared four MnO2 nanosheets using Mn(OAc)2·4H2O
and (NH4)2C2O4·H2O as raw materials and they calcinated MnC2O4 at four different
temperature ranging from 300–600 ◦C to obtain nano MnO2 [45]. Their experimental result
revealed that calcination at 400 ◦C yielded the best result compared to other temperatures.

Another popular top-down method is chemical exfoliation. This method involves the
use of a solvent or a chemical to dissolve the bulk metal oxide material and then separate
the resulting solution into layers. This method is typically used for metal oxide materials
that are not easily exfoliated mechanically. Soft chemical exfoliation is a well-developed
process for synthesizing several metal oxide nanosheets such as KCa2Nb3O10, K0.45MnO2,
Cs0.7Ti1.825O4, H1.07Ti1.73O4·H2O [46–48]. The conventional approach of this process in-
cludes four several steps such as synthesis of precursor layered crystals, protonation of the
layered crystal through an acid exchange, osmotic swelling, and solution-phase exfoliation
which are depicted in Figure 4.
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Top-down methods have some advantages over bottom-up approaches. For example,
by applying top-down approaches, a huge amount of MO-NSs can be produced, and the
resulting nanosheets are typically of high quality and have a high degree of crystallinity.
Additionally, top-down methods are generally less time-consuming and less expensive than
bottom-up methods. However, top-down methods also have some limitations. For example,
the size and thickness of the MO-NSs produced by top-down methods are typically not
as well-controlled as those produced by bottom-up methods. Additionally, top-down
methods can be more difficult to scale up to industrial-level production. The TBAOH-based
nanosheets and their applications in energy storage devices are listed in Table 1.

Table 1. TBAOH-based nanosheets and their applications in energy storage devices.

Nanosheet Compound Approach Energy Storage Application Ref.

RuO2 Acid-based TBAOH [41] Fuel cell, batteries,
supercapacitor [50,51]

Ti4O9 Acid-based TBAOH [52] Fuel cells, batteries [53,54]

Fe0.8Ti1.2O4 Acid-based TBAOH [46] Batteries [55]

Ti0.87O2 Acid-based TBAOH [43] Batteries, supercapacitors [56,57]

Ti0.91O2
Acid-based TBAOH

[42,58] Fuel cells, batteries [59]

Mn1 − xRuxO2 (x = 0.1
and 0.05) Acid-based TBAOH [60] Supercapacitors [60]

MnO2 Acid-based TBAOH [61] Batteries, supercapacitors [62,63]



Nanomaterials 2023, 13, 1066 7 of 35

2.2. Bottom-Up Synthesis

The bottom-up technologies for synthesizing MO nanosheets (MO-NSs) involve the
use of small precursor molecules or atoms to build up the metal oxide structure from the
bottom up. The major convenience of this method is that it permits precise control over the
composition, morphology, and size of the nanosheets. One of the most common bottom-up
methods for the preparation of MO-NSs is the sol-gel method. This method involves the
use of metal alkoxides as precursors, which are dissolved in a solvent and then hydrolyzed
to form metal oxide nanosheets. The sol-gel method permits scrutinizing control over
the structure of the MO-NSs by adjusting the content ratio of the precursors. The sol-gel
method is relatively facile and versatile, and it can be employed to produce a massive
range of MO-NSs, including oxide nanosheets of transition metals, rare earth metals, and
lanthanides. However, the sol-gel approach is usually limited to the production of small
quantities of nanosheets. Paydar et al. synthesized LiAl0.5Co0.5O2 by using the sol-gel
method where they applied aluminum nitrate (Al(NO3)·9H2O), Co(NO2)·6H2O, citric acid,
and LiNO3 as raw materials with a high purity [64]. Then, by mixing the reacting agent,
heating, and drying, the final product (LACO) was found which can be clearly observed in
Figure 5.
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Another bottom-up method to synthesize the MO-NSs is the chemical vapor deposition
(CVD) method. This approach involves the use of metal oxide precursors that are heated to
high temperatures in the presence of a gas, causing the metal atoms to react with oxygen to
form a thin film of metal oxide [65]. The CVD method also allows for scrutinizing control
over the layer thickness, and the structure of the metal oxide nanosheets by adjusting
the precursors, and the reaction conditions. However, CVD is a relatively complex and
time-consuming method, and it is generally limited to the production of small quantities
of nanosheets. Saenz et al. synthesized MoOx nanosheets using the CVD approach where
MoO3 reacted with sulfur powder precursors, and nitrogen gas was applied as a transport
gas [66]. Their prepared material showed high conductivity of nearly 6680.3 S cm−1 and
an improved bolometric coefficient of 0.152 mS K−1. Li et al. synthesized ultrathin MoO2



Nanomaterials 2023, 13, 1066 8 of 35

nanosheets on a SiO2/Si substrate by using the CVD approach where they employed
Mo2O3 and sublimated S as precursors [67]. Their prepared MnO2 nanosheet showed
improved conductivity of 3600 S cm−1, and thermal stability retained above 200 ◦C.

Another bottom-up process for the fabrication of MO-NSs is the electrochemical depo-
sition method. This method involves the use of an electrolyte solution, and a conductive
substrate to deposit metal oxide onto the substrate [68]. The electrochemical method can be
classified into two categories, namely anodic, and cathodic methods. In the anodic method,
metal ions are oxidized to form a metal oxide on the substrate, whereas, in the cathodic
method, metal ions are reduced to form metal on the substrate, which subsequently oxidizes
to form metal oxide [69]. Kadam et al. reported an electrochemical synthesis approach to
prepare a MnO2 nanosheet and in their experiment, they applied MnCl2·4H2O 0.2 m with
99.9% purity as a precursor and stainless steel of 304 grade as the conducting substrate.
They annealed the electrodeposited manganese hydroxide at 350 ◦C for 3 h, which finally
resulted in deposited reddish brown colored manganese oxide films [70].

Thermoregulated phase transition is an emerging bottom-up synthesis process in
which a material changes its state (such as from solid to liquid or gas) as a result of
temperature changes. The transition occurs when the temperature of the material reaches a
specific threshold, known as the transition temperature, causing the material to rearrange
its molecular structure, and exhibit different physical and chemical properties. This process
is governed by the intermolecular forces, and thermodynamic properties of the material,
and can be influenced by external factors, such as pressure and composition. Zhang et al.
proposed a novel process to synthesize MO nanosheets based on the thermoregulated phase
transition of the micelles [71]. For forming a solution with string, they mixed deionized
water with metal salts, and to prevent hydrolysis of metal salts, they added several acids
with it. Then, they dissolved 1.875 Pluronic P123 in the solution to be heated from 10 to
50 ◦C for 2 h, following the addition of ammonium hydroxide solution and shaken for
1 min. Finally, after several processes, such as centrifugation, washing, and annealing,
the MO nanosheets were obtained. Their product showed high retention capacity and
high reversible capacity. The electrochemical method allows for precise control over the
composition and morphology of the metal oxide nanosheets by adjusting the precursors
and the reaction conditions. However, the electrochemical method is generally limited to
the production of small quantities of nanosheets.

