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Abstract: Localized surface plasmon resonance (LSPR) is the cause of the photo-thermal effect
observed in topological insulator (TI) bismuth selenide (Bi2Se3) nanoparticles. These plasmonic
properties, which are thought to be caused by its particular topological surface state (TSS), make
the material interesting for application in the field of medical diagnosis and therapy. However,
to be applied, the nanoparticles have to be coated with a protective surface layer, which prevents
agglomeration and dissolution in the physiological medium. In this work, we investigated the
possibility of using silica as a biocompatible coating for Bi2Se3 nanoparticles, instead of the commonly
used ethylene-glycol, which, as is presented in this work, is not biocompatible and alters/masks the
optical properties of TI. We successfully prepared Bi2Se3 nanoparticles coated with different silica
layer thicknesses. Such nanoparticles, except those with a thick, ≈200 nm silica layer, retained their
optical properties. Compared to ethylene-glycol coated nanoparticles, these silica coated nanoparticles
displayed an improved photo-thermal conversion, which increased with the increasing thickness
of the silica layer. To reach the desired temperatures, a 10–100 times lower concentration of photo-
thermal nanoparticles was needed. In vitro experiments on erythrocytes and HeLa cells showed that,
unlike ethylene glycol coated nanoparticles, silica coated nanoparticles are biocompatible.

Keywords: topological insulator; bismuth selenide; photo-thermal material; biocompatibility;
nanoparticles

1. Introduction

In the last two decades, topological insulator nanoparticles (TI) have been intensively
studied due to their attractive electronic properties, resulting from their metallic, linearly
dispersing, and spin-polarized topological surface states (TSS). A TI is like an ordinary
insulator in its interior, but it contains protective conductive TSS at the material’s borders
(surface or edges) [1–4]. The presence of the surface conduction electrons in TSS, which
can resonate upon optical excitation, is considered to be the origin of the localized surface
plasmon resonance (LSPR) displayed by TI in the low-frequency part of the visible range
(>400 nm) [5–7]. Moreover, due to this LSPR, nanoparticles display a photo-thermal effect
(PE), which makes them relevant in the field of medical diagnosis and therapy [6,8–14].

A typical representative and one of the most promising TIs, due to a narrow bulk band
gap of 0.3 eV, is bismuth selenide (Bi2Se3) [15–17]. To fully exploit the exotic properties of
Bi2Se3 nanoparticles, it is crucial to prepare them without an adsorbent on their surface,
which could mask or quench their surface and the optical properties originating from
TSS [7].
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Despite the interesting properties that make TI nanoparticles relevant for numerous
applications, adsorbent-free TI nanoparticles are not suitable for biomedical applications.
Nanoparticles without any protective surface layer will agglomerate immediately when
they are subjected to a physiological medium (e.g., serum, cell culture, blood). In addition,
the protective surface layer also counteracts the possible dissolution of the nanoparticles
and prevents the leakage of potentially toxic metal ions. The surface layer can be used for
further functionalization [18–22].

There is a scarcity of reports regarding the application of Bi2Se3 nanoparticles in
biomedicine and their effects in vivo and in vitro [6,8–14]. A major challenge is to prevent
their oxidation and instability, which limits their practical applications [13]. To date, this
problem has been solved by preparing Bi2Se3 nanoplatelets through the solvothermal
method, using ethylene-glycol (EG) and polyvinylpyrrolidone (PVP) as the solvent and cap-
ping agent, respectively. Reports claimed that stability and biocompatibility were achieved
using PVP molecules attached to the surface of Bi2Se3 nanoparticles [9,12,13,23–28]. How-
ever, in 2018, we showed that the solvothermal method, where EG and PVP were used,
resulted in Bi2Se3 nanoplatelets only coated with an approximately 2 nm thick EG layer.
This was confirmed by ζ-potential measurements and TG-MS analyses. These analyses did
not show the presence of PVP [7].

