
Citation: Yang, J.-J.; Shen, Y.-Z.;

Wang, Z.; Zhou, B.; Hu, X.-Y.; Xu, Q.

β-Bi2O3 Nanosheets Functionalized

with Bisphenol A Synthetic

Receptors: A Novel Material for

Sensitive Photoelectrochemical

Platform Construction. Nanomaterials

2023, 13, 915. https://doi.org/

10.3390/nano13050915

Academic Editor: Antonino Gulino

Received: 4 February 2023

Revised: 24 February 2023

Accepted: 27 February 2023

Published: 1 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

β-Bi2O3 Nanosheets Functionalized with Bisphenol A Synthetic
Receptors: A Novel Material for Sensitive Photoelectrochemical
Platform Construction
Jing-Jing Yang, Ying-Zhuo Shen, Zheng Wang, Bo Zhou, Xiao-Ya Hu and Qin Xu *

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
* Correspondence: xuqin@yzu.edu.cn

Abstract: In this study, β-Bi2O3 nanosheets functionalized with bisphenol A (BPA) synthetic receptors
were developed by a simple molecular imprinting technology and applied as the photoelectric active
material for the construction of a BPA photoelectrochemical (PEC) sensor. BPA was anchored on the
surface of β-Bi2O3 nanosheets via the self-polymerization of dopamine monomer in the presence
of a BPA template. After the elution of BPA, the BPA molecular imprinted polymer (BPA synthetic
receptors)-functionalized β-Bi2O3 nanosheets (MIP/β-Bi2O3) were obtained. Scanning electron
microscopy (SEM) of MIP/β-Bi2O3 revealed that the surface of β-Bi2O3 nanosheets was covered with
spherical particles, indicating the successful polymerization of the BPA imprinted layer. Under the
best experimental conditions, the PEC sensor response was linearly proportional to the logarithm
of BPA concentration in the range of 1.0 nM to 1.0 µM, and the detection limit was 0.179 nM. The
method had high stability and good repeatability, and could be applied to the determination of BPA
in standard water samples.
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1. Introduction

Photoelectrochemical sensors (PECs) have attracted a great deal of attention due to
their great potential in trace detection, and suitable semiconductor materials are the key
to constructing PECs. As an emerging semiconductor material, Bi-based semiconductor
materials have shown promise thanks to their advantages of easy fabrication, low price,
non-toxicity, good environmental compatibility and good visible light response [1]. Due to
the better stability of Bi3+ (the 6s orbital has an inert electron pair) and stronger visible light
response (hybridized O 2p and Bi 6s orbitals shift the valence band (VB) up), most studies
have focused on Bi3+-containing compounds such as Bi2O3 [2], BiVO4 [3], Bi2O2CO3 [4],
Bi2WO6 [5], BiPO4 [6], BiFeO3 [7], BIOX (X=Cl, Br, I) [8–10] etc. Among them, as a p-
type semiconductor, Bi2O3 has good biocompatibility, high stability and narrow band gap.
These characteristics make Bi2O3 an extremely promising material in the construction of
optoelectronic devices [11].

Generally, Bi2O3 exists in a total of six crystalline forms, including α-(monoclinic
phase), β-(tetragonal phase), γ-(body-centered cubic phase), δ-(face-centered cubic phase),
ε-(rhombohedral phase) and ω-(triclinic phase) [12]. Among these crystalline phases, β-
Bi2O3, which is a metastable phase, has the strongest light absorption and a narrow band
gap (2.19 eV), making β-Bi2O3 a strong candidate for photoelectrode materials [13–16].
Currently, most of the synthesis methods for β-Bi2O3 involve high temperature and pres-
sure or complicated sample processing [17,18], which is incompatible with the concept of
green chemistry. Here, a low-temperature CTAB-induced aqueous-phase crystallization
method was applied for the synthesis of β-Bi2O3 [13]. Not only is the synthesis process
simple and low-cost, but the synthesized β-Bi2O3 also has a stable photocurrent, which is
of great benefit to the construction of PECs. Although β-Bi2O3 has been widely applied
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in photocatalysis [19,20], few applications of β-Bi2O3 in PECs construction have been
reported [13].

