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Abstract: To improve the output power of the polydimethylsiloxane (PDMS)-based triboelectric
nanogenerators (TENGs), we fabricated an asymmetric TiO2/PDMS composite film in which a pure
PDMS thin film was deposited as a capping layer on a TiO2 nanoparticles (NPs)-embedded PDMS
composite film. Although in the absence of the capping layer, the output power decreased when the
content of TiO2 NPs exceeded a certain value, the asymmetric TiO2/PDMS composite films showed
that the output power increased with increasing content. The maximum output power density was
approximately 0.28 W/m2 at a TiO2 content of 20 vol.%. The capping layer could be responsible
not only for maintaining the high dielectric constant of the composite film but also for suppressing
interfacial recombination. To further improve the output power, we applied a corona discharge
treatment to the asymmetric film and measured the output power at a measurement frequency of
5 Hz. The maximum output power density was approximately 78 W/m2. The idea of the asymmetric
geometry of the composite film should be applicable to various combinations of materials for TENGs.

Keywords: triboelectric nanogenerator; TiO2/PDMS composite film; asymmetrical geometry; high
dielectric constant; interfacial recombination

1. Introduction

Triboelectric nanogenerators (TENGs) are micro-generators that can effectively convert
low-frequency mechanical energy wasted in the environment into electrical energy [1,2].
Among vibration power generation devices, TENGs have simple structures and are me-
chanically flexible [3,4]. They are used to power wearable electronic devices such as
light-emitting diodes [5,6], calculators [7–9], watches [10], and sensors [11]. Due to the high
voltage of TENGs, they can also be used as portable high-voltage power supplies [2,12–14].
The electrical signals from TENGs can also be used as self-powered sensors for real-time
monitoring of vital signs [15,16], human movements [10,17], and environmental condi-
tions [18,19]. They have great potential for applications in human machine interfaces
(HMIs), the Internet of Things (IoT), wearables, and implantable fields [20–22]. Due to
their unique mechanical adaptability at low frequencies [23], TENGs also have significant
advantages in the field of blue energy [15,24,25]. The collected mechanical energy can
provide power for a variety of electrochemical processes [26] and form a self-sustaining
electrochemical system [27].

To date, there are mainly three approaches to improving the output of TENGs: selection
of hetero-materials [28,29], modification of surface morphologies [30–33], and embedding
high dielectric constant materials into polymer films [30,34–36]. The embedding method
can strengthen the dielectric polarization by embedding a dielectric with a high relative
permittivity into polymers used as friction materials [37]. Polydimethylsiloxane (PDMS)
is the most commonly used material for triboelectric power generation due to its high
electronegativity, flexibility, transparency, and cost-effectiveness and can be easily formed
into composite films by mixing nanoparticles (NPs) and other nanostructures [38,39]. This
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improvement is due to new materials developed by surface patterning or functional group
attachment [27].

There are reports of embedding TiO2 NPs, BaTiO3 NPs, and SrTiO3 NPs, which
are high-k materials, to improve output [27,35,40] because the relative permittivities of
composite films determine the generated charge densities, which are proportional to the
output power [41]. Park et al. achieved an output voltage of 180 V and an output power
density of 1.84 W/m2 by embedding the polycrystalline rutile TiO2 NPs. The output
voltage was 1.6 times higher than that from the film without TiO2 [27]. Chen et al. achieved
an output voltage of 338 V and an output power of 6.47 W/m2 by embedding the SrTiO3
NPs and micropores. The output voltage was twice as high as without this embedding [41].
What they all have in common is that, while the output power increased as the content of
high-k materials in the PDMS composite film increased, the output suddenly decreased
when the content exceeded a certain value. The cause of this problem is not yet fully
understood. Moreover, no report has yet been published to solve this problem.

To clarify the reason for the drop in output due to the excessive amount of embedding,
we characterized the surface structure using a scanning electron microscope (SEM). Based
on the results, we fabricated an asymmetric TiO2/PDMS composite film to solve the
problem. The result was that the output increased with increasing amounts of TiO2 NPs.
The maximum power density was about twice that of the uncoated sample. To further
improve the output, we optimized the measurement conditions and applied a corona
discharge treatment [42] to the asymmetric film, resulting in a maximum output density of
approximately 78 W/m2.

