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Abstract: Amorphous Al2O3-Y2O3:Er nanolaminate films are fabricated on silicon by atomic layer
deposition, and ~1530 nm electroluminescence (EL) is obtained from the metal-oxide-semiconductor
light-emitting devices based on these nanofilms. The introduction of Y2O3 into Al2O3 reduces the
electric field for Er excitation and the EL performance is significantly enhanced, while the electron
injection of devices and the radiative recombination of doped Er3+ ions are not impacted. The 0.2 nm
Y2O3 cladding layers for Er3+ ions increase the external quantum efficiency from ~3% to 8.7% and
the power efficiency is increased by nearly one order of magnitude to 0.12%. The EL is ascribed
to the impact excitation of Er3+ ions by hot electrons, which stem from Poole-Frenkel conduction
mechanism under sufficient voltage within the Al2O3-Y2O3 matrix.
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1. Introduction

Rare earth (RE) ions are generally efficient luminescence centers in various matrices.
Nowadays diverse RE-doped insulating materials have been developed for the applications
in solid state lasers and phosphors [1,2]. Erbium (Er) ions are one of the most researched lu-
minescence centers due to their near-infrared (NIR) 1.53 µm emission which coincides with
the window of optical telecommunication [3,4] Aiming for the realization of Si-integrated
optoelectronics, the 1.53 µm electroluminescence (EL) from Er3+ ion has been researched
extensively in many materials, including SiOx, SiNx, TiO2 and ZnO [5–8]. However, the ef-
ficiencies of the devices based on these aforementioned materials are still far from practical
application, due to the limitations in doping tolerance and excitation efficiency. Y2O3 is
one of the attractive doping hosts for RE ions as the substitution of other RE3+ ions in Y2O3
is quite easy without charge compensation and severe lattice distortion. In addition, Y3+

ions are not luminescent and Y2O3 has a large bandgap (5.8 eV) and high stability [9,10].
In our previous study, Al2O3 has been proved to be a suitable matrix for the excitation of
RE3+ ion to realize the EL emissions but the doping concentration is still limited [11–13].
Therefore, using Y2O3 as a cladding layer in Er-doped Al2O3 could utilize the merits of
both oxides, the Er-clustering and resultant concentration quenching could be reduced
while the optical-active Er3+ ions can be excited more effectively [14].

In this work, we fabricate the metal-oxide-semiconductor light-emitting devices
(MOSLEDs) based on the amorphous Al2O3-Y2O3:Er nanolaminate films, which are de-
posited using atomic layer deposition (ALD). Due to the unique growth mechanism based
on the successive self-limiting gas-surface reactions, ALD realizes the precise control of the
thickness of different compositions with excellent homogeneity [15,16]. By alternating de-
position sequence of Al2O3 and Y2O3, nanolaminate Al2O3-Y2O3:Er films with interlayers
of different thicknesses are fabricated. Under sufficient forward bias, such devices exhibit
~1530 nm emissions originating from the infra-4f transitions of Er3+ ions. Inserting of the
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Y2O3 cladding layers increases the external quantum efficiency (EQE) from 3% to 8.7% and
almost upgrades the power efficiency (PE) by one order of magnitude, while the excitation
and recombination of the Er3+ ions are not affected. We believe that this work contributes
to the development of silicon-based light sources for integrated optoelectronic applications.

