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Abstract: A ring of sub-wavelength spaced dipole-coupled quantum emitters features extraordinary
optical properties when compared to a one-dimensional chain or a random collection of emitters. One
finds the emergence of extremely subradiant collective eigenmodes similar to an optical resonator,
which features strong 3D sub-wavelength field confinement near the ring. Motivated by structures
commonly appearing in natural light-harvesting complexes (LHCs), we extend these studies to
stacked multi-ring geometries. We predict that using double rings allows us to engineer significantly
darker and better confined collective excitations over a broader energy band compared to the single-
ring case. These enhance weak field absorption and low-loss excitation energy transport. For the
specific geometry of the three rings appearing in the natural LH2 light-harvesting antenna, we show
that the coupling between the lower double-ring structure and the higher energy blue-shifted single
ring is very close to a critical value for the actual size of the molecule. This creates collective excitations
with contributions from all three rings, which is a vital ingredient for efficient and fast coherent
inter-ring transport. This geometry thus should also prove useful for the design of sub-wavelength
weak field antennae.

Keywords: nanophotonics; quantum emitters; collective radiation

1. Introduction

The optical properties of a quantum emitter, such as its excitation lifetime and tran-
sition frequency, are strongly modified when it is placed close to a second emitter, due
to vacuum fluctuations that mediate dipole–dipole interactions between them. As a re-
markable example, the decay rate of a collection of emitters separated by subwavelength
distances can be enhanced or suppressed, leading to the well-known phenomena of super-
radiance or subradiance, respectively [1–4]. These phenomena are expected to be strongly
enhanced in ordered subwavelength arrays of emitters, where maximal interference of the
scattered fields can be observed [5–27]. Moreover, subradiant and superradiant exciton
states can be leveraged for quantum technological applications, such as single photon
quantum memories [17,28], single photon switches [29,30], the generation of non-classical
states of light [31,32], or quantum metrology [33,34].

Among the different array geometries, a ring-shaped structure formed by regularly
placed emitters has very special optical properties. It has been shown before [6,9,17] that
a linear chain of emitters whose inter-particle distance is smaller than half of the light
wavelength supports collective modes that can guide light and are extremely subradiant,
with the excitation lifetime increasing polynomially with the atom number. The lifetime
limitation arises from photon scattering off the ends of the chain. Remarkably, by joining
the ends of the chain to form a closed ring, the lifetime can be exponentially increased with
atom number [17,35,36].

Such extraordinary optical properties can be exploited for applications including effi-
cient energy transfer, single-photon sources, or light-harvesting [37,38]. We have previously
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shown [35,36] that tailoring the geometry, orientation, and distance between two such
nanorings allows for lossless and high-fidelity transport of subradiant excitations, as if the
two rings were two coupled nanoscale ring resonators. Low-loss excitation transfer is an
essential process for quantum communication and quantum computing. In addition to
subradiant states confining and guiding light, these nanorings also feature radiant modes
whose corresponding electromagnetic field is strongly focused at its center. By placing an
extra emitter at its center, these modes can be exploited to create a nanoscale coherent light
source with a spectral line width that is strongly suppressed compared to the single atom
decay rate [39]. In this case, the collective optical modes of the ring play the role of the
cavity modes and the central atom acts as the gain medium when incoherently pumped.
Furthermore, if the central emitter is absorptive, the system can be tailored to achieve a
strong absorption cross-section way beyond the single atom case, while the outer ring
behaves as a parabolic mirror when illuminated externally by a coherent light field [40].

In this work, we analyse in detail how two or more nanorings’ optical properties are
modified when they are stacked concentrically. Note that this system is radically different
compared to the case previously studied of two rings coupled side by side [35,36], as it
preserves some rotational symmetry. The study of this geometry is strongly motivated by
the abundant presence in nature of highly efficient photosynthetic complexes sharing a
similar stacked structure [41,42]. In particular, the active core photosynthetic apparatus of
certain bacteria is formed by chromophores, featuring an optical dipole transition, which
are arranged symmetrically, forming a complex structure of stacked concentric coupled
nanorings. Some of these units are specialized in transforming the absorbed energy into
chemical energy (LH1), whereas a larger number of them (LH2 and LH3) do not have a
reaction center but efficiently capture and funnel light towards the LH1 units.

In this system, coherence effects between the chromophores have already been shown
to play a crucial role in energy transfer and light-harvesting [37,43,44]. A natural question
is whether collective decay, i.e., superradiance and subradiance, plays an essential role
in this process, and whether nature chooses a particular geometry to optimize its effects.
In this work, we aim to shed light on this question, by analysing the optical properties
and exciton dynamics in realistic structures. Furthermore, similar mechanisms could,
in principle, be exploited for artificial light-harvesting [45]. Proving these concepts may
already be possible using state-of-the-art experimental setups, such as neutral atoms
trapped in optical lattices [46–49], optical tweezer arrays [50–54], microwave coupled
superconducting q-bits [55–57], or solid-state quantum dots [58,59].

The paper is organized as follows. We first introduce the theoretical framework to
describe a system of dipole–dipole interacting quantum emitters and demonstrate that a
structure of coupled symmetric nanorings can be described in a particularly simple form in
terms of Bloch eigenmodes. Next, we summarize the optical properties of single nanorings,
which can exhibit special radiating properties. We then move to study the case of two
coupled nanorings, displaying two energy bands. Thereafter, we apply a similar analysis
to elucidate the radiating properties of a realistic natural light-harvesting complex (LH2),
which contains a close double-ring structure with a shifted third ring at higher resonance
frequencies. Studying this geometry, we find that the rings’ geometry and size are critically
close to the case where the energy bands of all rings overlap to form common superradiant
exciton states.