2. Materials and Methods

We synthesized PDMS-based composite films with a square of 50 mm and a thickness
of 0.5 mm, in which anatase TiO2 NPs (FUJIFILM Wako Pure Chemicals Corporation,
Ltd., CAS 1317-70-0, Osaka, Japan) with an average diameter of approximately 100 nm
were embedded. The reason why we chose TiO2 particles from among many high-k
materials is that TiO2 is an inexpensive binary oxide semiconductor with well-known
physical properties. First, the source materials of the PDMS films were the base and
agent of the SILPOT 184 (Dow Chemicals), and the TiO2 NPs were mixed with a magnetic
stirrer (AS ONE Corporation, Ltd., REXIM RS-4D, Osaka, Japan) at a rotation speed of
800–1200 rpm for 5 min at room temperature (RT). The contents of TiO2 NPs ranged from
0.5 to 20 vol.%. Then, the air bubbles in the mixture were removed using a rotary pump
(AS ONE Corporation, Ltd., AOP42C, Osaka, Japan). The mixed solution was then poured
into an aluminum (Al) mold, which has a square groove of 55 mm per side and a depth of
0.5 mm. The mold containing the solution was heated at 100 ◦C for 1 h in an oven (AS ONE
Corporation Ltd., HTO-450S, Osaka, Japan) under atmospheric pressure. After cooling to
RT, the composite film was peeled off from the Al mold. When the TiO2 content in PDMS
exceeded 20%, the film became mechanically fragile, and its power generation properties
could not be measured.

Figure 1a,b show photographs of the composite films without and with the TiO2 NPs,
respectively. The composite film without the TiO2 NPs was transparent to the naked eye,
while the composite film with the TiO2 NPs had an opaque white color. We then applied
a pure PDMS film as a capping layer on the composite film to investigate the effects of
the capping layer on the output power. The capping layer was prepared using a spin
coater (MIKASA, MS-B100, Tokyo, Japan). The spin coating time and rotation speed were
60 s and 1250 rpm, respectively. The thickness of the capping layer was approximately
0.05 mm. Figure 1c shows a photograph of the composite film with the PDMS capping
layer. Comparing the composite film without the capping layer with the one with the
capping layer, they are almost identical to the naked eye.
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KIKO, VPC-410, Kanagawa, Japan) as the measuring electrodes. We prepared nine sam-
ples for each type of TiO2 NP. The relative permittivities of the films were measured using 
an LCR meter (HIOKI, IM3536, Nagano, Japan) and a probe (APOLLOWAVE, 
KB20200100, Osaka, Japan). To investigate the presence of TiO2 NPs on the surface of the 
composite film, we used a SEM (Carl Zeiss, SUPRA40, Jena, Germany) at different accel-
eration voltages of 3.5 and 9 kV. Before SEM observations, we applied an osmium plasma 
coating to avoid the charging effect using an osmium coater (Meiwafosis Co., Ltd., Neoc-
Pro, Tokyo, Japan). 
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An oscilloscope (GWINSTEK, GDS-1074B, Taipei, Taiwan) was used to measure the 

Figure 1. Photographs of (a) PDMS film, (b) PDMS/TiO2 film, and (c) PDMS/TiO2 film with a PDMS
capping layer. (d) A schematic of the apparatus used to characterize the power generation and the
typical profile of the output voltage.

To increase the output power, negative charges were injected into the composite films
using a corona discharge gun (Green Techno, GC90N, Kanagawa, Japan). The distance
between the charging gun and the sample was approximately 4 cm. The discharge time was
60 s. The heating temperature was 180 ◦C. The discharge voltage during charge injection
was −35 kV. The details of the injection experiment were described elsewhere [42].