Since it was shown that Bi2Se3 nanoparticles produced via the solvothermal method
are coated with EG, which is toxic, this raises safety concerns for using such Bi2Se3 nanopar-
ticles in biomedical applications. Despite the beneficial properties of EG, such as reducing
the surface charges and therefore improving the colloidal stability in the physiological
environment, prolonging the nanoparticles’ half-life and preventing potential dissolution,
EG can affect the central nervous, cardiopulmonary, and renal systems, and its metabolites
can cause numerous deleterious effects at the cellular level, e.g., oxidative stress [29–32]. In
addition, the Food and Drug Administration (FDA) only approved EG for use indirectly, as
a component of packaging adhesives in the food industry [33]. Moreover, further functional-
ization of EG-coated Bi2Se3 nanoparticles is challenging, because it often requires chemicals
that are expensive, toxic, or unstable, and the synthetic procedures require personnel with
the appropriate laboratory skills (e.g., human serum albumin, doxorubicin—a drug for
treating cancer, etc.) [10,11].

Based on the described drawbacks of using EG as a coating, there is a need to prepare
Bi2Se3 nanoplatelets coated with a non-toxic, stable, and biocompatible layer that allows
further easy functionalization and does not mask the optical properties of Bi2Se3, as EG
does. The most similar molecule, and less toxic than EG, is polyethylene glycol (PEG),
which can be used as a coating and is already the gold standard for biocompatible coatings.
PEGylation of nanoparticles is commonly used in liposomes and other nanoparticles to
increase the circulation time and slow the rate of elimination by the reticuloendothelial
system. However, despite the widespread use of PEG in food and drugs, people have
started to show an immune response by developing anti-PEG antibodies, which can lead to
the rapid elimination of PEG-coated nanoparticles [34–37].

Therefore, one solution to replace EG or PEG could be porous amorphous silicon diox-
ide (silica). Unlike EG, silica is approved by the Food and Drug Administration (FDA) and
European Food Safety Authority (EFSA) as non-toxic and biodegradable, with an uptake of
up to 1500 mg/day [38–40]. Moreover, it has an excellent porous structure, adjustable pore
size, and easily modified surface [38,41–44]. Due to these properties, silica nanoparticles
have great potential for biomedical applications (i.e., cancer therapy, DNA transfection,
drug delivery, dental medicine, regenerative medicine, etc.) [45–48]. As a coating material,
silica is used in combination with various functional nanomaterials [49,50], i.e., magnetic
nanoparticles [51–59], luminescent nanoparticles [48,60,61], and photo-thermal responsive
nanomaterials [49,56,62] etc., making them biocompatible and extending their applicability
through further functionalization.

In this work, we successfully coated Bi2Se3 nanoparticles with layers of silica of
different thicknesses. As mentioned earlier, a coating can mask or impair the optical
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properties of the TI nanoparticles derived from the TSS. Silica-coated Bi2Se3 nanoparticles
retain these optical properties, except for those with the thickest, ≈200 nm, silica layer.
Silica-coated nanoparticles exhibit good photo-thermal properties and specific adsorption
rate (SAR) values. In vitro experiments showed that pristine (hydrothermally prepared)
and silica-coated Bi2Se3 nanoparticles do not induce hemolysis and are not cytotoxic, even
at very high concentrations of up to 1 g/L.

2. Materials and Methods
2.1. Materials

All the chemicals were used without further purification.

Bi2Se3 nanoparticles synthesis: Bismuth (III) nitrate pentahydrate (Bi(NO3)3·5H2O), bis-
muth (III) oxide (Bi2O3, 99.98%), selenium powder (Se, ≥99.5%), hydrochloric acid (HCl),
hydrazine hydrate (N2H4·H2O, 35%), sodium hydroxide (NaOH), ethylene glycol (C2H6O2,
99%), polyvinylpyrrolidone (PVP, MW = 8000). All chemicals were purchased from Alfa
Aesar, Haverhill, MA, USA.

Amorphous silica coating: Hexadecyltrimethylammonium bromide (CTAB) was obtained
from Alfa Aesar (Kandel, Germany), absolute ethanol and aqueous ammonia (~25%) from
Merck KGaA (Darmstadt, Germany), cyclohexane from VWR Int. GmbH (Vienna, Austria),
tetraethoxysilane (TEOS), concentrated hydrobromic acid (~48%; HBr) and 2-amino-2-
(hydroxymethyl)-1,3-propanediol (TRIS) from Sigma-Aldrich (St. Louis, MO, USA); 0.1 M
HBr was prepared by diluting concentrated HBr (~48%) with deionized water.