2. Experimental

The luminescent Al2O3-Y2O3:Er nanolaminates were grown on <100>-oriented n-
type silicon (2–5 Ω·cm) using the thermal ALD system (NanoTech Savannah 100, Cam-
bridge, MA, USA). The growth chamber was first evacuated to a base pressure of 0.3 Torr.
Trimethylaluminum [TMA, Al(CH3)], Y(THD)3 and Er(THD)3 (THD = 2,2,6,6-tetramethyl-
3,5-heptanedionate) were used as the precursors for Al2O3, Y2O3 and Er2O3, respectively,
with ozone acting as the oxidant. During the ALD process, the Al precursor was main-
tained at room temperature (RT), while Y and Er precursors were maintained at 180 ◦C and
190 ◦C, respectively. The precursor delivery lines were heated at 190 ◦C. N2 was used as the
carrier and purge gas with a flow rate of 20 sccm. The pulse time for Al and RE precursors
are 0.015 s and 2 s, respectively. One growth cycle consists of one precursor pulse, the
5 s N2 purge, a 1.8 s ozone pulse, and the 9 s N2 purge. Based on the former research,
the Er dopant cycles are fixed at 2, which are preferable concerning both the efficient
doping and the absence of RE clustering [11,13,17,18]. The substrates were maintained at
350 ◦C, and the growth rates for the Al2O3, Y2O3 and Er2O3 films are calibrated to 0.79,
0.2 and 0.23 Å/cycle respectively, which agree well with the previous reports [19]. During
the deposition, the dopant Er2O3 atomic layers were sandwiched in two cladding Y2O3
layers of designed thickness, and then the Al2O3 interlayers with certain thickness and
these Y2O3-Er2O3-Y2O3 composite nanolaminates were deposited repeatedly to achieve
the nanolaminates with the deposition sequence of Al2O3-Y2O3-Er2O3-Y2O3. In order to
explore the Al2O3-Y2O3:Er nanofilms, firstly for the Al2O3-Y2O3:Er nanofilms of different
Y2O3 cladding layers, the thickness of Al2O3 interlayers was fixed at 3 nm and the two
Y2O3 cladding layers (x nm) in each supercycle were changed from 0 to 0.2, 0.5 and 1.0 nm
(with their growth cycles varied from 10 to 50), the same repeat numbers of 16 for the
supercycles resulted into the total thickness of 48.6, 55.0, 64.6, and 80.6 nm for the Al2O3-
Y2O3(x nm):Er nanolaminates. The calculated nominal doping concentrations of Er are
0.51–0.34 at%. Secondly, for the Al2O3-Y2O3:Er nanofilms of different Al2O3 interlayers,
the thickness of Y2O3 cladding layers were fixed at 0.2 nm and the Al2O3 interlayers (y nm)
in each supercycle were changed from 0.5 to 1, 2, 3 and 5 nm. To achieve the Al2O3-Y2O3:Er
nanofilms of the total thickness of ~65 nm, the repeat numbers of the supercycle were
changed from 69 to 45, 27, 19 and 12 for the Al2O3(y nm)-Y2O3:Er nanolaminates. The
calculated nominal doping concentrations of Er are 4.28–0.29 at%. Here the deposition
velocities and the growth cycles in recipes, and the densities of oxides (Al2O3, Y2O3, Er2O3)
are used to calculate the corresponding dopant amount of Er3+ ions. After the deposition,
the films were annealed at 800 ◦C in N2 atmosphere for 1 h to enable activation of the
dopants. Subsequent device procedures were as previously mentioned [12,13,17,18], result-
ing in the multilayer-structured MOSLEDs of ZnO:Al/TiO2-Al2O3/Al2O3-Y2O3:Er/Si/Al.
The top ZnO:Al electrodes were lithographically patterned into 0.5 mm circular dots, while
the TiO2-Al2O3 nanolaminates were used to enhance the operation stability of the devices.

The film thickness was measured by an ellipsometer with a 632.8 nm He-Ne laser at
an incident angle of 69.8◦. The phase and the crystal structure of the films were identified
by an X-ray diffractometer (XRD, D/max 2500/pc, Rigaku) using the Cu Kα radiation. To
activate EL from the MOSLEDs, appropriate forward bias was applied with the negative
voltage connecting to the n-Si substrates. EL and Current-Voltage (I–V) characteristics were
recorded by a Keithley 2410 SourceMeter. The EL signal was collected by a 0.5 m monochro-
mator and detected by an InGaAs detector connected to a Keithley 2010 multimeter. The
absolute EL power from the device surface was measured using a calibrated Newport
1830-C optical power-meter with an 818-IR Sensor. All measurements were performed
at RT.
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3. Results and Discussion