After fabrication of the composite films, we characterized the relative permittivity.
Circular gold (Au) thin films with a diameter of 1.5 mm and a thickness of approximately
30 nm were deposited on the composite films using a thermal evaporator (ULVAC SINKU
KIKO, VPC-410, Kanagawa, Japan) as the measuring electrodes. We prepared nine samples
for each type of TiO2 NP. The relative permittivities of the films were measured using an
LCR meter (HIOKI, IM3536, Nagano, Japan) and a probe (APOLLOWAVE, KB20200100,
Osaka, Japan). To investigate the presence of TiO2 NPs on the surface of the composite film,
we used a SEM (Carl Zeiss, SUPRA40, Jena, Germany) at different acceleration voltages of
3.5 and 9 kV. Before SEM observations, we applied an osmium plasma coating to avoid the
charging effect using an osmium coater (Meiwafosis Co., Ltd., Neoc-Pro, Tokyo, Japan).

Figure 1d shows a photograph and a schematic of the apparatus used to characterize
the power generation and a typical profile of the output voltage when the composite film
and the Al counter electrode are in contact and separated. When the top electrode and
the composite film are in contact, positive and negative charges are induced on the top Al
counter electrode and the surface of the composite film, respectively. The current flows
through the load resistance RL, and a positive voltage is generated. Then, when the top Al
counter electrode and the composite film are separated, the current flows in the opposite
direction, and a negative voltage is generated [42]. We used a resistor of 1 MΩ as the RL.
An oscilloscope (GWINSTEK, GDS-1074B, Taipei, Taiwan) was used to measure the voltage



Nanomaterials 2023, 13, 832 4 of 13

across the RL. We changed the frequencies of the mechanical contact to between 2 and 5 Hz.
All measurements were carried out at RT and in air.

3. Results and Discussion

Theoretically, it is known that the output voltage increases with increasing the relative
permittivity εr or decreasing the thickness of the composite film, or both [41]. The open
circuit voltage, Voc, is given by Voc = σ0·x(t)/ε0, where σ0, x, t, and ε0 are the triboric charge
density on the composite film, the gap between the top electrode and the composite film,
time, and the vacuum permittivity, respectively. The σ0 depends on the capacitance of the
device for contact-mode tribo-generators. Namely, increasing the εr is one of the routes
to increasing the output voltage because the maximum capacitance, Cmax, of the device is
described by Cmax = ε0·εr·S/d, where S is the surface area of the composite film [41]. We
characterized the relative permittivity εr of PDMS/TiO2 composite films without a capping
layer as a function of the content of TiO2 NPs. Figure 2 shows the relationship between
the experimental values of εr as a function of the content of TiO2 NPs. The εr was almost
linearly proportional to the content of TiO2 NPs. The pure PDMS showed a εr of 3.02,
indicating that this value is almost in agreement with the literature value of 3 [41]. When
the content of the TiO2 NPs was 20 vol.%, the εr was 18.31. The mean square errors of the
average values were found to be less than 3% of the average value.

The theoretical values of εr for the composite film can be estimated using the following
equation

εr = εr(TiO2)
f(TiO2)

+ εr(PDMS) f(PDMS) (1)

where εr(TiO2) and εr(PDMS) are the literature values of the relative permittivity of TiO2
and PDMS, respectively (εr(TiO2) = 80 and εr(PDMS) = 3) [41], and f (TiO2) and f (PDMS) are the
contents of TiO2 NPs and PDMS, respectively. The theoretical relative permittivity as a
function of TiO2 content is also shown in Figure 2. The slope of the line was approximately
0.77. It was found that the theoretical line was in agreement with the experimental values.
Therefore, we confirmed that the εr of the composite film can be accurately controlled by
our fabrication method.
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Next, we measured the triboelectric power generation of the composite films. The
measured films had TiO2 NP contents ranging from 0 to 20 vol.%. Figure 3a shows the