Selectivity is another important factor that should be considered for the construction
of PECs. In order to improve the specific recognition ability of PECs, some recognition
elements, such as antibodies [21], enzymes [22], DNA aptamers [23] etc., are often in-
troduced to combine with photoactive materials to form the sensor. In addition to such
elements, molecular imprinted polymers (MIPs) have been regarded as promising synthetic
receptors in the field of sensors due to their remarkable specific recognition function [24].
The synthesis strategy of MIPs is usually based on the formation of polymer in solvents
between functional monomers and cross-linking agents, in which template molecules are
embedded by covalent or non-covalent interactions (usually hydrogen bonds or van der
Waals force [25]). The relationship between template molecules and imprinted polymer
is similar to that between antigens and antibodies [26]. The obtained MIP generally has a
complex and stable three-dimensional (3D) porous structure that matches with the target
molecules. Thus, MIPs have been applied widely in different analytical methods owing to
the advantages of recognition specificity and estimable structure [27]. It is very important
to choose a suitable functional monomer for the preparation of MIPs. Dopamine can be
self-polymerized to form polydopamine (PDA) films under weakly alkaline conditions
(pH > 7.5) at room temperature. The active groups provided in the structure of PDA films
include catechol, amine and imine, which are easily connected to molecules with hydroxyl
structure by hydrogen bonding, and can achieve the in situ nucleation and growth of
films with three-dimensional MIP cavity complementary to the target without additional
reagents [28]. In recent years, MIPs derived from PDA have gradually seen use in sensor
construction [29].

Bisphenol A (BPA), as one of the main substrates for the production of epoxy polyester
resins and polycarbonate plastics, has been widely used in many consumer products in
daily production and life [30]. However, its toxicity and estrogenic activity can interfere
with the reproductive and endocrine systems of humans and wildlife [31]. Therefore,
there is a need to develop a convenient and simple method for the quantitative analysis
of BPA. Compared to the commonly used fluorescence [32], chromatography [33] and
electrochemical methods [34], the PEC method has the advantages of low background
current, inexpensive instrumentation, simple operation and fast response [35–38].

In this work, a novel PEC sensor for BPA detection was constructed based on β-
Bi2O3. Scheme 1 illustrates the construction process and detection mechanism of the PEC
sensor. First, β-Bi2O3 was immobilized on an ITO surface as a PEC substrate to obtain
the photocurrent signal. Then, MIP was formed on the surface of β-Bi2O3 by eluting the
BPA template after the self-polymerization of DA in Tris-HCl. When the MIP-PEC sensor
was irradiated by visible light, holes were transferred to the ITO electrode to generate
photocurrent, and photogenerated electrons combined with the hole donor of K3[Fe(CN)6]
in the electrolyte to generate an amplified photocurrent signal which would improve the
sensitivity. After the imprinted cavity was occupied by the template molecule BPA, fewer
electron acceptors and less visible light could reach the electrode surface, yielding a reduced
photocurrent for MIP/β-Bi2O3/ITO. The principle of BPA detection is based on the specific
recognition ability of MIP. To our best knowledge, the application of β-Bi2O3 in MIP-PEC
has not been reported. The method applied herein exhibited excellent performance in the
detection of BPA in real samples.
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Scheme 1. Schematic illustration of the β-Bi2O3-based MIP-PEC sensor for BPA detection. 
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Scheme 1. Schematic illustration of the β-Bi2O3-based MIP-PEC sensor for BPA detection.