Hemolysis: Erythrocytes were isolated from whole sheep blood (BioSap SO, defibrinated,
purchased from AdvaMed d.o.o., Ljubljana, Slovenia). Phosphate-Buffered Saline tablets
(PBS) (Sigma Aldrich, St. Luis, MO, USA), potassium chloride (KCl), and sodium chloride
(NaCl).

In vitro cell viability assay: Dulbecco’s modified Eagle’s medium (DMEM) (Gibco, Paisley,
UK), fetal bovine serum (FBS) (Gibco, Paisley, UK), Penicillin Streptomycin (Gibco, Grand
Island, NY, USA), 2.5% Trypsin (10X) (Gibco, Paisley, UK), phosphate-buffered saline (PBS)
(Gibco, Paisley, UK), PrestoBlue Viability Reagent (Invitrogen, Eugene, OR, USA).

2.2. Methods
2.2.1. Synthesis of Bi2Se3 Nanoparticles

The Bi2Se3 nanoparticles were prepared using the hydrothermal method, according
to the procedure described in Ref. [7]. In short, stoichiometric amounts of bismuth nitrate
(1 mmol) and selenium (1.5 mmol) were dissolved in 20 mL of deionized water under
vigorous stirring, followed by the addition of 11 M HCl (25 µL) and hydrazine (1.6 mL). The
obtained grey slurry was sealed in a Teflon-lined autoclave and heated at 240 ◦C for 48 h.
Then the product was washed several times with deionized water. This sample was denoted
as “BiSe”. Afterwards, the clean, adsorbent-free platelets were coated with amorphous
SiO2 (silica) of different thicknesses. The coating procedures are described below.

To compare and evaluate the effect of silica coating, the Bi2Se3 nanoparticles were also
prepared by the solvothermal method, according to the procedure described in Ref. [63]. In
brief, PVP and stoichiometric amounts of Bi and Se were dissolved in 20 mL of ethylene
glycol. The grey slurry was sealed in a Teflon-lined autoclave and heated to 200 ◦C for
10 h. After the reaction had finished, the product was washed several times with deionized
water. The solvothermally-synthesized platelets were denoted as “BiSe ST”.

2.2.2. Coating of Bi2Se3 Nanoparticles with Amorphous Silica

Thin silica coating: First, a thin silica coating (2–5 nm) was deposited on the platelets.
The procedure was based on Ref. [64]. In a glass beaker, 320 mg of CTAB was dissolved in
40 mL of deionized H2O. Then, the pH of the formed CTAB solution was adjusted to 3.30
using 0.1 M HBr. Separately, 200 mg of dried adsorbent-free BiSe platelets were dispersed



Nanomaterials 2023, 13, 809 4 of 14

in 18 mL of deionized H2O using intense mixing with a magnetic stirrer and simultaneous
ultrasonication with a sonicator (VibraCell 505; Sonics & Materials Inc., Newtown, CT,
USA). The formed BiSe suspension was added to the acidic CTAB solution. The pH of the
formed mixture of CTAB and BiSe platelets was adjusted to pH 2.85 with 0.1 M HBr. Then,
a solution of 2.8 mL of TEOS in 5.2 mL of absolute ethanol was added, and the reaction
mixture was stirred at room temperature for 90 min. After that time, the pH of the reaction
mixture was increased to 5.0 using diluted aqueous ammonia, and the reaction mixture was
further stirred at room temperature overnight. Then, the silica-coated nanoparticles were
collected using centrifugation for 10 min at 7000× g, washed several times with ethanol and
water, and finally dispersed in 10 mL of water. The sample was denoted as “BiSe@S-thin”.

Intermediate silica coating: To obtain an intermediate, 50–80 nm thick silica coating,
BiSe@S-thin platelets were used as a starting material. In a flat bottom flask, 10 mL of the
BiSe/s-thin aqueous suspension was added and diluted with 40 mL of deionized water.
Then, 12 mL of aqueous ammonia (~25%) was added. The mixture was sonicated for
5 min in an ultrasound bath (Sonis 4, Iskra PIO, Šentjernej, Slovenia). After sonication, a
solution of 0.7 mL of TEOS in 45 mL of absolute ethanol was added. The formed reaction
mixture was further sonicated for 5 min in an ultrasound bath and stirred with a mechanical
shaker overnight at ≈200 rpm. Finally, the silica-coated nanoparticles were collected using
centrifugation for 10 min at 7000× g, washed several times with ethanol and water and
dispersed in 10 mL of H2O. The sample was denoted as “BiSe@S-interm”.