Nanomaterials 2023, 13, 832 5 of 13

voltage waveforms of the samples with different contents of TiO2. The repetitive voltage
peaks were observed stably. It seems that the peak-to-peak voltage of the sample with a
content of 4.5 vol.% was larger than that of the samples with 0 and 20 vol.%.
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To investigate the relationship between TiO2 content and output power, we estimated
the output powers using the average value of 10,000 peak-to-peak voltages. Figure 3b
shows the relationship between the content of TiO2 NPs and the output power. The output
power increased with increasing content of TiO2 NPs in the range of 0 to 4.5 vol.%. The
output power of the pure PDMS was 53.29 µW, whereas the maximum output power was
372.49 µW (a power density of 0.15 W/m2) for the sample containing 4.5 vol.%, which is
seven times higher than that of the pure PDMS. In contrast, the output power was found to
decrease when the content exceeded 4.5%. Although we expected that as the TiO2 content
increased, the relative permittivity of the composite film would increase, resulting in an
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increase in output power, in fact, the output power peaked at around 4.5 vol.%. In a
previous study [41], a similar trend was found, and it was argued that the output power
decreases with increasing TiO2 content because the effective friction area of PDMS is smaller
when the TiO2 content is higher. We further investigated the cause of the decreasing trend.
We assumed charge recombination at the TiO2/Al interface due to the surface exposure
of TiO2 NPs. As discussed later, there was no decrease in the output power when a pure
PDMS film was coated on the TiO2/PDMS composite film. Therefore, the TiO2/PDMS
composite film surface is the cause of the reduction in output.

We observed the surface of the composite films to confirm the exposure of the TiO2
NPs. The acceleration voltages of 3.5 and 9.0 kV were chosen for the SEM observation to
obtain micro-structural information at different depths. The acceleration voltage of 3.5 kV
was more sensitive to the surface of the films than that of 9.0 kV. Figure S1 in the supporting
information shows electron trajectories in the PDMS/TiO2 composite. From the simulation,
for an acceleration voltage of 3.5 kV, the maximum number of collisions was approximately
80 nm. This indicates that the SEM image shows information in the vicinity of the surface.
For the acceleration voltage of 9.0 kV, the number of collisions was almost the same within
the depth of 1 µm. In other words, the SEM images show information not only on the
surface but also in deeper regions. Figure 4a–d show the SEM images of the composite
films with different TiO2 contents at the accelerating voltage of 9.0 kV. Almost no white
dots were observed up to a TiO2 NP content of 1 vol.%, while white dots were observed at
a TiO2 NP content of more than 1 vol.%. In contrast, almost no structures with white dots
were observed at an accelerating voltage of 3.5 kV, up to a content of TiO2 NPs of 4.5 vol.%
as shown in Figure 4e,f. On the contrary, at a content of TiO2-NP of 4.5 vol.%, white dots
were observed, which are indicated in the circles of Figure 4g. At a content higher than
4.5 vol.%, many white dot structures were observed, as shown in Figure 4h. This indicates
that the density of the TiO2 NPs exposed on the surface increased when the content of TiO2
NPs exceeded 4.5 vol.%.

Based on the SEM observation, we can speculate on the structure of the composite
films. Films with a low content of TiO2 NPs, such as those in Figure 4b,f, could have the
cross-sectional structure shown on the left side in Figure 4i. The structure of films with
moderate content of TiO2 NPs, such as those in Figure 4c,g, was shown in the middle of
Figure 4i, and the structure of composite films with a high content of TiO2 NPs, such as
those in Figure 4d,h, was shown on the right side of Figure 4i. As shown in Figure 4i, when
the content of TiO2 NPs was low or moderate, the TiO2 NPs were inside the composite
films, but when the content of TiO2 NPs was high, the TiO2 NPs were exposed on the
surface of the composite films.