The XRD patterns of all the Al2O3-Y2O3:Er films annealed at 800 ◦C confirm that the
nanolaminates are amorphous, one representative XRD pattern from the nanolaminate
using 3 nm Al2O3 interlayers and 0.2 nm Y2O3 cladding layers is shown in Figure 1.
The Al2O3 layers are not crystalized at such a relatively low temperature of 800 ◦C that
beneficial for the EL performance from RE-doped Al2O3 films, while the crystallization of
the sub-nanometer Y2O3 layers is restricted [17,20]. The amorphous nanolaminate films are
quite smooth under the observation of scanning electron microscope, with a root-square
roughness of only 0.56–0.7 nm scanned by the atomic force microscopy (AFM, Dimension
Icon, Bruker) [21].
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Figure 1. The XRD pattern for the representative Al2O3-Y2O3:Er nanolaminate film after annealing
at 800 ◦C.

Figure 2a illustrates the schematic diagram for the MOSLEDs and the structure and
deposition sequence of the luminescent nanolaminates. Figure 2b shows the NIR EL spectra
of MOSLEDs based on the Al2O3-Y2O3:Er films of different Y2O3 cladding layers (with
the thickness of x nm). The EL peaks centered at ~1530 nm correspond to the infra-4f
4I13/2→4I15/2 transitions of the Er3+ ions. The presence of other shoulder peaks is ascribed
to the splitting levels associated with the Stark effect [22]. These EL peaks are similar in
positions and sharps in the Al2O3-Y2O3:Er nanofilms with different Y2O3 cladding layers,
thus the incorporation of Y2O3 cladding layers imposes no apparent effect on the Er3+ intra-
4f transitions. In comparison with the Er-emissions from different matrices, the spectra
also confirm that the Al2O3-Y2O3:Er films are amorphous due to the absence of companion
peaks [20,23].
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inate films. (b) The NIR EL spectra for the Al2O3-Y2O3:Er MOSLEDs with different Y2O3 cladding
layers (with the thickness of x nm) under the injection current of 1 µA.

Figure 3a presents the dependence of the 1530 nm EL intensities and the injection
currents on the applied voltages for the Al2O3-Y2O3:Er MOSLEDs with different Y2O3
cladding layers (with the thickness of x nm). These EL–V and I–V curves are similar
with our previous reports on the MOSLEDs based on RE-doped oxides, with the typical
characteristic of MOS structures [13,18,24,25]. Beneath the threshold electric field, the
defect states contribute to the low background currents. In the working voltage region, the
currents increase exponentially until breakdown. The difference on the current injection
will be discussed afterwards concerning the conduction mechanism. All the EL intensities
also present an exponential relationship with the applied voltages until reaching saturation.
The MOSLED with 0.2 nm Y2O3 cladding layers presents the highest EL intensity, with the
lowest threshold voltage and the highest injection current. The devices with thicker Y2O3
layers underperform in EL intensities and the injection currents are restricted. Despite the
uncertainty brought about by the device preparation, Y2O3 cladding layers with suitable
thickness can effectively enhance the current injection and promote the EL emissions from
these Al2O3-Y2O3:Er MOSLEDs. As previously reported, the incorporation of Y3+ ion
makes the crystal field around Er3+ ions less symmetric and introduces distortion in the
crystal field, moreover the Er3+ ions are dispersed to suppress the concentration quenching,
resulting in the enhanced radiation probability [26]. Therefore, the 0.2 nm Y2O3 layers
act as cladding layers that inhibit the Er-clustering, while the thicker Y2O3 layers inhibit
the electron injection, which is ascribed to the higher dielectric index of Y2O3 and the
disruptive interfaces among Al2O3 and Y2O3 interlayers.
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E1/2 (P–F plots of the I–V characteristics) for the Al2O3-Y2O3:Er MOSLEDs with different Y2O3

interlayers.

Figure 3b shows the dependence of EL intensities on the injection currents for the
Al2O3-Y2O3:Er MOSLEDs with different Y2O3 cladding layers. The threshold currents
for all the devices are ~0.2 µA, the EL intensities and the injection currents present linear
relationship. In comparison, the devices with different Y2O3 cladding layers exhibit similar
EL, which increases more prominently than that based on the Al2O3:Er film. Y2O3 also
lessens the saturation of EL intensities at higher injection currents. Considering the thick
interlayers among RE layers (the Al2O3 interlayers with the thickness of at least 3 nm), the
acceleration distance for hot electrons is sufficient; therefore the enhanced EL should result
from more optical-active Er dopants as the Er3+ ions disperse into the Y2O3 layers and the
Er-clustering is suppressed.