2. Experimental
2.1. Reagents and Apparatus

The indium tin oxide coated glass (ITO, 8 Ω per square) was purchased from Zhuhai
Kaivo Optoelectronic Technology Co., Ltd. (Zhuhai, China). Acetonitrile (ACN), acetic acid
(HAC), ethanol (EtOH), tris (hydroxymethyl) aminomethane (Tris), potassium iodide (KI),
bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), cetyltrimethylammonium bromide (CTAB),
sodium sulfate (Na2SO4), potassium ferricyanide (K3[Fe(CN)6]), potassium hexacyano-
ferrate (K4[Fe(CN)6]·3H2O), chitosan ((C6H11NO4)n), sodium hydroxide (NaOH), phenol
(PH) and hydrogen chloride (HCl) were of analytical grade and purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Bisphenol A (BPA), pyrocatechol (CT), re-
sorcinol (INTER), p-dihydroxybenzene (HQ), 2,4-dichlorophenol (2,4-DCP) and dopamine
(DA) were bought from Aladdin Biochemical Technology Co., Ltd. (Shanghai, China).

All electrochemical measurements were performed on a CHI660E electrochemical
workstation (Chenhua Instrument Co., Ltd., Shanghai, China). The PEC experiments were
performed on a CIMPS-2 workstation (Zennium, Zahner-Elektrik GmbH & CoKG, Ger-
many). A 500 W WLC02 ((4300k) # 1522, Zahner-Elektrik) with a wavelength in the visible
light spectrum was used as the irradiation source. A conventional three-electrode system
was used which contained an Ag/AgCl (saturated KCl) electrode as the reference electrode.
The morphologies of the samples were obtained on an S-4800 scanning electron microscope
(SEM) (Hitachi Co., Ltd., Tokyo, Japan). Crystal structure analysis was performed with a
Bruker D8 Advance X-ray diffractometer (XRD) (Bruker Scientific Technology Co., Ltd.,
Billerica, MA, USA) using Cu Kα radiation. The pH of solutions was adjusted using PHS-25
meter (Shanghai INESA Scientific Instrument Co., Ltd., Shanghai, China).

2.2. Synthesis of β-Bi2O3 Nanosheets

β-Bi2O3 nanosheets were obtained by a simple one-pot oil bath method [13]. Firstly,
0.5 mmol Bi(NO3)3·5H2O was added to 80 mL CTAB (4 mmol/L) solution with 0.08 mmol
KI and dispersed uniformly by ultrasonic treatment. Then, the suspension was heated in an
oil bath stirred by magnetic force at 353 K for 3 h. The precipitate was collected by washing
with water and ethanol two times and dried in a vacuum oven at 333 K for 6 h.
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2.3. Fabrication of β-Bi2O3/ITO Electrode

Firstly, bare ITO glasses were ultrasonically cleaned with 0.1 M NaOH, surfactant,
ethyl alcohol and deionized water before β-Bi2O3 modification. An amount of 5 mg of
β-Bi2O3 was dispersed in 1 mL of 0.1% chitosan acetic acid solution by ultrasound. Then,
30 µL of the β-Bi2O3 ink was dropped onto the surface of the ITO and the modification
area of the electrode was 1 cm2.

2.4. Functionalization of β-Bi2O3/ITO Electrode with BPA Synthetic Receptors

BPA (0.05 mmol) was dissolved in 1 mL acetonitrile solution, and then DA (10 mg)
and 4 mL of Tris-HCl Buffer (10 mM pH = 8) were added into this solution. β-Bi2O3/ITO
was placed in this solution, and self-polymerization was initiated at room temperature.
Dopamine polymerization lasted for 40 min. After the reaction, the electrode was washed
with deionized water and dried at room temperature. The electrode was then soaked in a
solution consisting of 77 vol% water, 20 vol% acetonitrile and 3 vol% acetic acid (v/v/v,
77:20:3) [29] for 8 min to remove the imprinted BPA. As a control, the non-imprinted
polymer NIP/β-Bi2O3/ITO was prepared by the above steps, without adding the template
molecule BPA.