2. Materials and Methods
2.1. Theoretical Framework: Bloch Eigenmodes

Let us first consider a ring-shaped array (or regular polygon) of N identical two-
level quantum emitters with minimum inter-particle distance d. The emitters possess a
single narrow optical dipole transition around the frequency ω0 with dipole orientation
℘̂i = sin θ cos φ êφ,i + sin θ sin φ êr,i + cos θ êz (i = 1, . . . , N), where êz and êr,i(φ,i) denote unit
vectors along the vertical and radial (tangential) direction defined with respect to the emitter i,
respectively (see Figure 1a). In this work, we will then consider a configuration where two or
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more of these rings are stacked concentrically around the ẑ-axis (see Figure 1b). As will be
explained in Section 3.3, this structure can model light-harvesting complexes, replacing the
molecular dipoles with a generic open system model based on two-level quantum emitters.
Phonons are neglected now but could be added [60].

All the emitters are dipole–dipole interacting via the electromagnetic field vacuum
fluctuations. After integrating out the optical degrees of freedom in the Born–Markov
approximation [61], the atomic reduced density matrix is governed by the master equation
ρ̇ = −i[H, ρ] + L[ρ] (h̄ ≡ 1), with the dipole–dipole Hamiltonian [16,17,62]

H = ∑
ij;i 6=j

Ωijσ̂
ge
i σ̂

eg
j , (1)

and Lindblad operator

L[ρ] = 1
2 ∑

i,j
Γij

(
2σ̂

ge
i ρσ̂

eg
j − σ̂

eg
i σ̂

ge
j ρ− ρσ̂

eg
i σ̂

ge
j

)
, (2)

with i and j running over all dipoles. The coherent Ωij and dissipative Γij dipole–dipole
couplings can be written in terms of Green’s tensor G(r, ω0) in free space:

Ωij = −
3πΓ0

k0
Re
{
℘̂∗i ·G(ri − rj, ω0) · ℘̂j

}
, (3)

Γij =
6πΓ0

k0
Im
{
℘̂∗i ·G(ri − rj, ω0) · ℘̂j

}
, (4)

where ri is the position of the ith dipole and G(r, ω0) is given by

G(r, ω0) =
eik0r

4πk2
0r3

[
(k2

0r2 + ik0r− 1)I − (k2
0r2 + 3ik0r− 3)

r⊗ rT

r2

]
. (5)

Here, k0 = ω0/c = 2π/λ is the wavenumber associated with the atomic transition, λ
the transition wavelength, and Γ0 = |℘|2k3

0/3πε0 is the decay rate of a single emitter with
dipole moment strength |℘|.

The scattered electromagnetic field can be also retrieved from a generalized input-
output relation [16,17] once the atomic coherences are known:

E+(r) =
|℘|k2

0
ε0

∑
i

G(r− ri, ω0) · ℘̂iσ̂
ge
i . (6)

Motivated by realistic conditions in natural light-harvesting complexes, this work
focuses on the linear optical properties and the response of the system excited by light of
low intensities. Therefore, we will restrict our study to the case where, at most, a single
excitation is present in the system. In this situation, the first term in the Lindblad operator
Equation (2) (also known as recycling term) only modifies the ground state population
and is not relevant for the observables of interest (e.g., scattered fields or excitation popu-
lation). The remaining terms in the equation can be recast as an effective non-Hermitian
Hamiltonian:

Heff = ∑
ij

(
Ωij − i

Γij

2

)
σ̂

eg
i σ̂

ge
j . (7)

with Ωii = 0. In this situation, the dynamics of the system can then be fully understood
in terms of the collective modes defined by the eigenstates of Heff. Each of these modes
is associated with a complex eigenvalue, whose real and imaginary parts correspond to
the collective mode’s frequency shift and decay rate, respectively. As we will see next,
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these modes have a particularly simple form for a symmetric ring-shaped structure as they
correspond to Bloch functions.

Figure 1. (a) Schematics of a single ring with lattice constant d. Each emitter features an optical dipole
moment (indicated by the red solid arrow) with orientation ℘̂ = sin θ cos φ êφ + sin θ sin φ êr + cos θ êz,
where θ and φ are the polar and azimuth angle, respectively. The vertical, radial, and tangential unit
vectors are indicated by êz, êr, and êθ , respectively. The red dashed arrow denotes the projection of
the dipole onto the ring plane. (b) Double-ring structure: two rings of radius R1 and R2 and lattice
constants d1 and d2 are stacked concentrically and separated by the vertical distance z. The two rings
are, in general, rotated by an angle δ. The dashed-line rectangle encloses the two sites (one from each
of the rings), forming a possible unit cell (see main text).

2.2. Bloch Eigenmodes in Rotationally Symmetric Ring Structures

We will consider here ring structures possessing an N-fold rotational symmetry, similar
to those arising in certain natural light-harvesting complexes [41,42]. In this case, as we will
see, the eigenmodes corresponding to the single-excitation manifold will be of the Bloch
form, i.e., delocalized states with well-defined angular momentum m.

The N-fold rotational symmetry enables defining N different unit cells (for an example,
see Figure 1), which will be denoted by j = 1, · · · , N. Each cell contains, in general, d
dipoles with given orientations ℘̂jα with α = 1, · · · , d. We can then rewrite Equation (7) as

Heff =
N

∑
i,j=1

d

∑
α,β=1

Gαβ
ij σ̂

eg
iα σ̂

ge
jβ , (8)

with Gαβ
ij ≡ ℘̂∗iα ·G(riα − rjβ) · ℘̂jβ. We note that a structure consisting of several coupled

concentric rings with the same emitter number, each ring being rotationally symmetric, can
also be described within this model. In this case, the unit cell contains one site of each of
the rings, and it has as many components as rings.