Zhou et al. proposed a novel ultra-facile route to synthesize several metal oxide
nanosheets, such as ZnO, Co3O4, Fe2O3, WO3, TiO2, and so on with a large surface area [72].
To synthesize the ZnO nanosheet in such a typical approach, firstly, the mixture of some
precursors, such as Zn(NO3)2·6H2O, urea, and glucose were pre-calcined for 6 h at 140 ◦C.
Then, the pre-calcined mixture was further calcined for 10 h at 500 ◦C, which finally resulted
in ZnO nanosheets. They also noted that the metal oxide nanosheets synthesized in this
way can be an attractive potential in energy storage applications.

Overall, the bottom-up approach to fabricating MO-NSs is a powerful method to
prepare high-quality MO-NSs with precise control over their properties. The potential
applications for metal oxide nanosheets are vast and varied, and the development of new
bottom-up synthesis methods will continue to expand the possibilities for their use in a
wide range of fields. Different methodologies for nanosheet synthesis with their advantages
and limitations are listed in Table 2 for comparison.
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Table 2. Methodologies for nanosheet synthesis with their advantages and limitation.

Method Examples of Materials Advantages Limitations

Liquid-metal-based
mechanical exfoliation BiO2, Gd2O3, SnO, HfO2, etc.

1. Large size up to
millimeter;

2. Atomically thin
2D-metal oxides;

3. Low-cost;
4. Can be used for

individuals whose bulk
hosts do not exist.

1. Metal-in-metal
solubility dependent;

2. Low yield;
3. Thermodynamic

regulation could restrict the
compatibility of

numerous materials;
4. Fundamentally needs to

be explored.

Electrophoretic synthesis Transitional MO, such as ZnO

1. High production;
2. Simple process;

3. High purity nanosheets
with a level of quality

comparable to that
produced through chemical

vapor deposition (CVD).

1. May require
corrosive electrolytes.

2. Not all yielding factors
have been analyzed;

3. Not suitable for some
types of materials.

Hydrothermal/
solvothermal synthesis

Co3O4, ZnO, NiO2, Fe3O4,
TiO2 etc.

1. High specific surface area;
2. Flexible and controlled

working conditions;
3. Gram-scale productions;

4. Compatibility and
scalability with

flexible substrates;
5. Applicable to

any material.

1. Generally, produces
harmful side products;

2. Little power over
dimensions and

mechanism.

Graphene assisted
synthesis Al2O3, Cu2O, MnO2 etc.

1. Highly crumpled and
wrinkled structures;

2. Large surface area.

1. Only suitable for a
few applications;

2. Depends on the
characteristics of graphene;

3. Graphene removal
challenges;

4. May bring
carbonaceous impurities.

Liquid exfoliation V2O5, Co3O4, MoO3 etc.

1. Exfoliation is typically
performed using

low-boiling liquids;
2. Relatively simple

approach;
3. Can be high yielding;

4. Does not necessitate any
advanced equipment.

1. Poor control over
layer thickness;

2. Introduction of
unwanted defects;

3. Little control over
lateral dimensions;
4. Inapplicable to

components for which bulk
host does not persist.

Chemical vapor
deposition TiO2, V2O5, MoO3

1. Effective regulation
of expansion;

2. Management of size
and thickness;

3. Compatible with an
exquisite coating over

functional material.

1. Has a lengthy processing
duration and necessitates

high temperatures;
2. Produces limited output;

3. Expensive and only
suitable for

advanced pplications;
4. High energy
consumption;

5. The quality can be
reduced by

irregular nucleation.
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Table 2. Cont.

Method Examples of Materials Advantages Limitations

Ion-intercalation W2O7, K0.45MnO2, TaO3,
RuO2 etc.

1. Low energy requirement;
2. High-production;
3. High-precision in

controlling the thickness of
single-layer sheets.

1. Needs severe
chemical environments;
2. Bulk host influences
badly the 2D structure;
3. Cannot be used for

substances without having
a host.

Salt-assisted growth K0.27MnO2·0.54H2O,
Li2WO4, etc.

1. Fine doping of
heteroatoms;
2. Low-cost;

3. High-purity;
4. Applicable to

1. A relatively high
temperature is necessary;
2. Unwanted heteroatoms

from salt can cause
contamination

through doping;
3. There are still many

uncertainties regarding the
fundamental aspects of

the process.

Liquid-metal-based
mechanical exfoliation BiO2, Gd2O3, SnO, HfO2 etc.

1. Large size up to
millimeter.

2. Atomically thin
2D-metal oxides

3. Low-cost.
4. Can be used for

individuals whose bulk
hosts do not exist.

1. Metal-in-metal
solubility dependent

2. Low yield.
3. Thermodynamic

regulation could restrict the
compatibility of

numerous materials.
4. Fundamental needs to

be explored.

Electrophoretic synthesis Transitional MO such as ZnO

1. High production.
2. Simple process.

3. great purity nanosheets
with a level of quality

comparable to that
produced through Chemical

Vapor Deposition (CVD).

1. May requisite
electrolytes-corrosive.

2. All yielding factors are
analyzed yet.

3. Not suitable for all types
of materials.

Hydrothermal/
solvothermal synthesis

Co3O4, ZnO, NiO2, Fe3O4,
TiO2 etc.

1. High specific surface area.
2. Flexible and controlled

working conditions.
3. Gram-scale productions.

4. Compatibility and
scalability with

flexible substrates.
5. Applicable to

any material.

1. Generally, produces
harmful side products.

2. small power over
dimensional and

mechanism.

Graphene assisted
synthesis Al2O3, Cu2O, MnO2 etc.

1. Highly crumpled and
wrinkled structures.

2. Large surface area.

1. Only suitable for a
few applications.
2. Depend on the

characteristics of graphene.
3. Graphene removal

challenges.
4. May bring

carbonaceous impurities.

Liquid exfoliation V2O5, Co3O4, MoO3 etc.

1. Exfoliation is typically
performed using

low-boiling liquids.
2. Relatively simple

approach.
3. Can be high yield

4. Does not necessitate any
advanced equipment.

1. Poor control over
layer thickness.

2. Introduction of
unwanted defects.

3. small control over
lateral dimensions.
4. Inapplicable to

components for which bulk
host does not persist.
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Table 2. Cont.