When there is excess TiO2 in the PDMS film, it was found that the TiO2 NPs are
exposed on the surface of the composite film. This means that when the composite film
comes into contact with the Al top electrode during power generation, the Al should
come into contact not only with the PDMS but also with the TiO2 NPs. To understand
the carrier dynamics, we calculated the band diagram of the TiO2/Al interface using a
semiconductor simulator named the Solar Cell Capacitance Simulator (SCAPS 3.3.10) (see
Figure S1 in the Supporting Information). Since the TiO2 used in this study was made of
nanoparticles, it is difficult to know the exact physical properties. Therefore, the following
bulk properties were used for the simulation: the band gap is 3.1 eV [43], the electron affinity
is 4.0 eV [44], the relative permittivity is 80 [41], the conduction band effective density
of states is 2.2 × 1018 [45], the valence band effective density of states is 1.8 × 1019 [45],
and the shallow uniform donor density is 1017. We used the electron affinity of Al of
4.06 eV [46]. As a result of the simulation, we found that the band of TiO2 bent downward
with a diffusion potential of 0.02 eV. This means that the TiO2/Al interface plays the role of
an ohmic junction. Although polarization occurs at the interface between PDMS and Al,
which is the commonly proposed power generation mechanism for triboelectric devices [1],
the charges generated at the PDMS/Al interface might recombine at the TiO2/Al interface,
resulting in a reduction in the number of charges that determine the magnitude of output.
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Figure 5 shows the equivalent circuit from the speculation mentioned above, where the
PDMS/Al interface is the voltage source V and the TiO2/Al interface is the shunt resistance
RSH. The output voltage Vout is the voltage across the load resistor RL. The decrease in
output when the TiO2 content exceeds 4.5%, as shown in Figure 3b, can be attributed to an
increase in the amount of exposed TiO2 and consequently a decrease in RSH.
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To prevent recombination, we coated the surface of the composite film with a PDMS
thin film, called the capping layer, as shown in Figure 6a. We call the ensemble an asymmet-
ric PDMS/TiO2 film. The thickness of the capping layer was approximately 0.05 mm. We
observed the surface structure of the asymmetric films using SEM at an acceleration voltage
of 3.5 kV. Figure 6b shows the top-view SEM images of the asymmetric composite films
with the capping layer for different TiO2 contents. No white dot structures were observed
in these samples, although the samples without a capping layer in Figure 4g,h had white
dots. Therefore, we confirmed that no TiO2 NPs could be exposed on the surface of the
asymmetric composite film by coating the capping layer. Next, the relative permittivity of
the films was measured. Figure 6c shows the relative permittivity of the films with and
without the capping layers as a function of TiO2 content. The mean square errors of the
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average values were found to be less than 3% of the average value. Even for composite
films with the same TiO2 content, the relative permittivity of the film with the capping
layer was lower than that of the film without the capping layer. The relationship between
the relative permittivity and TiO2 content was linear in the absence of the capping layer
but nonlinear in the presence of the capping layer.

The theoretical values of εr of the composite film with a capping layer can be estimated
from the following equation

εr =
ε(PDMS)·ε(PDMS+TiO2)

·
{

d(PDMS) + d(PDMS+TiO2)

}
ε(PDMS)·d(PDMS+TiO2)

+ ε(PDMS+TiO2)
·d(PDMS)

(2)

where d(PDMS) and d(PDMS+TiO2) are the film thicknesses of the capping layer and the com-
posite layer, respectively, and ε(PDMS) and ε(PDMS+TiO2) are the relative permittivity of the
capping layer and the composite layer, respectively. The theoretical curve is represented by
the solid red line in Figure 6c. It was found that the curve agreed well with the experimental
values.

Next, we measured the output powers of the films with the capping layers as a function
of the content of TiO2 NPs. Figure 7a shows the output power as a function of TiO2 content.
Although the output power decreased when the content of TiO2 NPs exceeded 4.5 vol.%
for the composite films without the capping layers, the output power was successfully
increased with the content of TiO2 NPs by coating the capping layer. When the content
of TiO2 NPs exceeded 10 vol.%, the output power was higher than that of the sample
without the capping layer. The maximum output power was approximately 702.25 µW
(a power density of 0.28 W/m2) at the content of the TiO2 NPs of 20 vol.%. The reason
for the low output power at a content of less than 10 vol.% is probably due to the low
relative permittivity of the composite film. Although the relative permittivity was lowered
by coating the capping layer, as shown in Figure 6c, the surface recombination was reduced,
as shown in Figure 5, resulting in an increase in output power.

