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Thermal manipulation has garnered considerable attention for its potential applica-
tions in diverse areas, including microelectronics, thermal logic devices, and thermoelectrics.
Manipulating heat transfer in nanostructured materials is particularly desirable, especially
for structures with high thermal conductivity used in thermal dissipation. However, the
demand for high-power micro/nano chips exceeds the capabilities of even cutting-edge
thermal management technologies, which currently represent a bottleneck in further devel-
opment. Conversely, structures with low thermal conductivity are of interest in various
areas such as thermal barriers and thermoelectrics. Understanding heat transfer is thus a
fundamental problem that requires comprehensive study. However, studying heat trans-
fer in nanostructures presents significant challenges due to the dominance of interfaces,
boundaries, and imperfections in its behavior, and the underlying physical mechanisms
remain unclear [1].

This Special Issue, entitled “Heat Transfer in Nanostructured Materials”, provides a
platform for presenting original and review articles that showcase recent advances in heat
transfer within low-dimensional materials and nanofluids. The issue will systematically
introduce and discuss the design, construction, characterization, and potential applications
of these structures.

Low-dimensional structures have demonstrated significant potential for nanoscale
dissipation as thermal interface materials (TIMs). Lv et al. [2] developed a novel approach
to enhance the thermal conductivity of graphene papers by depositing AgNWs on graphene
sheets, resulting in a highly promising TIM with a cross-plane thermal conductivity of
up to 7.48 W m−1 K−1. Li et al. [3] revealed size-dependent thermal conductivity in VO2
nanowires that showed an increase in jump during metal-insulator transition temperature
with increasing sample thickness. Phonons were identified as major carriers that dominate
thermal transport in the nanowires. Jiang et al. [4] investigated the issue of lattice thermal
conductivity calculations for two-dimensional (2D) materials and found that hydrodynamic
phonon transport plays a crucial role in predicting thermal conductivity in 2D materials
such as graphene and silicene. However, this phenomenon was not observed in bulk silicon.
Wieser et al. [5] examined the impact of organic linkers, inorganic nodes, and interfaces on
metal-organic frameworks’ (MOFs) thermal conductivity using non-equilibrium molecular
dynamics calculations. The study found that the dominance of interface resistance derived
from intrinsic framework structures of MOFs, rather than chemical interactions between
nodes and linkers. Xing et al. [6] presented a review highlighting the importance of
advanced TIMs with high thermal conductivity and low interfacial thermal resistance to
enhance heat dissipation performance of high-power electronics. The review introduced
different types of TIMs (metal-, carbon-, and polymer-based materials) and their thermal
properties, fabrication techniques, developing trends, and it emphasized the need for good
thermal and chemical stability, long-term stability, and cost-effectiveness. By summarizing
recent advancements in advanced TIMs studies for high-power electronics, the review
provided crucial references for designing electronic devices and constructing TIMs for
efficient heat dissipation.
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Heat transfer via nanofluids has emerged as an effective approach for thermal man-
agement in complex systems. Optimization of nano additives and microchannel designs
can significantly improve heat transfer efficiency. Apmann et al. [7] investigated the ef-
fects of a connector between two microchannels on heat transfer efficiency, using Fe3O4
nanoparticles as nanofluids. The connector enhanced the heat transfer coefficient within the
second microchannel by increasing the randomness of molecules and particles, refreshing
the fluid’s memory before entering the second channel. The effects of Reynolds number
and nanoparticles on the connector were also studied, revealing that introducing Fe3O4
nanoparticles increased overall thermal conductivity and the heat transfer coefficient. The
connector effectively promoted the random motion of molecules and nanoparticles, with
the enhancement being significant at low Reynolds numbers but becoming negligible with
increasing Reynolds number. This paper also presented a brief review of current advance-
ments in studying the effects of nanoparticles on fluid thermal conductivity, viscosity, and
heat transfer coefficient. Arshad et al. [8] reported on the heat transfer and skin friction rates
of various nanofluids over an exponentially stretching surface, using the Rivilin-Erickson
tensor and boundary layer approximation theory to construct a mathematical model. They
found that the silver-water nanofluid exhibited the optimal heat transfer rate compared to
copper-water and zinc-water nanofluids, consistent with previous studies. Their work’s
significance lies in the comparative study of the enhanced heat transfer rates and reduced
drag and lift coefficients for these three nanofluids over an exponentially stretching surface.
The results suggest that the silver-water nanofluid holds promise for use in flat-plate solar
collectors and could be tested in natural convective flat-plate solar collector systems under
real solar effects.

This Special Issue is expected to be of interest to readerships in both fields of science
and engineering. Understanding heat transfer mechanisms in nanostructured materials
is fundamental for further developments of nanoscale devices, yet it remains an extreme
challenge. We anticipate more emerging works focusing on depicting the underlying physical
pictures of heat transfer and developing strategies for thermal manipulation in nanostructures.
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