Method Examples of Materials Advantages Limitations

Chemical vapor
deposition TiO2, V2O5, MoO3

1. Effective regulation
of expansion

2. Management of size
and thickness.

3. Compatible with an
exquisite coating over

functional material.

1. Has a lengthy processing
duration and necessitates

high temperatures.
2. Produces limited output.

3. Expensive and only
suitable for

advanced applications.
4. High energy
consumption.

5. The quality can be
reduced by

irregular nucleation.

Ion-intercalation W2O7, K0.45MnO2, TaO3,
RuO2 etc.

1. Low energy requirement.
2. High-production.
3. High-precision in

controlling the thickness of
single-layer sheets.

1. Needs severe
chemical environments.
2. Bulk host influences
badly the 2D structure

3. Can’t be used for
substances without having

a host.

Salt-assisted growth K0.27MnO2·0.54H2O,
Li2WO4, etc.

1. Fine doping of
heteroatoms.
2. Low-cost.

3. High-purity.
4. Applicable to

1. A relatively high
temperature is necessary.

2. Unwanted heteroatoms
from salt can cause

contamination
through doping.

3. There are still many
uncertainties regarding the

fundamental aspects of
the process.

3. Applications of MO Nanosheets in Batteries
3.1. MO Sheets Used in Li-S Batteries

Lithium sulfide batteries are increasing in popularity due to their massive convenient
applications as electrochemical energy storage devices. During the transformation of sulfur
(S) into sulfur ion (S−2), a high capacity (1675 mAh g−1) can be obtained, which is almost
ten times that of commercial electrodes that are applied in lithium-ion batteries [73]. Sulfur
possesses a much lower redox potential that allows these materials to enhance the operating
voltage and energy density combined with alkali metals [74]. A high energy density, such
as 2600 Wh kg−1, can easily be achieved by using a lithium-sulfur battery [75]. There are
also some conveniences and limitations of sulfurs that can influence a Li-S battery. Among
the conveniences, availability and biocompatibility are to be noted, while the inactivity of
big particles caused by lower conductivity is considered the major barrier of sulfur-assisted
batteries [76]. Another major limitation is the massive volume change during charging
and discharging, which reduces the performance of a battery [77]. The cycle lifetime,
which originated from the lithium-polysulfide (LIPS) shuttling process, is a major barrier
of Li-S batteries. Researchers have taken a lot of approaches and have developed several
systems to control this shuttling effect, but they have not found potential solutions for
this. To approach an effective solution for this limitation, Patil et al. [78] synthesized a
2D lepidocrocite TiO2 nanosheet to apply in sulfur cathodes, which could minimize the
polysulfide dissolution significantly. For this, the surface area was also improved, and
the Li-S cell possessed 1023.5 mAh g−1 at 50 mA g−1 for just 80 wt% sulfur content. The
capacity was also improved and after 300 cycles, an 82.3% capacity was retained.

3.2. MO Nanosheets for Zn-ion Batteries

Metal oxide nanosheets have emerged as an promising material to utilize in zinc-
ion batteries, due to possessing some attractive features, such as a large surface area,
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high energy density and extradentary electrochemical properties, and low cost [79–81].
Zinc-ion batteries are being considered as a potential alternative to traditional lithium-ion
batteries, due to the abundance and low cost of zinc, as well as the lack of safety concerns
associated with lithium [82]. The large surface area of the nanosheets allows for the more
efficient storage of zinc ions, leading to a higher capacity and better performance of the
battery. Additionally, the high surface area also increases the rate of charge and discharge,
making the battery more efficient. Another advantage of metal oxide nanosheets is their
excellent electrochemical properties. Metal oxide nanosheets have been shown to have good
conductivity, stability, and reversibility, which are all important factors for the performance
of zinc-ion batteries. Additionally, the use of metal oxide nanosheets can improve the
overall safety of the battery, as they have been shown to have a high thermal stability and
good mechanical properties.

Different types of metal oxide nanosheets have been proposed for use in zinc-ion
batteries. These include zinc oxide, titanium dioxide, and iron oxide nanosheets [83,84].
Each of these materials has its unique properties and advantages, and researchers are
currently investigating which of these is the most promising for use in zinc-ion batteries.
Zn/MnO2 batteries are also considered emerging in recent years due to their low cost,
environmental benignity, scalable preparation, and safety. Wang et al. carried out a novel
approach to prepare MnO2 from Mn3O4 based on the ball milling technology to utilize
the product in Zn-ion batteries. The transformed akhtenskite MnO2 had a high retention
capacity above 92% (after 500 cycles at 500 mA g−1) and a high reversible capacity of
221 mAh g−1 (at 100 mA g−1). In the meantime, the cathode showed a high specific
energy of nearly 288 Wh kg−1, which is much higher compared to the available Pb-acid
batteries [35]. They also found a small self-discharge limitation of their battery, but the
source of this issue was unclear to them. However, they reported that concerning the
long-time energy storage demand, their battery could be applied as a promising device.
Figure 6 depicts the electrochemical performance of the Zn/ε-MnO2 cell, where Figure 6a
shows cyclic-voltammetry (CV) curves between 0.6 to 1.9 V, Figure 6b shows a pair of
redox peaks (at 1.7 and 1.32 V), and Figure 6c depicts the rate capacity of the transformed
Zn/ε-MnO2 cathode, while the current density increased steadily from 100 to 2000 mA g−1.

Vanadium-based oxides are gaining much attention for application in Zn-ion batteries,
as they are environmentally friendly, easily available, and have a high specific capacity [85].
Liang et al. prepared a Ni-doped MxOy nanosheet for application in Zn ion batteries, and
to form oxygen vacancies, they applied H2 annealing processes [86]. Their prepared device
showed excellent performance with a capacity of 0.68 mAh cm−2, a current density of 2 mA
cm−2, and capacity retention of over 6000 cycles. It also showed a high power and energy
density of 3.34 mW cm−2 and 1.13 mW cm−2, respectively.

Co3O4 nanosheets are emerging materials for Zn-ion batteries. Wang et al. prepared
Co3O4@Ni to use as a positive electrode in Zn//Co3O4 and they applied KOH as an
electrolyte [87]. Their device provided a high energy density of 241 Wh kg−1 and revealed
a high cycling stability. Zinc-manganese oxide nanosheets are very popular as electrodes
for Zn-ion batteries. Zhang et al. reported ZnMn2O4 as an anode material to investigate
its performance in Zn-ion batteries, where they applied Zn(CF3SO3)2 as an electrolyte [88].
Their system revealed excellent performance with a reversible capacity of 150 mAh g−1

and a retention capacity of 94% after 500 cycles.
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3.3. MO Nanosheets for Zn-air Batteries

Zinc-air batteries can provide a potential solution where it is required for large-scale
energy storage because Zn-air batteries have some attractive features, such as stability,
durability, low expense, safety, high power, and energy density. Li et al. reported a nickel-
doped CoO nanosheet as electrode material in Zn-air batteries for the first time and their
battery showed great performance with a high power density of 377 mW cm−2, and it
worked for more than 400 h with a high stability [89]. They also compared their battery
with a Pt/C catalyst device and revealed that Ni-doped CoO nanosheets outperformed,
based on the charge/discharge voltage. Tian et al. prepared oxygen defective amorphous
crystalline CoO (ODAC-CoO) nanosheets from Co(OH)2 by using a vacuum-calcination
approach and they found that their sample possessed an improved oxygen reduction
reaction and oxygen evolution reaction, and it also showed a high stability [90].