Thick silica coating: To obtain a thick, ≈200 nm thick silica coating, BiSe@S-interm
platelets were used as a starting material. In a flat bottom flask, 10 mL of the BiSe/s-interm
aqueous suspension was diluted with 30 mL of deionized water. Then, 4.8 mL of aqueous
ammonia (25%) was added, followed by the addition of a solution of 2.0 mL TEOS in 90 mL
absolute ethanol. The formed reaction mixture was sonicated for 5 min in an ultrasound
bath and stirred with a mechanical shaker overnight at ≈200 rpm. Finally, the coated
nanoparticles were collected using centrifugation for 10 min at 7000× g, washed several
times with ethanol and water and dispersed in 10 mL of water. The sample was denoted as
“BiSe@S-thick”.

2.2.3. Synthesis of Silica Spheres

Silica spheres (d ≈ 200 nm) were synthesized using the following procedure. First,
50 mL of deionized water, 40 mL of absolute ethanol, and 9 mL of aqueous ammonia
(≈25%) were mixed in a glass flat-bottom flask. Then, a solution containing 3 mL of TEOS
and 10 mL of absolute ethanol was added to the glass flask containing water, ethanol, and
ammonia. The formed reaction mixture was left to stir on a mechanical shaker overnight.
The next day, the formed silica spheres were sedimented using centrifugation at 7000× g
for 10 min and washed several times with ethanol and deionized water. The silica spheres
were finally re-dispersed and stored in deionized water.

2.2.4. Analysis Methods

The synthesized product was characterized using an X-ray powder diffractometer
Rigaku MiniFlex (Tokyo, Japan) ( with Cu Kα radiation (λ-1541 Å, 30 kV, 10 mA). For
the TEM analysis, the platelets were suspended in ethanol and deposited on a copper-
grid-supported lacy carbon film. The TEM analysis was performed using a field-emission
electron microscope (JEOL JEM 2100UHR, Tokio, Japan) operating at 200 kV and equipped
with an Oxford X-Max80T energy dispersive X-ray spectroscopy detector (EDXS). The
width of the platelets expressed as the equivalent diameter was determined from the
TEM images, on which 200–300 platelets per sample were utilized for the statistic using
Gatan Digital Micrograph Software (Pleasanton, CA, USA). The obtained data, representing
the frequency count of the size distribution, were fitted using single or multiple peak
Gaussian fit modes. The electrochemical properties (ζ-potential) of the platelets dispersed
in water were measured as a function of the suspension pH using a ZetaPALS instru-



Nanomaterials 2023, 13, 809 5 of 14

ment (Brookhaven Instruments Corporation, Holtsville, NY, USA). The pH of the aqueous
suspension was adjusted with diluted hydrochloric acid and sodium hydroxide.

The light absorption properties were analyzed using classical UV-vis spectroscopy.
Spectroscopy was performed with a PerkinElmer Lambda 950 spectrometer (Walham, MA,
USA), using a quartz cuvette with a size of 1 × 1 × 3 cm. A measurement range, λ, from
200 to 850 nm was used, with a scanning rate of 1 nm/s. Before the measurements, the
water suspension of the platelets was stabilized according to the ζ-potential and sonicated
to break any possible agglomerates.

Photo-thermal experiments were performed using an FC-808 Fiber Couple Laser
System (CNI Optoelectronics Tech, Changchun, China) configured for continuous-wave
operation at 808 nm, with different powers. Laser light was focused on a quartz cuvette
with a size of 1 × 1 × 3 cm using an optical lens focusing on a spot size of 8 mm. Control
(water) and samples with different concentrations (0.1, 0.3, 0.5, and 1 g/L) were irradiated
at a laser power P = 3 W/cm2 for 5 min. To test the stability, the samples were cycled 2 times
(5 min on, 5 min off). The temperature of the liquid samples was measured with a J-type
Teflon thermocouple, which was immersed in the cuvette and connected to a computer to
collect the data in real-time. The specific adsorption rate was calculated as follows:

SAR =
ρCs

msample

(
∆T
∆t

)
t=0

where ρ and CS are the effective density and effective specific heat capacity of the sample,
respectively, mBiSe is the total content of nanoparticles in the sample (g/cm3), and

(
∆T
∆t

)
t=0

is the slope of the photo-thermal curve linear fit. The ∆T/A values were calculated by
dividing the change of the temperature obtained after 5 min with adsorption measured at
808 nm. In the investigated system, the Bi2Se3 nanoparticles represent the photo-thermal
material. In the case of the uncoated nanoparticles, msample = mBi2Se3, while in the case of
the coated one, msample = mBi2Se3 + mcoating. Due to this, the concentration of photo-thermal
active particles was calculated for each coated sample by calculating the mass share of
Bi2Se3 nanoparticles and the surface layer (silica or EG). For the calculation of the Bi2Se3
nanoparticle mass, the average particle diameter of 175 nm (size distribution = 50–300 nm),
the thickness of 10 nm, and density ρ = 6.82 g/cm3 were taken. For the silica layer, the
average thicknesses, i.e., 3 nm, 65 nm, and 200 nm, for thin, intermediate, and thick
silica layers, respectively, and ρ = 2 g/cm3 was taken. In the case of the solvothermally-
synthesized nanoparticles, the correction was made similarly, but taking into account a
diameter of nanoparticles of 300 nm, thickness of 10 nm, and EG layer thickness of 2 nm.
The $ of the EG was 1.1 g/cm3.

2.2.5. Hemotoxicity Test

A phosphate-buffered saline (PBS) buffer was prepared by dissolving PBS tablets
(Sigma Aldrich, St. Luis, MO, USA) in Milli-Q autoclaved water, to a final concentration
of 0.01 M phosphate buffer, 0.0027 M potassium chloride, and 0.137 M sodium chloride.
A hemolysis study was performed on the erythrocytes isolated from whole sheep blood.
Briefly, whole blood was centrifuged at 800 rpm for 20 min, and the buffy coat was
subsequently removed. Erythrocytes were re-dispersed in PBS 1×, 7.4, at 5% v/v for
further analysis. Then, 1 mL of erythrocytes were incubated in triplicate with different
concentrations of each nanoparticle sample for 3 h at 37 ◦C with constant orbital shaking.
After incubation, tubes were centrifuged (1500 rpm/4 min) to sediment cells, and the
supernatant was analyzed in triplicates. The hemolysis was evaluated by measuring
the absorbance of the released hemoglobin (A) at 541 nm in the supernatant using a
spectrophotometer (BioTek Synergy H4 Hybrid microplate reader, Winooski, VT, USA).
Each sample was measured in triplicate. Samples representing “100% dead” were prepared
by lysing control samples with deionized water via hypotonic osmotic shock, while samples
representing “0%” as a negative control were simply incubated with buffer. The hemolysis
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was then calculated as follows: Hemolysis (%) = 100 (Asample − Acontrol)/(A100% dead − Acontrol).
Mixed-effect ANOVA (Graphpad 8.1, Prism) was used to test whether the nanoparticle-
correlated hemolysis was significantly higher than the negative control. Data are presented
as the mean ± standard deviation (SD) for all experiments.