In our previously reported MOSLEDs based on RE-doped Al2O3, the RE-related EL is
triggered by the direct impact excitation of the RE ions by the hot electrons accelerated under
sufficient bias voltages [12,25]. As the I–V characterization are accordingly comparable,
it is rational to ascribe the NIR EL from these Al2O3-Y2O3:Er MOSLEDs to the same
mechanism. Considering the high bandgap of the matrix materials and the barrier for
electrons to be injected from the Si substrates into the conduction band of the oxides,
the current conduction of these MOSLEDs has been ascribe to the Poole-Frenkel (P-F)
mechanism, in which the electrons hop via the defect-related trap states under sufficient
electrical field [11,26,27]. In simplicity, the plot of the ln(J/E) versus E1/2 presents linear
relationship in P-F conduction mechanism, where J and E are the current density and
the electric field, respectively [28,29]. Figure 3c shows the plots of the I–V characteristics
derived from Figure 3a, the electrical fields across the luminescent films are roughly
calculated in terms of electrostatics [30], and the well-defined linearity is established for
all the MOSLEDs in the EL-enabling region. Thus the electron transport through the
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Al2O3-Y2O3:Er nanofilms is governed by the P-F mechanism. These electrons tunnel
into the conduction band of oxides and transport by hopping among trap states in the
Al2O3-Y2O3 nanolaminates under sufficient electric field. Certain parts of the electrons are
accelerated therein and become hot electrons that excite the Er3+ ions by inelastic impact,
the subsequent recombination gives rise to the characteristic EL emissions. Apparently, the
Y2O3 cladding layers decrease the working electric field prominently. As mentioned in the
discussion on the I–V characteristics, the Y2O3 cladding layers increase both the injection
currents and EL intensities, we conclude that ultrathin Y2O3 layers introduce defect sites
within Al2O3, via which electrons transport by the P-F hopping mechanism; therefore the
injection currents are enhanced. Since the accelerated electrons collide with the doped
Er3+ ions and contribute to the NIR EL, adding the aforementioned crystal field distortion
and cluster dispersion effects of the Y2O3 on Er3+ ions, the EL performance are greatly
enhanced by the Y2O3 cladding layers in Al2O3 films. However, the Y2O3 cladding layers
should be thin enough to not impact the carrier transport which could be ascribed to the
formation of distinct Al2O3-Y2O3 interfaces when using thicker Y2O3 cladding layers.

In evaluation of the thickness of Al2O3 interlayers on the EL performance, the de-
pendence of the EL intensities from each dopant cycle on the injection currents for the
Al2O3-Y2O3:Er MOSLEDs with different Al2O3 interlayers (with the thickness of y nm) are
shown in Figure 4a, the thickness of Y2O3 cladding layers is the optimal 0.2 nm. Again,
the EL intensities increase almost linearly with the injection currents. The difference on the
EL–I–V characteristics among these MOSLEDs with different Al2O3 layers are small (not
shown herein), and the increase in EL intensity with the Al2O3 thickness could be ascribed
to the less concentration quenching of doped Er3+ ions together with the longer acceleration
distance. When the thickness of Al2O3 declines, the EL intensity decreases greatly due
to the cross-relaxation of Er3+ between adjacent dopant layers when the inter-distance
(the Al2O3 thickness) is smaller enough, and the limited acceleration length for the hot
electrons to gain energy to excite the Er3+ ions [18,21,31–33]. Cross-relaxation is a common
phenomenon that occurs among the same ions or different ions of similar energy intervals.
One ion in the excited state (4I13/2 in the case of Er3+ ion) transfer the energy to another
one (in the ground state of 4I15/2 in this case of Er3+ ions), excite the latter to higher energy
levels (4I13/2) while relaxing itself to lower energy levels (4I15/2) without radiation. The
interaction of energy transfer by cross-relaxation could finally disperse the excitation energy
through phonons instead of luminescent emissions.
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Figure 4. (a) The dependence of EL intensities on the injection currents for the Al2O3-Y2O3:Er
MOSLEDs with different Al2O3 interlayers (with the thickness of y nm), herein the EL intensities are
divided by the cycle numbers to manifest the emissions from each Er cycle. (b) The integrated EL
intensity per cycle as a function of the thickness of the Al2O3 interlayers under different injection currents.