To improve the retention capability and performance of Zn-air batteries, a bifunctional
O2 catalyst plays a pivotal role. MnO2 is considered the most efficient material to apply as
a catalyst in Zn-air batteries to improve the ORR. Zhong et al. employed a facile solution-
based approach to modify MnO2-NS with nickel, cobalt, or iron [91]. They reported that by
taking such an approach, they were able to enhance the ORR and OER for the Co-MnO2
sample, and it exhibited an improved power density of 167 mW cm−2.
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3.4. MO Nanosheets for Li-Ion Batteries

Lithium-ion batteries (LIBs) are competitive options for EESs in the clean energy
market and a lot of research has already been carried out due to their applicability as
energy storage devices [92–94]. To ameliorate the Li-ion batteries, Zhang et al. prepared
a V2O3@NC nanosheet to utilize as a free-standing cathode in a lithium-ion battery, and
through TEM images, it was investigated that the V2O5 nanoparticles were layered ho-
mogeneously in the carbon region [95]. The charge and discharge specific capacities were
found as 508 and 984 mAh g−1, respectively, and the reversible capacity after 400 cycles
was found as 892 mAh g−1 at 0.1 A g−1. Li et al. prepared a GN/SnO2 nanosheet via
a facile cold-quenching approach and reported that, by having the distinctive wrinkled
surface property, the maintenance of the monodispersed state was facilitated. Their hybrid
nanosheet material exhibited a high reversible capacity of 1147 mAh g−1 at 100 mA g−1 [96].
The synthesis process of SnO2/MG nanosheets is illustrated in Figure 7.
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Li et al. prepared a new 2D LiNi1/3Co1/3Mn1/3O2 nanosheet by using sol-gel technol-
ogy [97]. They found that their prepared material showed high performance as a cathode
and it showed a high discharge capacity of 137.7 mAh g−1 at 20C. Mei et al. [98] synthesized
2D Bi2O3 nanosheets for the first time by applying a solution-based self-assembly process
and their nanosheet material supplied a high capacitance above 200 mAh g−1 and discharge
capacity of 647.6 mAh g−1, when utilized as an anode in a Li-ion battery. Li et al. used an
electrodeposition technique to synthesize a two-dimensional CoO nanosheet and found
that their nanosheet possessed extraordinary performance with a high retention capacity of
1000 mAh g−1 at 1 A g−1 over 100 cycles [99].

3.5. NO Nanosheets for Na-ion Batteries

Xiong et al. reported a Ti-deficient 2D Ti0.87O2 nanosheet superlattice for application in
Na-ion batteries [41]. They also reported that Ti0.87O2 with a N-doped graphene monolayer
possessed attractive performance, that could be applied in Na-ion battery with a high
capacity of nearly 490 mAh g−1 at 0.1 A g−1. The simulation results, which are shown in
Figure 8, reveal conspicuously a lower diffusion barrier of energy for diffusing Na+ ions in
Ti0.87O2/graphene, demonstrating its superiority for Na ion batteries.
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Figure 8. (A) Diagram of the sodium diffusion path towards the [100] directions between the
TiO2/graphene bilayers. (B) The energy of sodium diffusion along the [100] direction in TiO2 bilayers
and TiO2/graphene bilayers. (C) Illustration of the Na diffusion path along the [001] directions
between the TiO2/graphene bilayers. (D) The energy of Na diffusion along the [001] direction
in TiO2 bilayers and TiO2/graphene bilayers. (E) Illustration of a possible Na diffusion path in
Ti0.87O2/graphene bilayers. (F) The energy of Na diffusion in Ti0.87O2 bilayers and Ti0.87O2/graphene
bilayers. Reprinted with permission from [41]. Copyright 2018 American Chemical Society.

Rubio et al. synthesized a hybrid MO nanosheet utilizing iron oxide and iron sulfide,
to apply as an anode in Na-ion batteries [100]. There are also some previous studies where
researchers worked with these two materials as an anode, but the materials had some
disappointing properties when they were applied for battery applications [101,102]. At
the time of charging and discharging, these materials showed an excessive fluctuation in
volume, and another limitation of these materials was electron fragility, which limited their
applications in electrochemical storage devices [103–105].

Chen et al. prepared a metal oxide anode for application in a sodium ion battery
and MO K0.8Ti1.73Li0.27O4 (KTLO) was fabricated via a simple flux process that is based
on ball-milling [57]. The KTLO, as a Na-ion battery, showed a high specific capacity of
119.6 mAh g−1 at 20 mA g−1 with a high retention capacity for more than 250 cycles. The
carbon-coated KTLO enhances the structure stability and electronic conductivity which
makes this material an attractive anode material for sodium-ion batteries.

Li et al. prepared a GN/SnO2 nanosheet via a facile cold-quenching approach and
reported that by having the distinctive wrinkled surface property, the maintenance of the
monodispersed state was facilitated [96]. Their hybrid nanosheet material exhibited a high
reversible capacity of 314 mAh g−1 at 100 mA g−1.

Sun et al. prepared a two-dimensional FeOx nanosheet and applied it as an anode
in Na-ion batteries [106]. They reported that their synthesized MO nanosheet showed an
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attractive output with a mean specific capacity of 408 mAh g−1 at a current density of
0.21 A g−1. Further application of their electrode revealed that after completing 100 cycles,
the specific capacity was reduced to 263.4 mAh g−1. They also showed that amorphous
FeOx nanosheets possessed a faster electron movement compared to crystalized Fe3O4
nanosheets, that showed a better capacity for FeOx than for Fe3O4.