2.2.6. In Vitro Cell Viability Assay

HeLa cells (ATCC CCL-2) were grown at 37 ◦C in a humidified atmosphere and
5% CO2. The growth medium was DMEM, supplemented with 10% FBS, 100 µg/mL
penicillin, and 100 µg/m streptomycin. The medium was changed every 2–3 days. When
the cells reached 70–90% confluence, they were detached with a 0.25% trypsin solution and
subculture at a 1:5 ratio. Nanoparticles (2 g/L) in PBS were diluted in the growth medium,
to obtain final concentrations of 0.1, 0.3, 0.5, and 1 g/L. The viability of the samples exposed
to different concentrations of nanoparticles was compared with pure PBS diluted in the
same ratio with growth medium. Untreated (mock-treated) cells served as a negative
control for the viability calculations (value 1). HeLa cells were seeded at 2 × 104 cells/well
in a 96-well microtiter plate and grown overnight. Cells were then exposed to nanoparticles
or PBS in the growth medium. After incubation in a cell incubator for 24 h, the cells
were washed with PBS and incubated with 10% PrestoBlue Viability Reagent in a growth
medium for 1.5 h. The viability of HeLa cells was determined by measuring the metabolic
conversion of the PrestoBlue resazurin-based dye to highly fluorescent resorufin using
an Infinite F200 plate reader (Tecan, Grödig, Austria) at 560 nm excitation and 595 nm
emission. The fluorescence intensities obtained were corrected for background fluorescence
and normalized to mock-treated HeLa cells. Three independent experiments, each with
three technical replicates, were performed to evaluate the viability of the HeLa cells. Cells
were analyzed using two-way ANOVA. Dunnet’s multiple comparisons test was used
to compare cells exposed to PBS only with cells exposed to different nanoparticles at the
same concentrations. Tukey’s multiple comparisons test was used to compare different
concentrations within each treatment. Multiplicity-adjusted P values were calculated for
each comparison. Statistical analyses of the in vitro toxicity assays were performed using
GraphPad Prism 8 software (GraphPad Software, San Diego, CA, USA).

3. Results and Discussion

To investigate the possibility of using silica coating as an alternative to EG coating,
the hydrothermally synthesized, adsorbent-free Bi2Se3 nanoparticles were coated with
silica layers of three different thicknesses. To evaluate the effect of the surface silica layer,
the coated nanoparticles were compared with their solvothermally-prepared (EG-coated)
counterparts [63].

Figure 1 shows the XRD patterns of the hydrothermally- and solvothermally-synthesized
Bi2Se3 nanoparticles (BiSe and BiSe-ST, respectively). The diffraction patterns are very
similar. The peaks in both cases can be indexed according to the rhombohedral structure of
Bi2Se3 (space group R3m, JCPDS 33-0214). The strong and sharp diffraction peaks indicate
that the Bi2Se3 nanoparticles were well crystallized. The TEM analysis of BiSe and BiSe-ST
nanoparticles showed that the nanoparticles had a hexagonal plate-like morphology. As
was expected according to theory [65], the size distribution of the hydrothermally synthe-
sized nanoparticles was broader (majority with d ≈ 50–300 nm, a minority with d > 300 nm)
compared to the size distribution of their BiSe-ST counterparts (d ≈ 280–380 nm) [7]. EDXS
analysis showed that the platelets had an atomic ratio Bi/Se = 0.66 ± 0.1, which was in
good agreement with Bi2Se3 stoichiometry. As was shown in our previous study, the most
important difference between the BiSe and BiSe-ST nanoparticles was only observed with
HR-TEM, when the nanoparticles were orientated edge-on, with their large surface parallel
to the electron beam. While the BiSe nanoparticles were clean, the BiSe-ST nanoparticles
were coated with a thin, approximately 2 nm thick, ethylene-glycol layer (see Ref. [7] for
more details).
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Figure 1. XRD patterns of Bi2Se3 nanoparticles synthesized hydrothermally (BiSe) and solvother-
mally (BiSe ST) (a). Representative TEM image of BiSe (b) and BiSe-ST (c) nanoparticles, and the
corresponding size distribution (d), obtained from TEM images.