In the following, we demonstrate that the eigenmodes of the coupled structure are of
the Bloch form. The symmetry of the system imposes that the position and polarization
vectors associated with dipole iα transform under a rotation U of angle 2π/N (around
the ẑ−axis) according to riα → U riα = ri+1α and ℘̂iα → U ℘̂iα = ℘̂i+1α. By noting that
G is a tensor containing terms proportional to the identity and to riα ⊗ rT

jβ, and thus it

transforms under the same rotation as G(riα− rjβ)→ UG(riα− rjβ)U † = G(ri+1,α− rj+1,β),

we can then conclude that Gαβ
ij = Gαβ

i+1,j+1. Thus, this coupling matrix can be relabeled

as Gαβ
i+1,j+1 ≡ Gαβ

` , with ` = j − i (` = 0, · · · , N − 1), as it is a periodic function only
depending on the difference between the two indices i and j. This property allows us to
write the Hamiltonian Equation (8) in terms of Bloch modes as follows:

Heff =
N

∑
i

N−1

∑
`=0

d

∑
α,β=1

Gαβ
` σ̂

eg
iα σ̂

ge
i+`,β

= ∑
m

d

∑
α,β=1

G̃αβ
m σ̂

eg
mασ̂

ge
mβ, (9)
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where G̃αβ
m ≡ ∑N−1

`=0 ei2πm`/NGαβ
` , and we have defined the creation and annihilation opera-

tors of a collective Bloch mode with well defined angular momentum m:

σ̂
eg(ge)
mα =

1√
N

N−1

∑
`=0

e(−)i2πm`/N σ̂
eg(ge)
`α .

Here, the periodicity of the wavefunction under a 2π rotation imposes m to be an integer
value, and thus, N linearly independent eigenstates can be constructed by choosing m =
0,±1,±2, · · · , d±(N − 1)/2e, where d·e is the ceiling function.

Equation (9) is not yet in its full diagonal form (except if the unit cell contains a single
dipole), but it already tells us that the angular momentum is a good quantum number.
For each value of m, the eigenmodes consist in general of a superposition of each excited
dipole in the unit cell, and it can be easily found by diagonalizing the d × d complex
G̃αβ

m matrix, leading to Ĥeff = ∑m,λ(Ωmλ − iΓmλ/2)σ̂eg
mλσ̂

ge
mλ. Here, Ωmλ (Γmλ) is the real

(imaginary) part of the eigenvalue associated with Bloch mode m and λ, whereas σ̂
eg
mλ is the

corresponding creation operator.

3. Results
3.1. Optical Properties of a Single Nano-Ring

Let us first summarize some of the most relevant optical properties for a single ring
with N dipoles, i.e., the case where the unit cell contains just a single dipole. As previously
shown in [35,36], the optical properties of the ring strongly depend on the size of the ring
compared to the light wavelength and on the dipole orientations. In the following, we
focus on two different limiting regimes: a dense large ring (quasi-linear chain) and a small
ring (Dicke limit).

3.1.1. Dense and Large Ring Case (Quasi-Linear Chain Limit)

A large ring with a large number of emitters locally resembles a linear array and can
support optical modes that do not propagate into the three-dimensional space but are rather
confined and guided through the array. These modes correspond to spin-waves (Bloch
modes) whose quasi-momentum along the chain is larger than the light wavenumber k0.
This leads to an evanescent field along the transverse directions to the array. In the very
large ring case, one can identify the linear momentum kz ↔ 2πm/Nd, and the condition
kz > k0 sets the value of the angular momentum of the guided subradiant modes to be
m & m0, with m0 = Nd/λ associated with the light line. Moreover, such states can only
exist if d < λ/2, as the maximum value of kz (or equivalently m) is given by the boundary
of the first Brillouin zone.

Despite these similarities, a striking difference between linear and closed ring configu-
rations is the scaling of the subradiant decay rates with emitter number. Indeed, by closing
the ends of the open chain in a ring structure, losses can be strongly reduced, leading to an
exponential suppression of the decay rates with atom number, in contrast to the polynomial
suppression for the linear chain [17,35].

On the other hand, the modes for which m . m0 are, in general, radiant. The angular
momentum of the brightest state, however, strongly depends on the polarization direction
of the atoms. In Figure 2a we have plotted the collective decay rates versus m for a
ring of N = 100 emitters and different polarization orientations ℘̂i =

{
êz, êr,i, êφ,i

}
. For

comparison, we also plot the result for an infinitely long linear chain with the same
lattice constant (solid line). Clearly, in this regime, the radial and transverse (tangential)
polarization decay rates tend to those for the perpendicularly (longitudinally) polarized
linear chain, with maximally bright modes close to the light line m = m0 (m = 0).

In addition to studying the radiative properties, it is also interesting to analyse the sign
of the frequency shifts in the collective modes arising due to dipole–dipole interactions.
Figure 2c shows the frequency shifts corresponding to Figure 2a. We find that the symmetric
m = 0 mode has a positive (negative) shift when the dipoles are aligned transversely (longi-
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tudinally). This is not so surprising when thinking of interacting classical static dipoles that
repel (attract) each other if they are aligned in parallel (in a head-to-tail configuration). Note
also that in this regime the bright states are always energetically lower than the guided
subradiant modes.

Figure 2. Single ring optical properties. (a,b) Collective decay rates Γm and (c,d) frequency shifts
Ωm versus angular momentum m, depending on polarization orientation (blue open, blue solid, and
orange are for transverse, radial, and tangential polarization, respectively). Left panels correspond
to a large ring with d/λ = 1/3 and N = 100. For comparison, solid lines show the result for an
infinite linear chain with transverse (blue) and longitudinal (orange) polarization. Right panels are
for d/λ = 0.05 and N = 20 (Dicke regime). In this case, there are only one (two) bright modes at
m = 0 (m = ±1) for transverse (tangential and radial) polarization. For tangential polarization, the
bright (dark) modes are energetically low (high), whereas the opposite behavior is found for radial
and transverse polarization.