3.6. Battery-Supercapacitor Hybrid (BSH) Device

For achieving a higher performance and cost-effective energy storage systems, researchers
have developed several hybrid electrochemical energy storage technologies, such as battery-
supercapacitor hybrid systems (BSH) [107]. A BSH system combines the advantages of
batteries and supercapacitors by building battery-based and supercapacitor-based electrodes.
Figure 9 demonstrates that Ni-MH and Ni-Cd batteries, which have been utilized in secondary
batteries for over a century due to their greater specific capacities, are still commonly used
today, and have an energy density of 30–70 Wh kg−1 [108]. By using inorganic carbon hybrid
electrodes, recently developed Ni-Fe alkaline batteries can also charge extremely quickly and
can deliver specific energy densities greater than 100 Wh kg−1 [109].
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A typical BSH energy storage device is depicted in Figure 10a, where anions and
cations migrate to the two electrodes during charging and discharging, where the battery
electrode undergoes the redox reaction, and the Sc electrode accumulates ions. There are
lots of conveniences to modeling different types of BSH devices, such as diverse types of
electrodes, device configurations, and electrolytes. The potential candidate for electrodes
and electrolytes in BSH devices are captured in Figure 10b.

Huang et al. [111] developed such BSH devices that included activated carbon as the
anode and the NixCoyMozO as a cathode. They measured the optimized potential window
for the anode and cathode. Figure 11a shows the current-potential curves measured for
both electrodes, and Figure 11b illustrates the current-potential curves of the cathode and
anode using several potential windows, and it revealed that a window with 1.8 V showed
the best scan rates. Figure 11d,e illustrate the GC/D plot which also suggests a window
of 1.8 V for application in hybrid devices. They found power and energy densities of
3.5 W kg−1 and 22.02 Wh kg−1, respectively, and at a current density of 10 mA cm−2, they
found a CF value of 126 mF cm−2. Figure 11f illustrates the Ragone plot of the BSH.
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Researchers have developed several Li-ion-based, Na-ion-based, alkaline, and acidic
BSH systems which have been increasing in popularity in recent years. A brief comparison
is carried out in Table 3 for a proper understanding of different BSH devices.
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Table 3. Battery-supercapacitor hybrid (BSH) systems with their performance parameters.

BSH Structure Electrolyte Performance Parameters Power Density Energy Density Ref.

Na-ion Batteries

Activated
Carbon//NaMnO2

Aqueous Na2SO4
solution 97% after 10,000 cycles, 10 C 13.2 Wh kg−1 at 1

kW kg−1
19.5 Wh kg−1 at

130 kW kg−1 [112]

AC//V2O5-CNT Organic NaClO4 80% after 900 cycles, 60 C 7.5 Wh kg−1 at
5000 W kg−1

38 Wh kg−1 at
140 W kg−1 [113]

AC//Na4Mn9O18
Aqueous Na2SO4

solution 84% after 4000 cycles 21 Wh kg−1 at
337.4 W kg−1

34.8 Wh kg−1 at
62 W kg−1 [114]

CoHCF//carbon
microspheres

Aqueous Na2SO4
solution 92% after 1000 cycles 37.8 Wh kg−1 at

5037 W kg−1
54.4 Wh kg−1

800 W kg−1 [115]

Li-ion batteries

LiNi0.5Mn1.5O4//AC LiPF6 89% after 4000 cycles, 10 C 63 Wh kg−1 at
100,100 W kg−1

40 Wh kg−1 at
1000 W kg−1 [116]

AC//LiNi0.5Mn1.5O4 LiPF6 81 % after 3000 cycles 8 Wh kg−1 at
2.5 kW kg−1

19 Wh kg−1 at
150 W kg−1 [117]

CNTs//Li4Ti5O12 LiPF6 92% after 3000 cycles [50]

Fe3O4/G//3D
graphene LiPF6 70% after 1000 cycles, 86 Wh kg−1 at

2587 W kg−1
147 Wh kg−1 at

150 W kg−1 [118]

N-doped
graphene//Li4Ti5O12

LiPF6 64 after 10,000 cycles 21 Wh kg−1 at
8000 W kg−1

70 Wh kg−1 at
200 W kg−1 [119]

Acidic BSH

PbO2//AC Aqueous H2SO4
solution

80% after 3000 cycles, 10 C 18 Wh kg−1 at
691 W kg−1

27 Wh kg−1 at
152 W kg−1 [120]

835 after 3000 cycles, 4 C 17.8 Wh kg−1 at
500 W kg−1

26.5 Wh kg−1 at
30.8 W kg−1 [121]

C/PbO2

0.1 M CH3SO3H/
Pb(NO3)2 +4M

NaNO3

100% after 5000 cycles, 22C - 29 Wh kg−1 [122]

NiMoO4//AC Aqueous KOH 14.3% after 10000 cycles 41.1 Wh kg−1 at
17,002 W kg−1

60.9 Wh kg−1 at
850 W kg−1 [123]

CNTs//Fe3O4-C Aqueous KOH 67.6% AFTER 1000 cycles - 1.56 mWh cm−3

at 0.028 W cm−3 [124]

4. Applications of Metal Oxide Nanosheets for Fuel Cells
4.1. Solid Oxide Fuel Cell

Solid oxide fuel cells (SOFCs) are the type of cells that can generate energy by utilizing
hydrogen fuel, and in recent years with the increasing amount of hydrogen fuel generation,
the application of SOFCs is increasing steadily [125,126]. The major limitation of these
fuel cells for application is their poor reliability at high temperatures due to the thermal
corrosion in their components [127,128]. In this regard, lowering the cell operating tem-
perature cannot be a potential solution as at a lower temperature the charge conductivity
of the cathode decreases. To find a potential solution, researchers have developed cobalt
(Co) containing perovskite, which possesses high charge conductivity [129–132]. Kim
et al. prepared a SOFC device using a La0.6Sr0.4CoO3 − δ nanosheet which facilitated the
conduction of charge in the cathode material [133]. They prepared the MO nanosheet in
several steps (Figure 12) and found that the cell power density enhanced to 1.2 W cm−2 at
600 ◦C.
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4.2. Direct Methanol Fuel Cell

Jia et al. synthesized an ultra-thin 2D NiO nanosheet to use as an electrocatalyst in
direct methanol fuel cell devices [134]. They prepared this NiO nanosheet via a hydrother-
mal approach with four several steps as shown in Figure 13. They tested the NiO precursor
at four different annealing temperatures ranging from 350 to 650 ◦C and gave those names
as 350-NiO, 450-NiO, 550-NiO, and 650-NiO respectively. They found that with increas-
ing annealing temperature, the surface area of this nanosheet decreases, which causes a
deterioration in the performance of the catalyst. In this regard, NiO at 350 ◦C annealing
temperature showed the best catalytic performance compared to NiO at other temperatures.
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TiO2 nanosheets with Pt-derived catalysts are increasing in popularity, for utilization
in direct methanol fuel cells. Saida et al. experimented with TiO2 applicability in a methanol
fuel cell where they synthesized TiO2 nanosheet from layered H2Ti4O9 and then mixed
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the product with PtRu/C catalyst, which was prepared by the impregnation method in
disparate compositions. The modified composite catalyst enhanced the electrooxidation
of CO2 and methanol, which caused a rise in the electrolyte and PtRu catalyst. The TiO2
nanosheet-modified PtRu/C showed higher ECSA compared to unmodified PtRu/C [54].