We also investigated the effect of contact/separation frequency on the output power in
triboelectric power generation. Figure 7b shows the output power as a function of the TiO2
content at different frequencies. The maximum output power was approximately 18 mW
(a power density of 7.2 W/m2) at a frequency of 5 Hz. The sample with the highest output
(a PDMS capping layer on PDMS/TiO2 composite film (20 wt.%)) was used to demonstrate
LED luminescence. Figure 7c shows a schematic circuit of this demonstration. TENG
in Figure 7c means the asymmetric composite film. TENG was connected to the bridge
diode. The output was rectified by a bridge diode to power an array of 156 LEDs (12 series
connections in 13 sets). The contact/separation frequency was 5 Hz. We confirmed that the
LED array was found to emit light clearly and synchronously with the cycles of contact
and separation.

Furthermore, to increase the output power, a corona discharge treatment was also
performed. We have already reported that the corona discharge treatment for the co-
tribo layer is effective in boosting the output power. Negative charges can be fixed to
the composite film by corona discharge treatment. This technique is often used in the
fabrication of electrets. In addition to the polarization caused by triboelectric generation,
the existence of fixed negative charges in the composite film has a superimposed effect of
electrostatic induction on the counter electrode, an Al electrode. As a result, the power
generation capability is greatly enhanced. Details are shown in our previous report [42].
Figure 7d shows the output powers with and without corona discharge at a measurement
frequency of 5 Hz. The output power with the corona discharge was approximately 10 times
higher than the output power without the corona discharge. The maximum output power
was approximately 195 mW (a power density of 78 W/m2). Compared with previous
studies [27,41], which also used TiO2 NPs and PDMS to generate triboelectricity, our output
power was about four times higher than theirs.
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Figure 6. (a) The structure of the film after spin coating. (b) SEM images of the contents of the
TiO2 NPs at an accelerating voltage of 3.5 kV. The scale bars of the SEM images are 1 µm. (c) The
relationship between the relative permittivity and the content of TiO2 NPs in the films with and
without the capping layer.
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power at the frequencies of 2, 3, 4, and 5 Hz. (c) The schematic circuit of TENG connections with an
LED array. Photographs of LED array for OFF and ON states. Scale bars are 2 cm. (d) The comparison
between the output power with and without corona discharge.

4. Conclusions

In summary, to improve the output power of the PDMS-based TENGs, we fabricated
asymmetric TiO2/PDMS composite films, in which a TiO2 NPs embedded PDMS film
and a pure PDMS film as a capping layer are stacked. In the case of the composite film
without a capping layer, although the output power increased with increasing content of
TiO2 NPs in the range of 0 to 4.5 vol.%, the output power decreased when the content
exceeded 4.5 vol.%. This trend is similar to the results reported previously [27,41]. We
revealed that the decrease in the output power might be caused by the exposure of TiO2
NPs on the TiO2/PDMS composite film. To prevent the decrease in output power, we
fabricated the asymmetric TiO2/PDMS composite films (the composite film with a capping
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layer). As a result, the output power was increased with increasing content of TiO2 NPs,
and no decrease in the output power was observed. The maximum output power was
approximately 702.25 µW (a power density of 0.28 W/m2) when the content of TiO2 NPs
was 20 vol.%. The capping layer could be responsible not only for maintaining the high
dielectric constant of the composite film but also suppressing interfacial recombination.

To further improve the output power, we treated the asymmetric film with a corona
discharge and measured the output at a measurement frequency of 5 Hz. The maximum
output power was approximately 195 mW (78 W/m2). We found that the surface capping
layer effectively suppresses surface recombination when inorganic particle-embedded films
are used as components of TENG to improve the relative permittivity. This method is
expected to be applicable to various material combinations for TENGs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13050832/s1, Figure S1: Monte Carlo simulation of electron
trajectories in the TiO2/PDMS composite films. Penetration simulation in a material of 500 electrons
entering from the position indicated by the red arrow with the acceleration voltage of (a) 3.5 kV and
(b) 9.0 eV. (c) Number of collision vs. depth of the composite film, Figure S2: Band diagram around
the interface of TiO2 and Al.
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