3.1.2. Small Ring Case (Dicke Limit)

We now focus on a different regime where the ring diameter is small compared to the
light wavelength, i.e., R . λ/2 (Dicke limit). This regime will be relevant in the study of
natural light-harvesting complexes, given the small inter-particle distances that are a few
orders of magnitude smaller than the light wavelength. In this case, the emitters radiate as
if they were a single dipole with effective moment strength and decay rate

℘̂m,eff = N−1/2 ∑
`

ei2πm`/N℘̂`, Γm = |℘̂m,eff|2Γ0. (10)

From this expression, one can then easily see that, for transverse polarization, only the
mode with m = 0 has a non-vanishing value of the effective dipole moment ℘̂m,eff =

√
Nêz,

and thus it is bright and decaying at rate Γm=0 ∼ NΓ0. Instead, for tangential or radial
polarization, there are two bright modes m = ±1 with ℘̂m,eff =

√
N/2

(
êx ± iêy

)
and

Γm=±1 ∼ NΓ0/2. The remaining modes are dark with vanishing effective dipole moment
and Γm → 0. Figure 2c shows the decay rates for a ring in this regime (d/λ = 0.05, N = 20)
with different polarization orientations ℘̂i =

{
êz, êr,i, êφ,i

}
. Moreover, note that, in general,
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a ring with polarization ℘̂i = cos θ cos φ êφ,i + cos θ sin φ êr,i + sin θ êz (i = 1, . . . , N) will
have three different bright modes m = 0,±1 with decay rates Γm=0 = NΓ0 sin2 θ and
Γ±1 = (NΓ0/2) cos2 θ.

In this limit, the collective frequency shifts also acquire a particularly simple co-
sinusoidal form. Indeed, in this regime, the interactions Ωij between first neighboring sites
dominate, and one can approximate

Ωm ≈ N−1 ∑
`

(
Ω`,`+1ei2πm/N + Ω`,`−1e−i2πm/N

)
= 2Ωd cos(2πm/N),

where we use again the discrete rotational symmetry of the ring. Here, the sign and strength
of first-neighbor coupling Ωd strongly depend on the polarization direction. For the same
general polarization as before, Ωd = −(3Γ0/4k3

0d3)
[
cos2 θ(3 cos2 φ− sin2(π/N))− 1

]
[36].

Therefore, the bright modes will be energetically high (low) for transverse/ radial (tangen-
tial) polarization, as shown in Figure 2d for the same parameters as before. Moreover, for
polarization angles cos θ ≈ 1/

√
3 cos φ and a large number of emitters, a nearly degener-

ated flat band emerges, with frequency shifts that basically vanish [36].
Finally, it is also possible to evaluate the electromagnetic field generated by one of

these eigenmodes, using Equation (6). The result will strongly depend on the angular
momentum m, the polarization orientation, and the size of the ring. For the ring geometry,
we find that strongly subradiant modes radiate with very low intensity basically along
the ring plane, whereas the field is evanescent in the transverse direction, as shown in the
top row of Figures 6 and 7 for a ring of N = 9 tangentially polarized emitters and m = 4.
Instead, the brightest modes (which in this case correspond to m = ±1) exhibit a strong field
at the center of the ring that propagates also transversally to the ring plane, as shown in the
same figures.

3.2. Optical Properties of Two Coupled Nano-Rings

We now analyse the case of two rings of radius R1 and R2 that are arranged concentri-
cally and separated by a vertical distance Z. In general, we will also allow in the model a
general rotation of angle δ ∈ [0, 2π/N) of one of the rings around the ẑ-axis (see Figure 1).
In this case, the unit cell consists of only two dipoles (d = 2).

3.2.1. Coupled Identical Non-Rotated Rings (δ = 0)

We first focus on the case of two identical rings (R1 = R2) concentrically stacked
on top of each other and with no rotation angle δ. Because the two rings are identi-
cal, and due to δ = 0, the matrix G̃αβ

m is complex symmetric, and the eigenmodes of
Equation (8) can be chosen as the symmetric and the anti-symmetric superposition of Bloch
states corresponding to each ring with well defined angular momentum m, which will
be denoted as |Ψ±m〉 = (|m, 1〉 ± |m, 2〉)/

√
2 (with |mα〉 ≡ σ̂

eg
mα |g〉). The corresponding

collective frequency shifts and decay rates are then simply given by Ω±m = Ωm ∓Ωinter
m and

Γ±m = Γm ± Γinter
m , where Ωm and Γm are the frequency shift and decay rate corresponding

to a single ring, whereas Ωinter
m = Re[G̃12

m ] and Γinter
m = −2Im[G̃12

m ] are the dispersive and
dissipative inter-ring couplings, respectively.

In Figure 3, we plot for two rings in the Dicke regime (R/λ = 0.05) and separated
by vertical distance Z = 0.5R the decay rates and frequency shifts of the two emerging
bands: symmetric |Ψ+

m〉 (orange line) and anti-symmetric |Ψ−m〉 (blue line). For comparison,
we overlay the result for two independent rings (grey line). We find that, regardless of
the emitters’ polarization, the anti-symmetric solution is always more subradiant than the
symmetric one. Moreover, the darkest state is Ψ−max[m]

, i.e., the anti-symmetric superposition
of the darkest state of a single ring. Looking at the frequency shifts, we find that the behavior
with angular momentum m is similar to that for the single-ring case, but shifted in energy. In
particular, the symmetric band is shifted to lower energies (higher energies) for transverse
(tangential and radial) polarization of the emitters. This fundamental difference in the
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energy shift sign can be intuitively understood in analogy to the energy of two interacting
static dipoles. For the case with transverse polarization, two closer emitters from the two
different rings are in a tail-to-head configuration, thus decreasing their total energy if
they are in phase. Instead, in the case of tangential and radial polarization, the emitters’
polarization is parallel, increasing its energy when they have the same phase. In conclusion,
these results show that the polarization of the emitters can fundamentally modify the optical
properties of the emerging bands and determine the ordering of states in energy, something
that is relevant in the excitation transfer between the different energy bands. In particular,
the energy transfer in photosynthetic processes involving dipole interacting chromophores
is understood via H- and J-aggregation. In J-aggregates, neighboring chromophores are
oriented in a head-to-tail arrangement, resulting in a negative coherent nearest-neighbor
coupling Ωd and the positioning of the optically allowed (m = 0) Bloch mode at the bottom
of the energy band, whereas for H-aggregates, the orientation is parallel and the symmetric
(m = 0) mode is positioned at the top of the energy band.