4.3. PEM Fuel Cells

The proton exchange membrane (PEM) fuel cell is the most widely applied fuel cell
and in recent years, researchers have focused on it due to its higher capacity compared
to other electrochemical energy storage devices. The working mechanism of the PEM
fuel cells includes the transformation of the proton from the anode side to the cathode
side and the electricity is produced during the half-reaction. There are some attractive
conveniences, such as no vibration, no mechanical parts, and no CO2 emissions during
operation with H2 as fuel, and this system is also suitable for various temperature ranges.
In recent years, researchers have felt the requirement for proper electrocatalyst materials
that can replace Pt and Pb-based catalysts to obtain a clean energy storage system [135–137].
In this regard, they found the MO nanosheet to be a suitable material that can be applied as
an electrocatalyst due to its large active sites, and attractive mechanical properties that can
enhance the capability of a speedy charge transfer between two electrodes [138]. Tiido et al.
reported Pt/TiO2 -graphene as an attractive and potential cathode catalyst for application
in PEM fuel cells [139]. In their experiment, they prepared TiO2 functionalized graphene
nanosheets to employ as support for Pt nanoparticles. Their microscopic and electrochemi-
cal investigation revealed that the electrode exhibited a high electrocatalytic performance.

Naik et al. developed an oxygen-deficient TiO2 nanosheet to apply as a supporting
material catalyst in PEM fuel cells, as shown in Figure 14. In addition, they found that
Pt-TiO2 − xNS, as illustrated in Figure 15, showed extraordinary performance to improve
the stability and activity of oxygen reduction reaction [140]. They reported that TiO2 − xNS
to be a promising support that could be used in future PEM fuel cells, as its performance
was experimentally proved. They carried out a square-wave potential cycle test at 80 ◦C
with their catalyst support and found that it possessed durability over 10,000 cycles and
excellent stability for more than 100 h. Pt-NiO2 − xNSs assisted fuel cells showed a higher
power density of 958 mW cm−2, as compared with Pt-C catalysts.

Figure 14. Schematic representation of a PEM fuel cell [140]. Copyright permission 2020, Elsevier.
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In addition to the above-mentioned metal oxide nanosheets, other metal oxides, such
as cobalt oxide (Co3O4), manganese oxide (MnO2), and vanadium oxide (V2O5), have
also been studied as catalysts for PEM fuel cells. These metal oxide nanosheets have been
found to have a high surface area and good electronic conductivity, which can improve the
performance and durability of PEM fuel cells. Lejing et al. reported that Co3O4 applied in
a PEM fuel cell can enhance the oxygen evolution reaction (OER) [141]. They investigated
Co3-xCexO4 and Co3O4 nanosheets to compare their potential in electrodes and found that
the first material had less potential to reach a current density of 100 mA cm−2 and the
addition of Ce resulted in the exposure of more active sites.

4.4. Microbial Fuel Cells

Over the last decade, the application of microbial fuel cells (MFCs) has risen with
proper understanding related to their structure, working procedure, and advancement
strategies [142]. In regards to MFC, some researchers have been more conscious of the
power that this system consumes, others have been worried about its applications, other
researchers identify it as a toxicity conveyer, and it has also been considered as a system
through which wastes can be utilized while ignoring environmental pollution [143,144].
Moreover, H2O2 is considered a pivotal element for various applications that can be
generated through MFC when ORR is facilitated by a two-electron mechanism instead of
the four-electron [145,146]. Chakraborty et al. synthesized a multilayer CeO2 nanosheet to
investigate its performance as a cathode material in a dual chamber MFC (Figure 16) [147].
They aimed to minimize the reduction of O2 to H2O2 in the cathode and their result revealed
that MFC with CeO2 as catalyst showed the highest yield of H2O2 of nearly 221.4 mg L−1

in one day compared to the bare C electrode that yielded nearly 133.4 mg L−1 H2O2 in
similar operating conditions.
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One of the metal oxide nanosheet that have been studied for use in MFCs is titanium
dioxide (TiO2) nanosheets. TiO2 nanosheets have been found to have a high surface area,
which can increase the amount of active material that can be loaded onto the anode. Ad-
ditionally, TiO2 nanosheets have been found to have good electronic conductivity, which
can improve the rate performance of MFCs. Research has shown that the use of TiO2
nanosheets can significantly improve the power density and durability of MFCs by increas-
ing the microbial adhesion and reducing electron transfer resistance. Yin et al. suggested
the application of composite materials in electrodes that can enhance the performance of
electrodes via complementary elements [148]. For this purpose, they studied modified
conductive polyaniline (PANI) TiO2 nanosheets (TiO2-NSs), where they deposited disparate
amounts of PANI on TiO2-NSs during different cycles, such as 5, 10, 15, 20, and 25. Their
result revealed that 63.6% of power density can be increased by using TiO2-20PANI/CP
(813 mW m−2) compared to a TiO2-NSs/CP anode.

Another type of metal oxide nanosheet that has been investigated for use in MFCs is
nickel oxide (NiO) nanosheets. NiO nanosheets have been found to have a high surface area
and good electronic conductivity, which can improve the performance of MFCs. Research
has shown that the use of NiO nanosheets can significantly improve the power density and
durability of MFCs by increasing the microbial adhesion and reducing electron transfer
resistance. Furthermore, NiO nanosheets have been found to have a high electrocatalytic
activity for the oxygen reduction reaction (ORR), which is an important reaction in MFCs.
This increased ORR activity can lead to improved MFC performance. Huang et al. [149] took
the first attempt to apply NiO/CNT as a cathode catalyst and reported that 77% NiO/CNT
showed maximized power density of 670 mW m−2. They also stated that increasing the
growth of the content of NiO in CNT, steadily enhanced the performance of MFCs.

Another MO-NS that has been studied for use in MFCs is manganese oxide (MnO2)
nanosheets. MnO2 nanosheets have been found to have a large surface area, good electronic
conductivity, and a high electrocatalytic activity for the ORR, which makes them a promis-
ing material for use in MFCs. Research has shown that the use of MnO2 nanosheets can
significantly improve the power density and durability of MFCs by increasing microbial
adhesion, reducing electron transfer resistance, and increasing the ORR activity. Zhang
et al. synthesized a mesoporous layered α-MnO2 nanosheet of 2 nm to maximize the
performance by utilizing the conveniences of porous materials and 2D nanosheets [150].
During its application as an ORR catalyst in MFC, it showed excellent electrocatalytic
performance compared to conventional Pt/C as α-MnO2 exposed an ultra-large surface
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area of 339 m2 g−1. CoO was reported as a potential catalyst for microbial fuel cells by
Huang et al [151]. They prepared a catalyst of CoO nanosheets which was supported by
N-doped activated carbon and their prepared nanocomposite exhibited low total resistance
of 9.26 Ω, 4-electron ORR pathway, and a large surface area which made them preferable
for application in MFCs as a cathodic catalyst.