2.5. Detection of BPA

In this work, PEC measurements were carried out in a three-electrode system with
MIP/β-Bi2O3/ITO or NIP/β-Bi2O3/ITO as the working electrode, Ag/AgCl as the ref-
erence electrode and platinum wire as the counter electrode. A 0.1 M Na2SO4 aqueous
solution containing 10–4 M K3[Fe(CN)6] was used as the detection electrolyte. Due to
the solubility limitation of BPA in water, mixed solutions of ethanol and water (v/v, 1:9)
containing different concentrations of BPA were used as the incubation solutions. After
being immersed in a static incubation solution for a period of time, the electrode was
washed to remove the loosely bound BPA and put into the detection solution to check its
response. All photocurrent measurements were performed at 0.0 V (vs. Ag/AgCl). The
differences in the photocurrent of MIP/β-Bi2O3/ITO before and after the recognition of
different concentrations of BPA were determined for the quantification of BPA.

3. Results and Discussion
3.1. Characterization of β-Bi2O3 and BPA Synthetic Receptors Functionalized β-Bi2O3

SEM was used to evaluate the morphology of β-Bi2O3. As shown in Figure 1A, β-
Bi2O3 showed a stacked petal-like two-dimensional sheet structure, which was consistent
with the literature [13]. The existence of an internal electric field in the semiconductor with
a layered structure enables both a significant separation of photogenerated charges and a
significant increase in the efficiency of the use of photogenerated carriers [39].

The morphology of β-Bi2O3 functionalized with BPA synthetic receptors was also
characterized by SEM. After molecular imprinting, some spherical particles were adhered
to the lamellar β-Bi2O3 surface (Figure 1B), which indicated the successful polymerization
of the BPA molecular layer. The surface morphology of the polymer did not differ much
when the imprinted BPA molecules were removed by eluent treatment (Figure 1C). This
means that the elution process did not destroy the structure of the imprint layer.

The crystalline phase of β-Bi2O3 was characterized by XRD (Figure 1D). For β-Bi2O3,
all diffraction peaks matched well with the tetragonal crystal structure of β-Bi2O3 (JCPDS
file 27-0050). The main diffraction peaks at 27.9◦, 32.4◦, 46.2◦ and 55.4◦ belonged to the
(201), (220), (222) and (421) crystal planes of β-Bi2O3, respectively. In addition, no impurity
peaks were observed in the X-ray diffraction peaks, indicating the high purity of the
synthesized samples.
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Figure 1. SEM images of (A) β-Bi2O3; (B) MIP/β-Bi2O3/ITO before elution and (C) after elution.
(D) XRD pattern of β-Bi2O3.

3.2. BPA Sensor Feasibility for BPA Detection

After the construction of β-Bi2O3/ITO, we performed a series of electrochemical mea-
surements to test the performance of the substrate. Figure 2A shows that the photocurrent
of β-Bi2O3/ITO in pure Na2SO4 solution was small due to the rapid recombination of
photogenerated electron–hole pairs in β-Bi2O3 [40], and the photocurrent signal increased
dramatically by a factor of 100 after the addition of K3[Fe(CN)]6. As an electron scavenger,
Fe3+ combined with the photogenerated electrons. This led to the suppression of the
recombination of electron–hole pairs in β-Bi2O3, and the photocurrent increased sharply.

In order to evaluate the selective performance of MIP for BPA, photocurrent tests of
different electrodes were performed. In Figure 2B, curve a represents the photocurrent
of MIP/β-Bi2O3/ITO after self-polymerization. The photocurrent of MIP/β-Bi2O3/ITO
was very weak because of the dense polymer film formed on the surface of β-Bi2O3. The
photocurrent of NIP/β-Bi2O3/ITO after self-polymerization also supported this conclu-
sion. After the elution, the photocurrent of the MIP-modified electrode increased sharply
(curve b). Many cavities appeared after the elution, which reduced the mass-transfer
resistance. After incubation in the BPA solution, the photocurrent decreased again due
to the mass-transfer resistance of the adsorbed BPA (curve c). Curve e shows the values
of photocurrent changes after NIP elution; the photocurrent increased as a result of the
damage of the NIP by the eluent. Curve f shows the values of photocurrent changes after
NIP adsorption, which were due to the non-specific adsorption of BPA by the hydroxyl
groups on the NIP surface. The results show that the difference in photocurrent before
and after MIP adsorption was 0.241 µA, which is 2.27 times higher than the photocurrent
difference of NIP (0.106 µA).