Figure 3. Two coupled identical non-rotated nanorings (δ = 0). (a–c) Collective decay rates Γm and
(d–f) frequency shifts Ωm versus angular momentum m, for two coupled rings of N = 9 emitters each
and R/λ = 0.05. The blue (orange) dashed lines denote the symmetric (anti-symmetric) eigenmodes.
For comparison, the single-ring solution for the same parameters is shown (grey solid line). The
two rings are separated by the vertical distance Z = 0.5R, and the emitters have transverse, radial,
or tangential polarization (left, middle, or right panels, respectively). For transverse (radial and
tangential) polarization, the symmetric band is lower (higher) in energy.

Another interesting property of this system is the scaling of the most subradiant
state decay rate with the atom number N. For a fixed inter-particle distance d/λ, we
show in Figure 4a the decay rate of the most subradiant state of two coupled rings of N
emitters each, compared to that of a single ring of N emitters (left panel). We observe
that, in addition to a lower decay rate, the double-ring structure always shows a stronger
exponential suppression with the atom number compared to a single ring of the same size
and inter-particle distance d. In Figure 4b, we also compare the double-ring result but
with a single ring of 2N emitters and the same density. We find that, in this case, for small
inter-ring distances z and ring atom number N, the coupling between the two rings is still
strong enough to lead to more subradiance compared to the single-ring case with the same
total number of atoms. However, if N is too large, then the single ring will always support
the most subradiant state, as the curvature and therefore losses will experience a strong
suppression as the system approaches an infinite linear chain, for which it is known that
the decay rates are exactly zero. For this threshold, the exponential suppression with N
overcomes the coupling effect between the two rings.
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Figure 4. Two coupled identical non-rotated nanorings (δ = 0). Scaling of the most subradiant
eigenmode decay rate for two coupled rings (blue) with Z/λ = 0.009 versus the atom number N of
each of the rings. For comparison, we overlay the most subradiant decay rate for a single ring of N
atoms (a) and a single ring of Ntot = 2N atoms (b) (green) with fixed inter-particle distance d/λ = 1/3
and transverse polarization. Similar results are found in the case of tangential polarization.

Interestingly, the most subradiant decay rate does not show a monotonic behavior
with the lattice constant d/λ or the inter-ring distance z/λ. In Figure 5a, we plot the most
subradiant decay rate versus these two ratios. We observe that the decay rate oscillates
due to wave interference and that there can still exist subradiance beyond the values
d/λ = 1/2 and z/λ = 1/2. As previously discussed, such a subradiant state is always
the anti-symmetric superposition of two Bloch waves of well-defined angular momentum
m. For small rings such that d/λ < 1/2, the most subradiant state always corresponds to
the superposition of the two most subradiant states, i.e., |m| = d(N − 1)/2e. However, for
d/λ > 1/2, the value of m that produces the most subradiant state periodically varies. This
behavior is shown in Figure 5b, where we have plotted the overlap of the Bloch waves of a
particular absolute value of the angular momentum. Additionally, the Bloch waves can be
in a symmetric or antisymmetric superposition, and even the symmetric superposition of
the symmetric m = 0 modes can lead to subradiance at various distances.

We finally discuss the striking differences in the field patterns generated by the eigen-
modes |Ψ±m〉, with m = 0, 1, 4. In Figures 6 and 7, we plot (middle and bottom rows) the
field intensity as a function of real space position for two identical coupled concentric rings
of N = 9 emitters with tangential polarization, lattice constant d/λ = 0.1, and separated
by a vertical distance Z/λ = 0.2. For comparison, in the top row, we have added the result
for a single ring with the same parameters. We find that the symmetric superposition
shows a pattern that is very similar to the single-ring case. The brightest mode (m = 1
in this case) shows an enhanced field intensity along the central axis of the rings. In the
symmetric mode, the field is enhanced in the region between the two rings, whereas in
the anti-symmetric superposition, it shows a strikingly different pattern with a suppressed
field in the region between the two rings.
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Figure 5. Two coupled identical non-rotated nanorings (δ = 0). (a) Most subradiant decay rate of
two coupled rings with N = 9 emitters and transverse polarization, as a function of ring constant
d/λ and inter-ring distance z/λ. Subradiant states can exist even beyond the threshold d/λ < 1/2
and z/λ < 1/2 due to destructive wave interference. (b) Overlap of the most subradiant eigenmode
with the Bloch waves corresponding to angular momentum |m|. The Bloch waves of each ring can
form symmetric and antisymmetric superpositions, and it can be seen that, at various distances, the
symmetric superposition of m = 0 Bloch waves can be subradiant. The parameters are identical to (a)
and the overlap oscillates when varying the ring parameters as soon as d, z & λ/2.

Figure 6. Two coupled identical non-rotated nanorings (δ = 0). Field intensity pattern versus real
space coordinates in units of the transition wavelength λ (cut at z = 6R) generated by the eigenmodes
with m = 0, 1, 4 as indicated in the panels. Middle and bottom rows correspond to the symmetric and
anti-symmetric eigenmodes, respectively. Top panels are for the single ring, for comparison (N = 9,
d/λ = 0.1, Z/λ = 0.2, tangential polarization).
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Figure 7. Two coupled identical non-rotated nanorings (δ = 0). Field intensity pattern versus real
space coordinates (cut at y = 6R) generated by the eigenmodes with m = 0, 1, 4 as indicated in
the panels. Middle and bottom rows correspond to the symmetric and anti-symmetric eigenmodes,
respectively. Top panels are for the single ring, for comparison (N = 9, d/λ = 0.1, Z/λ = 0.2,
tangential polarization).