5. Application of MO Nanosheets in Supercapacitors

Primary metal oxide nanosheets are ultra-thin two-dimensional sheets made up of
metal oxide materials. They have thicknesses in the order of a few nanometers and are
considered to be a type of nanomaterial due to their small size and unique properties. They
have potential applications in several fields, such as energy, electronics, and catalysis. The
properties of metal oxide nanosheets can be tailored by controlling their thickness, surface
area, and defects, leading to potential opportunities for new and improved technologies.
Primary metal oxide nanosheets are suitable for supercapacitor applications as they possess
a large surface area and electrochemical stability. The large surface area of the nanosheets
supplies ample space for the storage and transfer of electrical charge, making them highly
effective in energy storage. Additionally, the metal oxide materials used in the nanosheets
have a high stability, preventing degradation and ensuring long-term performance in
energy storage applications. These properties make primary metal oxide nanosheets an
attractive option for use as electrodes in supercapacitors, where they can deliver high
energy density and a long cycle life.

Rubidium oxide (RuO2) nanosheet is considered a potential and attractive element
to apply in supercapacitors due to its high electrical conductivity and capacitance. RuO2
derived from layered ruthenic acid hydrate (H0.2RuO2.1.nH2O through exfoliation ap-
proach and experimental testing revealed that this RuO2 nanosheet had a high specific
capacitance of 658 F g−1 that is ten times higher compared to rutile type RuO2 [152,153].
2D MnO2 nanosheets are also attractive materials that can be applied as an electrode in
supercapacitors. Research has been carried out on approaches to increase the performance
of this type of electrode and has tested the intercalation attitudes of different metal ions,
such as Na+, Mg2+, Li+, and K+ in layered MnO2 [154]. Two-dimensional MnO2 nanosheets
are also attractive materials that can be applied as an electrode in supercapacitors. Re-
search has been carried approaches to rise the performance of this type of electrodes and
tested intercalation attitudes of different metal ions such as Na+, Mg2+, Li+, and K+ in
layered MnO2 [154]. 2D MnO2 nanosheet as an electrode of supercapacitor showed an
attractive specific capacitance of 171 F g−1 at a current density of 3 A g−1 [155]. Jin et al.
prepared a MnO2-Ti3C2 nanosheet to investigate its performance and compared it with
the capacitance and performance of MnO2-rGO nanohybrids [156]. The porosity and ion
diffusivity of Ti3C2 was found to be higher than that of the rGO-assisted nanosheet and
the specific capacitance and surface area of MnO2-Ti3C2 were also greater compared to the
other material.

To enhance the performance and capacitance of supercapacitors, Lin et al. prepared a
MoO3/NiCo2O4 nanosheet electrode to apply as cathode material, and α-FeOOH/rGO as
anode material and they applied a hydrothermal approach (Figure 17) to synthesize these
materials [157]. The cathode showed an attractive specific capacitance of 1042 F g−1 at a
current density of 1 A g−1 and the retention capacity was 110.8% after 2000 cycles.

Peng et al. proposed that NiMoO4 nanosheets exhibited a higher capacitance compared
to NiMoO4 nanorods based on their application as electrodes for supercapacitors [123].
They prepared an asymmetric supercapacitor with activated carbon as anode and NiMoO4
as cathode and found that their device showed an excellent electrochemical property with
a high-power density of 850 W kg−1 and energy density of 60.9 Wh kg−1. Moreover, the
device retained 85.7% after 10,000 cycles which showed its stability and durability.
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Researchers have developed another type of supercapacitor that is a flexible fiber-
shaped supercapacitor that has become popular due to its portability and wearable elec-
tronics. However, these devices cannot provide much operating voltage, and the specific
capacitance is not high, which limits their wide application and use. Neng et al. prepared
an asymmetric supercapacitor (ASC) where they applied a MnO2 nanosheet as a cathode
and carbon fiber as an anode [158]. Their ASC showed an extraordinary performance with
a high energy density of 27.2 Wh kg−1, a specific capacitance of 87.1 F g−1, and 95.2%
capacitance retention after 3000 cycles.

Micro supercapacitors (MSCs) are also emerging EES devices with some attractive
conveniences, such as high specific capacitance, less expensive, thin atomic layers, etc.,
and MO nanosheets are an appropriate material as an electrode for MSCs. Wang et al.
prepared one such MSC device based on δ-MnO2 nanosheet ink [159]. On glass and
polyimide film substrates treated with O2 plasma, a highly concentrated ink comprising
2D δ-MnO2 nanosheets was inkjet printed to create δ-MnO2 shapes without the negative
“coffee ring” effect. Their device showed extraordinary performance with a power density
of 0.018 W cm−3 and energy density of 1.8 × 10−4 Wh cm−3, capacitance retention of 88%
over 3600 cycles. Applications of several MO nanosheets in different EES systems are given
in Table 4.

Table 4. Applications of several MO nanosheets in different EES systems.

Energy Storage Type MO Nanosheet Performance Ref.

Li-ion batteries

superlattice 370 mAh g−1 (12.8 A g−1)

[160]480 mA h−1 (5 A g−1, 5000 cycles)

MnO2/graphene 1325 mAh g−1 (0.1 A g−1)

Mg, Li, Na, Co, K-MnO2 85–160 mAh g−1 (30 mA g−1) [161]

MnO2/MoS2 700 mAh g−1 (200 mA g−1) [162]

Li-MnO2 266 mAh g−1 (44 µA cm−2) [163]

V2O5 141 mAh g−1 (100 mA g−1) [164]
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Table 4. Cont.

Energy Storage Type MO Nanosheet Performance Ref.