In the RE-doped Al2O3 MOSLEDs, the Al2O3 sublayer thickness affects the cross
relaxation between excited RE ions, and the acceleration distance for injected electrons.
Figure 4b shows the dependence of the integrated 1530 nm EL intensity per Er cycle on the
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thickness of Al2O3 interlayers under different injection currents. Under all these injection
currents, with the increase in the thickness of Al2O3 interlayers, the contribution of single
Er cycle to the EL intensity firstly increases and then saturates as the Al2O3 interlayer
thickness reaches 3 nm. This is still in consistency with the common characteristic for the
luminescent RE3+ ions in Al2O3 matrix that the distance for the presence of non-radiative
interaction and adequate electron acceleration is around 3 nm [11,12,21,33].

Considering the total EL intensity from the MOSLEDs with Al2O3 interlayers of
different thicknesses (marked as y nm here) shown in Figure 5a, the device using 3 nm
Al2O3 interlayers presents the optimal emission intensity in the operation range, with the
highest power density of 4.6 mW/cm2. External efficiency is widely used to evaluate LED
performance. Figure 5b shows the EQE and PE of these MOSLEDs based on different Al2O3-
Y2O3:Er nanolaminate films. These EL efficiencies sustain a broad maximum, and fall down
at higher currents. Generally, the EQE of the devices with 2–3 nm Al2O3 interlayers are the
highest. As aforementioned, this phenomenon could be ascribed to the sufficient distance
for electron acceleration and suppression of the cross-relaxation among adjacent Er2O3
dopant layers. The Y2O3 cladding layers somewhat decrease this critical distance which is
beneficial for higher doping concentrations. The optimal device with 3/0.2 nm Al2O3/Y2O3
interlayers achieves the maximum EQE of 8.7% and a corresponding PE of 0.12%. These
values are comparable to our Yb2O3:Er MOSLEDs but with lowered working voltages.
In comparison, the control Al2O3:Er MOSLED presents only an EQE of 3% and a PE of
0.014%, much lower than the Al2O3-Y2O3:Er MOSLEDs. The Y2O3 cladding layers with
suitable thickness enhance the efficiencies from the MOSLEDs to a great extent. We have
found that by using a thicker luminescent layer, the efficiency of the Al2O3:RE MOSLED
might be further increased to higher than 10% [25,34]. These efficiencies are superior to
that from Si-based EL devises in literature, thus further optimization of the luminescent
Al2O3-Y2O3:Er nanolaminates would supply potential light source for the applications in
Si-based optoelectronics.
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4. Conclusions

In summary, significantly enhanced ~1530 nm NIR EL emissions are achieved from
the MOSLEDs based on the amorphous Al2O3:Er nanolaminate films by the insertion of
cladding Y2O3 sub-nanolayers, which are fabricated by ALD on Si substrates. The Y2O3
cladding layers reduce the threshold electric field for excitation and increase the radiative
possibility of doped Er3+ ions, resulting in improved EL performance. The Al2O3-Y2O3:Er
MOSLEDs with 0.2 nm Y2O3 and 3 nm Al2O3 interlayers present an EQE of 8.7% and a
corresponding PE of 0.12%, which are much higher than that of the counterpart without
Y2O3 cladding layers. The incorporation of Y2O3 does not change the electron injection
mode under sufficient electric field that conforms to P-F mechanism, the resultant energetic
electrons trigger the impact-excitation of Er3+ ions and subsequent EL emissions. The
strategy of Y2O3-cladding by ALD can be employed to improve the EL performance from
LEDs based on RE-doped oxides.
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