3.2.2. Coupled Unequal Rings with Rotation (δ 6= 0)

We now consider the more general case where the two rings can have a different
radius and are rotated by an angle δ. Note that, in this case, the matrix describing the single-
excitation manifold G̃αβ

m is, in general, not complex symmetric. However, for the equal
radius case (R1 = R2) in the Dicke regime, the off-diagonal elements satisfy G̃αβ

m = (G̃βα
m )∗

(α 6= β). This leads to eigenmodes of the form |Ψ±m〉 = (|m, 1〉 ± eiη |m, 2〉)/
√

2 with
η = atan

[
ImG̃12

m /ReG̃12
m
]
.

The behavior of the eigenmodes and eigenvalues with the rotation angle δ is not
trivial and strongly depends on the polarization orientation and inter-particle distances.
For transverse polarization and small vertical separation between the rings (Z = 0.1R,
R/λ = 0.05), we find a value of δc ∼ 0.15 for which the frequencies of the two eigenmodes
with m = d(N − 1)/2e feature an avoided level crossing. Interestingly, at this point, the
nature of the state changes. Whereas for δ < δc, the highest energy state is radiant with
η ∼ 0, for δ > δc the highest energy state becomes subradiant with η ∼ π. These features
are shown in Figure 8 (top panels) and disappear for a too small value of Z. Similar results
can be found for other values of m. Moreover, the decay rate of the most subradiant state
presents a broad minimum around π/N and with η ∼ π/2, i.e., when the sites of the
second ring lie exactly in between those of the first ring. At this point, and because the
inter-particle distances are larger, the frequency shifts are also smaller.

Similar results can be found for other polarization orientations and also when varying
the relative radius between the two rings. As an example, we show in Figure 8 (bottom
panels) the same analysis for two co-planar rings (Z = 0) with tangential polarization
and R1 = 0.9R2. As can be seen in the figure, in this case, there is also an avoided level
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crossing (inset) at value δc ∼ 0.07, where the state of the highest energy state changes to be
subradiant. As in the previous case, we also find the broad minimum around δ ∼ π/N,
where the frequency shifts almost vanish. It is worth noting that in the natural light-
harvesting complex LH2 (see next section) the dipoles of the B850 band are arranged in a
similar configuration with rotation angle δ ∼ π/N. An intriguing question is whether this
is an accidental coincidence or whether the broad minimum emerging in the decay rate,
which is thus robust against small fluctuations in the position of the emitters, can play a
relevant role in the energy transfer and the light-harvesting processes.

Figure 8. Two coupled rotated nanorings (δ 6= 0). (Top panels) Two identical nanorings
(R = 0.05λ) with transverse dipole orientation separated by a vertical distance Z = 0.1R, de-
pending on the rotation angle δ ∈ [0, 2π/18]: (a) decay rate and (b) frequency shift of the two
eigenmodes with m = d(N − 1)/2e. An avoided level crossing emerges at δ ∼ 0.15, where the
highest energy level changes from being subradiant to radiant, and from being antisymmetric to
symmetric. (Bottom panels) Two coplanar unequal nanorings (Z = 0) with radius R1 = 0.05λ and
R2 = 0.9R1 and tangential dipole orientation, depending on the rotation angle δ: (c) decay rate and
(d) frequency shift of the two eigenmodes with m = d(N− 1)/2e. Similarly, as before, an avoided
level crossing (shown amplified in the inset) emerges at δ ∼ 0.07, where the highest energy level
changes from being radiant to subradiant, and from being symmetric to anti-symmetric.

3.3. B850 and B800 Bands in LH2

As already anticipated, the study of the optical properties of two (or more) coupled
nanorings is motivated by the existence of similar structures in nature that enable efficient
light-harvesting and energy transfer [42,43,45,63–71]. Indeed, whereas most biological sys-
tems are soft and disordered, photosynthetic complexes in certain purple bacteria exhibit
crystalline order. The complexes are composed of antenna units that show a n-fold sym-
metry [65] that, in turn, are arranged to form a maximally packed hexagonal pattern [72].
Purple bacteria are among the oldest living organisms and are most efficient in turning sun-
light into chemical usable energy. One of the most common species (Rhodopseudomonas
Acidophila) contains two well-differentiated types of complexes: a larger one containing
the reaction center where the energy conversion takes place (LH1), and a second one (LH2)
that is more abundant and whose main role is the absorption of photons and efficient
subsequent energy transfer towards the LH1 units. The two complexes are formed by the
same light-absorbing pigments: carotenoids (absorbing wavelengths ranging from 400 to
550 nanometers) and bacteriochlorophyll-a (BChla, absorbing in the red and infrared). The
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BChla features a two-level optical dipole transition around 800–875 nanometers (depending
on the complex). These pigments are sustained by a hollow cylinder of apoproteins whose
diameter is a few tens of angstroms.

Here we will focus on the LH2 complex and the optical properties displayed by the
BChla. Early X-ray crystallography data [41] together with subsequent molecular dynamics
simulations [73] suggest a ring structure with 9-fold symmetry. This structure consists of a
ring of 9 emitters maximally absorbing at 800 nm (the so-called B800 band) concentrically
arranged and coupled to another two-component ring with 9-fold symmetry (with a total
of 18 emitters) maximally absorbing at 850 nm (the so-called B850 band). The dipole
orientation also preserves the 9-fold rotational symmetry and is mostly contained in the
plane of the ring, except for a small vertical component (see inset in Figure 9). Therefore,
the whole structure can be regarded as a ring of 9-unit cells of three components (denoted
by purple, blue, and yellow in the figure).