MnO/rGO 1607 mAh g−1 (100 mA g−1)
[165]FeO/rGO 1412 mAh g−1 (100 mA g−1)

Li-Mn3O4 250 mA h g−1 (600 mAg−1) [166]

Li-S batteries

MnO2/ carbon nanofibers 1156 mAh g−1 (0.2 C)
[167]

856.1 mAh g−1 (0.5 C, 200 cycles)

S/Ti0.87O2 cathode (with 80 wt%
sulfur content)

82.3% (1000 mA g−1, 300 cycles) [78]
1023.5 mAh g−1 (50 mA g−1)

S/MnO2 cathode (75 wt%
sulfur content)

245 mAh g−1 (2 C, 2000 cycles)
[168]

1300 mAh g−1 (0.05 C)

Na-ion batteries

MnO2/graphene superlattice

245 mAh g−1 (12.8 A g−1)

[169]185 mAh g−1 (5 Ag−1, 5000 cycles)

795 mAh g−1 (0.1 A g−1)

Na, K, Li, Co, Mg-MnO2 45–145 mAh g−1 (30 mA g−1) [161]

FeOX 263.4 mAh g−1 (100 mA g−1) [106]

Zn-ion batteries

K-δ-MnO2

270.5 mAh g−1 (1000 cycles, 0.1 A g−1)
[170]95.1 mAh g−1 (1000 cycles, 3 A g−1)

K0.19MnO2·0.56 H2O 107 mAh g−1 (~87.5% capacity retention
after 2000 cycle)

[171]

MnCo2O4 848 mAh g−1 (200 cycles, 0.2 A g−1) [172]

S-MnO2
324 mAh g−1 (200 mA g−1)

[173]
205 mAh g−1 (2000 mA g−1)

P-Co3O4 244.9 mAh g−1 (at 4 A g−1) [174]
P-Co3O4/Zn 119.4 mAh g−1 (5000 cycles, 1 A g−1)

Zn-air batteries
N/P-Cu0.1Co0.3Mn0.6O2/CNT 108.1 mW cm−2 (200 h at 10 mA cm−2) [175]

Fe-Mn3O4 740 mAh g−1 (108 h, 5 mA cm−2) [176]

Supercapacitors

MnO2/Ti3C2

192 F g−1 (80 mV s−1)
346 F g−1 (10 mV s−1)

[156]

240 F g−1 (100 mV s−1)
390 F g−1 (10 mV s−1)

93% (1 A g−1, 6000 cycles)
[177]

rGO/MXene@NiCoO2
1614 F g−1 (0.5 A g−1)

1257.5 F g−1 (10 A g−1)
[178]

Freeze-dried MnO2

110 F g−1 (0.2 A g−1)
160 F g−1 (0.2 A g−1)

80–100% (5000 cycles, 5 A g−1)
[154]

Co3O4 nanoparticles-MXene (Co-MXene) 1081 F g−1 (0.5 A g−1) [179]

MnO2
868 F g−1 (3 A g−1)

91% (10,000 cycles, 3 A g−1)
[155]

RuO2 700 F g−1 (2 mV s−1) [153]

M-NC@NCM/NF 2137.5 F g−1 (1 A g−1) [180]

Bi2MoO6 655.5 mF cm−2 (1 mA cm−2) [181]
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Table 4. Cont.

Energy Storage Type MO Nanosheet Performance Ref.

CuCo2O4 1210 F g−1 (2 A g−1) [182]

CuCo2O4@NiO 124.6 F g−1 (1 A g−1)
∼81.3%, 6000 cycles

[183]

CuCo2O4/NiO
2219 F g−1 (1 A g−1)

∼95.3% after 10,000 cycles
1405 F g−1 (20 A g−1)

[184]

CuCo2O4 nanosheets@MnO2
416 F g−1 (1 A g−1)

(92.1% retention after 4200 cycles)
[185]

ZnNiCo-P ~ 958 C g−1 (1 A g−1) [186]

2D MnO2 356.11 F g−1 (5 mV s−1) [34]

MnO2 543 F g−1 at scan rate 5 mV s−1 [70]

Mn3O4 127 F g−1 (0.5 A g−1) [71]

MnO2
87.1 F g−1 (95.2 % retention after 3000

Cycles)
[158]

Solid oxide fuel cell La0.6Sr0.4CoO 3 − δ 1.2 W cm−2 at 600 ◦C [133]

Alkaline fuel cell MF assisted QPVA/0.1%Fe3O4@GO 200 mW cm−2 [187]

Microbial fuel cell
77% NiO/CNT 670 mW cm−2 [149]

TiO2-20PANI/CP 813 mW cm−2 [148]

PEM fuel cell Pt-NiO2 − xNS 958 mW cm−2 [140]

6. Challenges and Prospects

Metal oxide nanosheets have emerged as potential elements for enhancing electro-
chemical energy storage systems because of their extraordinary physical and chemical
features. Researchers have proved their potential as a catalyst in fuel cells and electrodes in
batteries and supercapacitors. However, the major concern is the limitation of large-scale
production of MO nanosheets that restricted their production and applications. Following
a review of the previously published works, we came to realize that the other limitation
is the limited power and energy density of MO-NS-based energy storage technologies.
Therefore, further study and research is required to utilize MO nanosheets in energy storage
technology. Moreover, more research efforts are required to obtain materials with more
reliability, stability, and composition tuneability via eco-environmentally friendly and facile
approaches. Several additives and nanocomposites should be derived to enhance the
performance of various MO-NSs.

There are also some prospects in the utilization of metal oxide nanosheets for EESs
that should be noted.

1. Researchers are performing a lot of studies and experiments for synthesizing novel
MO nanosheet materials with improved physical and electrochemical properties, such
as enhanced cyclic stability, high retention capacity, high power and energy density,
and speedy charging-discharging rates. Additionally, researchers have also carried
out improvements in hybrid MO nanosheets which may provide better performance
in the near future compared to the nanosheets prepared up to now;

2. MO nanosheets can be utilized in several electrochemical energy storage devices,
conveying the aim that these devices can capture and store renewable energy in a
portable device for further use. This concept inspires us to utilize renewable energy
sources and particularly, this can negate the application of carbon in supercapacitors
and can make the energy system more reliable and environmentally friendly in the
near future;
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3. MO nanosheets can be integrated with different device structures as they possess some
potential physical and chemical properties and this attracted great interest among
researchers to apply them for preparing wearable and portable energy storage devices.

Overall, further improvement in metal oxide nanosheets will have a potential role in
the significant development of EESs in the upcoming years.

7. Conclusions

This article reviews and discusses metal oxide nanosheets and their suitable applica-
tions in several electrochemical energy storage devices. With the rising energy demand, the
requirement for advancements in energy generation and energy storage materials is also
increasing and these necessities inspire researchers to carry out effective and potential re-
search. This work reviews several MO synthesis processes that are based on top-down and
bottom-up processes, as well as their advancements over time. Researchers are primarily
focused on preparing MO nanosheets in a pathway that can improve power and energy den-
sity in supercapacitors, retention ability in batteries, and surface area and electrocatalytic
performance in fuel cells. This paper reviews extensively the applicability, and variation of
the performance of several MO nanosheets in different operating conditions for various
applications, such as the battery, supercapacitors, and fuel cells. For further study and
improvement of MO nanosheets, this article gives detailed information and guidelines from
which researchers can obtain a lot of information on MO nanosheets and their applicability
and performance parameters in different electrochemical energy storage devices.
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