Electrochemical impedance spectroscopy (EIS) was further used to monitor the for-
mation of PEC sensors, and to assess the electron transfer capacity at different electrode
interfaces. The detection was performed in a 5 mM [Fe(CN)6]3−/4− solution containing
0.1 M KCl, and the results are shown in Figure 2C. The bare ITO electrode (curve a) showed
a low electron-transfer resistance due to its excellent conductivity. After modification of
the β-Bi2O3 film on the ITO electrode (curve b), the electron-transfer resistance increased
slightly due to the weak conductivity of the semiconductor. After polymerization (curve c),
a dense non-conductive polymer was formed on the electrode surface, which increased the
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mass-transfer resistance, and the impedance value reached i maximum. When the template
molecule was removed (curve d), an imprinted cavity was left on the composite surface,
which reduced the impedance. However, when the template molecule BPA was reabsorbed,
the imprinted cavity was occupied again, and the impedance increased (curve e). These
results indicate the successful preparation of the MIP/β-Bi2O3/ITO sensor.
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holes could not reach the ITO surface quickly. Recombination quenching occurred, and it 
eventually led to poor photoresponse. In general, the ratio of template molecules to 
functional monomers affected the number of imprinted cavities in the MIP framework, 
which in turn affected the detection capability of the sensor. As shown in Figure 3B, as 
the content of functional monomers increased, the change of photocurrent increased, 
indicating that the ability to recognize BPA was gradually enhanced. It reached the 
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Figure 2. (A) The photocurrent comparison of β-Bi2O3 in 0.1 M Na2SO4 electrolyte under a light
intensity of 500 W m−2 without (a) and with 10−4 M K3[Fe(CN)6] (b). (B) Photoelectrochemical
behaviors of MIP and NIP. MIP/β-Bi2O3/ITO photocurrent responses after polymerization (a),
after the elution of BPA (b), after the re-recognition of BPA (c); NIP/β-Bi2O3/ITO photocurrent
responses after polymerization (d), after the elution step (e) and after the incubation with BPA (f).
The concentration of BPA is 10 nM. (C) EIS characterization of ITO (a), β-Bi2O3/ITO (b), MIP/β-
Bi2O3/ITO after polymerization (c), after the elution (d) and after the incubation of 10 nM BPA (e) in
5.0 mM [Fe(CN)6]3−/4− solution containing 0.1 M KCl recorded in the frequency range from 0.1 Hz
to 10 kHz with an open circuit potential.

3.3. Optimization of the Experimental Conditions
3.3.1. Optimization of MIP/β-Bi2O3/ITO Construction Conditions

The parameters of sensor construction were optimized. The modification amount of
β-Bi2O3 was adjusted from 20 µL to 40 µL (Figure 3A). When the modification amount
was 30 µL, the photocurrent response reached the maximum value. If the amount of
material continued to increase, the material on the surface became too thick, and the
holes could not reach the ITO surface quickly. Recombination quenching occurred, and
it eventually led to poor photoresponse. In general, the ratio of template molecules to
functional monomers affected the number of imprinted cavities in the MIP framework,
which in turn affected the detection capability of the sensor. As shown in Figure 3B, as the
content of functional monomers increased, the change of photocurrent increased, indicating
that the ability to recognize BPA was gradually enhanced. It reached the maximum at 1:1.5.
At this point, the MIP/β-Bi2O3/ITO produced enough binding sites, lending the ability
to recognize the maximum BPA. When the amount of functional monomer continued
to increase, the detection signal became weaker because the excess DA prevented the
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formation of effective hydrogen bonds with BPA. Therefore, the optimal molar ratio of
BPA to DA was found to be 1:1.5. Self-polymerization time is another important parameter
affecting the performance of MIP/β-Bi2O3/ITO electrodes. The thickness of the PDA layer
grown on the electrode surface increased with the prolongation of polymerization time.
As shown in Figure 3C, when the self-polymerization time increased, the photocurrent
difference gradually increased, indicating that the performance of the sensor was improving.
When the self-polymerization time reached 40 min, the photocurrent difference reached
its maximum value. With increasing polymerization time, the current change decreased
sharply. When the polymerization time was short, the PDA layer was too thin to form
enough target sites. However, when the polymerization time exceeded 40 min, the PDA
layer was too thick, and the BPA molecules embedded in the bottom layer were difficult to
elute. On the basis of these results, the following experimental conditions were considered
to be the best: (A) β-Bi2O3 modification volume, 30 µL; (B) ratio of template molecules to
functional monomers, 1:1.5; (C) self-polymerization time, 40 min.
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3.3.2. Optimization of MIP/β-Bi2O3/ITO Detection Conditions