In the following, we analyse the eigenmodes and collective optical properties of the
two bands (B800 and B850) using the parameters extracted from [65]. This analysis can be
relevant for the understanding of the efficient energy transfer between the B800 and the
B850 bands, but also for energy transfer between the LH2 and the LH1 units. Taking into
account that the lifetime of the excited state in the BChla is of the order of nanoseconds,
the energy transfer process is expected to occur at a much faster time scale. Figure 9
shows and compares the decay rates and frequency shifts of the collective eigenmodes
as a function of the angular momentum quantum number m, considering the rings are
uncoupled (left) or coupled (right). The dispersive couplings between the two components
of the B850 band (denoted by yellow and blue in the figure) are very large due to the
small inter-particle distances, and of the order of 106Γ (being Γ ∼ 25 MHz the estimated
decay rate of the excited state in the dipole transition). This leads to the emergence of a
two-band structure with large frequency splitting where the two components of the B850
ring strongly hybridize: a higher energy band that is mostly subradiant, and a lower energy
band containing only two bright modes at m = ±1. For completeness, we show in Figure 10
the excited state population of each of the components for the coupled system eigenmodes.
The excitation is clearly delocalized over the two components of the ring.

In the inset of Figure 10, we show the small contributions of the lower double-ring
configuration to the excited state population of the third band. A similar behavior emerges
in the case of the first and second bands, where the B800 ring gives a non-vanishing
contribution to the population of the first and second bands.

In contrast, the coupling between the B850 and B800 band (indicated by purple in the
plot) is ten times smaller (of the order 105Γ), whereas the energy transition difference is of
the order of 107Γ, and therefore, the B800 band remains mostly decoupled. However, it is
worth noting that after the B850 bands are coupled, the higher energy band lies close to the
B800 band.

Finally, let us point out a very special property of naturally occurring geometry. Indeed,
it can be seen that the actual geometry is very close to the critical transition point, where
the up-shifted eigenstate energies of the lower double ring just overlap with the upper ring
energies. For this, in Figure 11, we plot the corresponding exciton energies as a function of
the overall size of the molecule, where we only consider small size variations Rα,i = αRi
around the actual measured size. We see that close below the value of α = 1 the energy
bands cross and eigenstates appear that possess similar contributions of all three rings.
Close to this resonance condition, any excitation in one of the rings is thus coherently
transported to the other rings in a short time. Interestingly, the crossing point depends on
the angular index m shifting further away from α = 1 with growing m. From this sensitivity
behavior, one could expect tunability of the ring properties via the local refractive index or
small deformations of the complex.
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Figure 9. LH2 dipole configuration. (a,b) Collective decay rates and (c,d) frequency shifts as a
function of angular momentum index m for the LH2 structure (B800 and B850 bands) parameterized
according to [65]. Left and right panels correspond to uncoupled and coupled rings, respectively. The
B850 band consists of a two-component unit cell ring with 9-fold symmetry (denoted by blue and
orange), whereas the B800 band is a single-component ring with 9-fold symmetry (denoted by violet).
The B800 ring is far in energy and thus only couples very weakly to the B850 rings. However, the two
components of the B850 band are strongly coupled, due to the reduced inter-particle distance, which
leads to a broad dispersion in the frequency shifts. Two bands emerge: a darker band that is higher
in energy and close to the B800 band (denoted by cyan), and a brighter band (with two bright modes
corresponding to m = ±1) that is lower in energy (denoted by green). This band structure is relevant
for the excitation energy transfer occurring between the B800 and B850 bands.

Figure 10. LH2 dipole configuration. Individual ring occupation probabilities for each of the three
eigenmodes as a function of angular momentum index m. Blue and orange correspond to the two
B850 rings (as indicated in Figure 9), whereas violet is the occupation of the B800 ring. Each panel is a
different eigenmode, indicated with the same code color as in Figure 9.
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Figure 11. LH2 dipole configuration. (a) Frequency shift and (b) ring occupation probabilities for
the third band as a function of the overall size of the molecule at the m = 1, 4 mode. The size of ring i
is varied via Rα,i = αRi around the actual size (α = 1). Solid (dashed) lines correspond to the m = 1
(m = 4) mode. The color code is equivalent to the one in Figure 9. Dependent on the mode m the
second and third bands as well as the excited state populations cross at αc < 1. For systems with
α < αc, the third band is occupied by the B850 ring, whereas for α > αc, it is occupied by the B800
ring.

4. Conclusions

Our calculations show that structures involving multiple concentric rings exhibit strongly
modified exciton properties and, in particular, feature extremely subradiant states with sub-
wavelength confined fields. For two identical rings at close enough distances, we find that
the anti-symmetric superposition of the individual ring radiative modes, which inherits the
angular symmetry of the setup, is always more subradiant than the corresponding symmetric
combination. In particular, the most subradiant states are obtained by choosing the individual
ring’s darkest eigenmodes. We have shown that the spontaneous emission of such states
decays faster with the emitter number compared to the single-ring case.

Moreover, important radiative properties, such as the ordering in frequency of the
optical modes, can be controlled via relative rotation or size differences of two otherwise
identical rings. For instance, we find that by modifying these parameters, the highest
energy level changes from being subradiant to superradiant.

When we apply our model to the specific geometry of the triple ring LH2 structure
including the natural distances, energy shifts, and dipole polarization, we find most of the
collective modes are extremely dark. Most interestingly, the collective energy shifts from
the lower double B850 ring structure, for which the inter-particle distances are very small,
is of the order of the 50 nm energy shift of the upper ring, so that the energy spectrum
spans almost the full gap between the rings. More specifically, two bands emerge due to
the strong coupling between the two B850 components: a subradiant band that is higher in
energy and close to the B800 band and a brighter band that is much lower in energy. The
realistic dipole orientations and distances lead to only two bright modes corresponding
to a quasi-symmetric superposition of the angular momentum m = 1 and m = −1 modes.
This emerging band structure could be helpful for any phonon-induced collective energy
transfer processes, which are, of course, beyond our model here, but we plan to explore in
future work.
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58. Vukajlovic-Plestina, J.; Kim, W.; Dubrovski, V.G.; Tütüncüoğlu, G.; Lagier, M.; Potts, H.; Friedl, M.; Fontcuberta i Morral, A.
Engineering the Size Distributions of Ordered GaAs Nanowires on Silicon. Nano Lett. 2017, 17, 4101–4108. [CrossRef]

59. Swinkels, M.Y.; Campo, A.; Vakulov, D.; Kim, W.; Gagliano, L.; Steinvall, S.E.; Detz, H.; De Luca, M.; Lugstein, A.; Bakkers, E.;
et al. Measuring the Optical Absorption of Single Nanowires. Phys. Rev. Appl. 2020, 14, 024045. [CrossRef]

60. Holzinger, R.; Oh, S.A.; Reitz, M.; Ritsch, H.; Genes, C. Cooperative subwavelength molecular quantum emitter arrays. Phys. Rev.
Res. 2022, 4, 033116. [CrossRef]

61. Lehmberg, R. Radiation from an N-atom system. I. General formalism. Phys. Rev. A 1970, 2, 883. .
PhysRevA.2.883. [CrossRef]

62. Ostermann, L.; Zoubi, H.; Ritsch, H. Cascaded collective decay in regular arrays of cold trapped atoms. Opt. Express 2012,
20, 29634–29645. [CrossRef]

63. Cogdell, R.J.; Gall, A.; Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: From single
molecules to in vivo membranes. Q. Rev. Biophys. 2006, 39, 227–324. [CrossRef] [PubMed]

64. Mirkovic, T.; Ostroumov, E.E.; Anna, J.M.; Van Grondelle, R.; Govindjee; Scholes, G.D. Light absorption and energy transfer in
the antenna complexes of photosynthetic organisms. Chem. Rev. 2017, 117, 249–293. [CrossRef]

65. Montemayor, D.; Rivera, E.; Jang, S.J. Computational Modeling of Exciton-Bath Hamiltonians for Light Harvesting 2 and
Light Harvesting 3 Complexes of Purple Photosynthetic Bacteria at Room Temperature. J. Phys. Chem. B 2018, 122, 3815–3825.
[CrossRef]

66. Caycedo-Soler, F.; Schroeder, C.A.; Autenrieth, C.; Pick, A.; Ghosh, R.; Huelga, S.F.; Plenio, M.B. Quantum redirection of antenna
absorption to photosynthetic reaction centers. J. Phys. Chem. Lett. 2017, 8, 6015–6021. [CrossRef]

67. Jang, S.J.; Mennucci, B. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 2018, 90, 035003. [CrossRef]
68. Scholes, G.D.; Fleming, G.R. On the Mechanism of Light Harvesting in Photosynthetic Purple Bacteria: B800 to B850 Energy

Transfer. J. Phys. Chem. B 2000, 104, 1854–1868. [CrossRef]
69. Cheng, Y.C.; Silbey, R.J. Coherence in the B800 Ring of Purple Bacteria LH2. Phys. Rev. Lett. 2006, 96, 028103. [CrossRef]
70. Jang, S.J.; Newton, M.D.; Silbey, R.J. Multichromophoric Förster resonance energy transfer from b800 to b850 in the light

harvesting complex 2: Evidence for subtle energetic optimization by purple bacteria. J. Phys. Chem. B 2007, 111 24, 6807–6814.
[CrossRef]

71. Olaya-Castro, A.; Lee, C.F.; Olsen, F.F.; Johnson, N.F. Efficiency of energy transfer in a light-harvesting system under quantum
coherence. Phys. Rev. B 2008, 78, 085115. [CrossRef]

72. Cleary, L.; Chen, H.; Chuang, C.; Silbey, R.J.; Cao, J. Optimal fold symmetry of LH2 rings on a photosynthetic membrane. Proc.
Natl. Acad. Sci. USA 2013, 110, 8537–8542. [CrossRef]

73. Scholes, G.D.; Gould, I.R.; Cogdell, R.J.; Fleming, G.R. Ab Initio Molecular Orbital Calculations of Electronic Couplings in the
LH2 Bacterial Light-Harvesting Complex of Rps. Acidophila. J. Phys. Chem. B 1999, 103, 2543–2553. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1126/science.1244324
http://dx.doi.org/10.1021/acs.nanolett.7b00842
http://dx.doi.org/10.1103/PhysRevApplied.14.024045
http://dx.doi.org/10.1103/PhysRevResearch.4.033116
http://dx.doi.org/10.1103/PhysRevA.2.883
http://dx.doi.org/10.1364/OE.20.029634
http://dx.doi.org/10.1017/S0033583506004434
http://www.ncbi.nlm.nih.gov/pubmed/17038210
http://dx.doi.org/10.1021/acs.chemrev.6b00002
http://dx.doi.org/10.1021/acs.jpcb.8b00358
http://dx.doi.org/10.1021/acs.jpclett.7b02714
http://dx.doi.org/10.1103/RevModPhys.90.035003
http://dx.doi.org/10.1021/jp993435l
http://dx.doi.org/10.1103/PhysRevLett.96.028103
http://dx.doi.org/10.1021/jp070111l
http://dx.doi.org/10.1103/PhysRevB.78.085115
http://dx.doi.org/10.1073/pnas.1218270110
http://dx.doi.org/10.1021/jp9839753

	Introduction
	Materials and Methods
	Theoretical Framework: Bloch Eigenmodes
	Bloch Eigenmodes in Rotationally Symmetric Ring Structures

	Results
	Optical Properties of a Single Nano-Ring
	Dense and Large Ring Case (Quasi-Linear Chain Limit)
	 Small Ring Case (Dicke Limit)

	Optical Properties of Two Coupled Nano-Rings
	Coupled Identical Non-Rotated Rings (= 0)
	Coupled Unequal Rings with Rotation (=0)

	B850 and B800 Bands in LH2

	Conclusions
	References