After the construction of the MIP/β-Bi2O3/ITO, the elution time, recognition time
and concentration of K3[Fe(CN)6] were optimized to obtain the best sensor performance.
The elution of template molecules would affect the number of BPA cavities blotted in the
MIP. In this experiment, 20 vol% acetonitrile and 3 vol% acetic acid aqueous solution was
used as eluent to remove the template molecule. As shown in Figure 4A, as the elution time
increased, the current of the electrode increased gradually. When the elution time reached
8 min, the current reached a plateau. Even if the elution time was longer, the current was
almost unchanged, which indicated that the BPA molecules had been completely removed.
Therefore, 8 min was chosen as the optimal elution time in this work. After the template
molecules were eluted from the polymer membrane, the MIP/β-Bi2O3/ITO was soaked in
the recognition solution (a mixed solution of ethanol and water (1:9) containing 10 nM BPA)
for different lengths of time. Figure 4B shows that the current increased gradually and
reached a maximum at 15 min. After 15 min, the absorption of BPA reached saturation, and
the current did not change with increasing recognition time. Therefore, 15 min was chosen
as the best recognition time. K3[Fe(CN)6] was selected as the signal amplification unit in
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this experiment. The sensor was measured in different concentrations of K3[Fe(CN)6] to
study its concentration effect on the sensor performance. As shown in Figure 4C, when
the K3[Fe(CN)6] concentration was increased from 10−5 to 10−4 M, the current gradually
increased, and reached its maximum at 10−4 M K3[Fe(CN)6]. When the concentration of
K3[Fe(CN)6] was below 10−4 M, the amount of Fe3+ that could reach the β-Bi2O3 layer
was small, and the inhibition effect on the recombination of electrons and holes was poor.
With further increase of K3[Fe(CN)6] concentration, the current began to decrease. As the
concentration of K3[Fe(CN)6] was too high, it impeded the hole transfer, having a negative
effect on the separation of photogenerated electron–hole pairs [41]. Therefore, the detection
conditions were optimized to be the best: (A) elution time, 8 min; (B) recognition time,
15 min; (C) concentration of K3[Fe(CN)6], 10−4 M.
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3.4. Evaluation of the Performance of the β-Bi2O3-Based MIP-PEC Sensor

Under optimal experimental conditions, the photocurrent responses of the MIP/β-
Bi2O3/ITO sensor to different concentrations of BPA were analyzed. Figure 5A shows that
the photocurrent decreased with increasing BPA concentration. In the range of 1 nM–1 µM,
the photocurrent was linearly related to the logarithm of the BPA concentration. The linear
equation was ∆I (µA) = 0.84576 + 0.07575 logC (mol/L) (R2 = 0.9955). The detection limit
obtained by the determination was 0.179 nM (calculation formula is 3σ/k, where σ is the
standard deviation of the intercept and k is the slope of the calibration curve [42]) and the
sensor sensitivity was 0.07575 µA (logM)−1 cm−2. The MIP/β-Bi2O3/ITO exhibited better
sensing performance in terms of wider linear range and lower detection limit compared to
some other relevant reported BPA detection methods (Table 1), and could be used for the
detection of BPA in real samples.
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Table 1. Comparison of different BPA detection methods.

Method Liner Range (µM) LOD (nM) Ref.

MIP@CDs(FD a) 0.1–4.2 30 [43]
NPG(ED b) 0.1–50 12.1 [44]

β-CD/ILCPE(SILs-SPE-ED c) 0.04–1 4.16 [45]
Graphene/Ag/Si(GSPME-SERS d) 0.00877–0.439 4.39 [46]

LLE-GC-MS e 0.088–2.2 26.3 [47]
MIP/β-Bi2O3/ITO(PEC) 0.001–1 0.179 This work
NIP/β-Bi2O3/ITO(PEC) — 4.397 This work

a FD: fluorescence detection. b ED: electrochemical detection. c SILs-SPE-ED: supported ionic liquids solid-phase
extraction coupled to electrochemical detection. d GSPME-SERS: solid-phase microextraction-surface enhanced
Raman spectroscopy. e LLE-GC-MS: liquid–liquid extraction-gas chromatography–mass spectrometry.
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3.5. Stability, Reproducibility and Selectivity of the β-Bi2O3-Based MIP-PEC Sensor

For further evaluation, the sensor was tested for stability, reproducibility and selectiv-
ity. As shown in Figure 6A, the photocurrent measurement of the sensor under 10 light-on
tests could be seen under a continuous test of 400 s. The photocurrent response of the
sensor maintained 99.56% of the original value (RSD = 1.16%), indicating that the sensor
has excellent stability. To further examine the storage stability, the sensors were kept in
a sealed glass bottle at 4 °C for two weeks. The data showed that the sensor maintained
96.84% of its initial response value after the two-week storage, indicating that the sensor
has good storage stability. In terms of reproducibility measurement, the six independently
produced electrodes were tested, and the resulting RSD was 4.36%, which also proved
that the sensor has good reproducibility (Figure 6B). To test the selectivity of the sensor,
structural analogues such as resorcinol (INTER), pyrocatechol (CT), p-dihydroxybenzene
(HQ), 2,4-dichlorophenol (2,4-DCP) and phenol (PH) were selected as co-existing interfer-
ers (Figure 6C). Figure 6D shows that in the presence of 100 nM interferent, there was no
significant change in 10 nM BPA detection. This indicates that the β-Bi2O3-based MIP-PEC
sensor has a specific recognition ability for the detection of BPA.
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3.6. Real Sample Analysis

In order to verify the practicability of the MIP/β-Bi2O3/ITO sensor, we chose bottled
water as a real sample, and tested the recovery rate by adding BPA. As shown in Table 2,
bottled water itself did not contain BPA. Different concentrations of BPA (1 nM, 10 nM,
20 nM, 40 nM, 80 nM) were added to the samples, and the recovery tests showed that the
recovery rates ranged from 97.3% to 103.5%. The recovery tests verified the feasibility of
the PEC sensor for real water sample analysis.

Table 2. Detection of BPA added in bottled water.

Sample Added (nM) Found (nM) Recovery (%) RSD (%)

1 0.00 nd — —
2 1.00 1.04 103.5 2.47
2 10.00 10.13 101.3 2.30
3 20.00 20.51 102.6 1.85
4 40.00 39.39 98.2 2.22
5 80.00 77.88 97.3 1.44

4. Conclusions

In this work, β-Bi2O3 nanosheets were synthesized by a low-temperature, one-step,
aqueous-phase crystallization method. The obtained nanosheet was stable and had good
visible light response. Furthermore, BPA synthetic receptors were anchored on the β-Bi2O3
nanosheets by a simple self-polymerization process. The β-Bi2O3 functionalized with
BPA synthetic receptors was further applied for BPA detection. The whole construction
process is green and safe. The as-obtained sensor provides a fast, convenient and effective
analytical method for the detection of BPA with good selectivity, repeatability and stability.
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The method performed well in actual sample detection, and has good application prospects
in the field of environmental detection. The results also demonstrate that β-Bi2O3 is a
promising substrate material with high stability and strong visible light absorption for
PEC sensors. In the future, there will be more possibilities for β-Bi2O3 to be used in
PECs construction.
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