Figure 2 shows the BiSe nanoparticles subsequently coated with (a) a thin ≈ 2–5 nm,
(b) an intermediate ≈ 50–80 nm, and (c) a thick ≈ 200 nm uniform silica layer covering the
individual nanoparticles. An additional confirmation that the silica coating was successful
was the change in the point of zero charges (PZC). Figure 2d shows the zeta potential (ζ) of
the silica-coated BiSe nanoparticles compared to the uncoated ones and silica nanospheres
synthesized using a modified Stober process [64]. The PZC decreased from pH = 5 (BiSe) to
≈2.5 for BiSe@S-thin and ≈3 for BiSe@S-thick.
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In our previous work [7], we demonstrated that an EG layer, adsorbed on the surface
of the Bi2Se3 nanoparticles, can mask/impair the optical properties derived from TSS.
Namely, BiSe-ST nanoparticles display absorption peaks in the range of ≈200–350 nm and
≈350–550 nm. Near the IR region, the absorbance decreases without showing absorption
peaks [7]. On the contrary, the absorption spectrum of BiSe nanoparticles in the spectral
range of ≈200–300 nm is very similar to that of BiSe-ST. However, a striking difference can
be observed at higher wavelengths, where BiSe nanoparticles display an intense and broad
adsorption peak over the entire measured range. This broad peak can be ascribed to LSPR,
which results from TSS [5]. Figure 3 shows the normalized UV-Vis absorption spectra of
the silica-coated Bi2Se3 nanoparticles compared to their BiSe and BiSe-ST counterparts.
Normalization of UV-Vis spectra was used to qualitatively evaluate the impact of the coating
layer on the optical properties of the Bi2Se3 nanoparticles. The BiSe@S-thin and BiSe@S-
interm samples displayed similar absorption spectra to the BiSe nanoparticles over the
entire measuring area. They showed absorption peaks in the spectral range ≈ 210–300 nm,
where both BiSe and pure silica spheres adsorb. At a higher wavelength, they showed a
broad adsorption peak, dominating over the whole measured spectral region from ≈380
to 850 nm, which can be ascribed to the LSPR resulting from TSS. The only difference in
the adsorption of BiSe@S-thin and BiSe@S-interm compared to the BiSe sample was a less
pronounced absorption peak in this region, which can be attributed to the silica coating.
However, the results suggest that the thin (≈2–5 nm) and intermediate (≈50–80 nm) silica
layers did not mask the optical properties derived from TSS. With the increase in the
silica layer thickness, the absorption spectrum also changed. In the spectral range from
≈200–350 nm, the BiSe@S-thick sample displayed absorption spectra very similar to the
BiSe, BiSe@S-thin, and BiSe@S-inter samples. Towards higher wavelengths, the absorption
of the BiSe@S-thick sample decreased, similarly to the case of the BiSe-ST sample.
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concentration of 0.1 g/L.

According to theory [66], nanoparticles that display LSPR also display a photo-thermal
effect, i.e., the effect in which a material can convert light into heat [67]. This effect
makes TI nanoparticles relevant for biomedical applications, which has been reported
previously [6,8–14]. Figure 4a shows the photo-thermal performance of the silica-coated
Bi2Se3 nanoparticles suspended in water at a concentration of 0.1 g of particles/L. The
results were compared with the performance of the BiSe and BiSe-ST counterparts. The
measurements show that the BiSe@S-thin and BiSe@S-interm samples exhibited better
photo-thermal conversion, while the sample BiSe@S-thick exhibited a similar conversion to
the BiSe sample. Compared to the solvothermally-prepared nanoparticles (BiSe-ST), the
silica-coated nanoparticles showed a much lower photo-thermal conversion. The recovery
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after the 1st cycle was ≥94% for the uncoated and the silica-coated nanoparticles, while the
recovery of the BiSe-ST samples was only ≈ 83% (Figure 4b). The photo-thermal conversion
of the nanoparticles increased linearly with increasing suspension concentration (Figure 4c).
The final temperature obtained after 5 min for each sample and the concentration was
measured in triplicate. The difference was less than 0.5 ◦C, which could be attributed to
a systematic error of the thermocouple. The determined specific adsorption rate (SAR)
showed that the silica-coated nanoparticles had a significantly higher SAR compared to
their BiSe counterparts (≈760 W/g). The SAR values of the silica-coated nanoparticles
decreased when increasing the thickness of the silica layer (≈1150 W/g, ≈1080 W/g,
≈940 W/g for BiSe@S-thin, BiSe@S-interm and BiSe@S-thick, respectively). However, the
highest SAR was determined for the BiSe ST sample (≈2400 W/g) (Figure 4d). To date,
there have been no reports of the SAR of BisSe3 nanoparticles, which is a very important
parameter for the determination of the quality of photo-thermal materials. It describes the
ability of a material to adsorb radiation per mass unit. Compared to the previous photo-
thermal material, Au-nanorods (≈10 kW/g) [67], the coated Bi2Se3 nanoparticles displayed
a moderate SAR. Another parameter describing the quality of photo-thermal materials is
∆T/A, which describes the efficiency of a material in converting adsorbed light into heat
(Figure 4e). BiSe ST, the sample with the highest SAR, displayed the lowest conversion
efficiency, which was even lower than BiSe. In contrast, the silica-coated nanoparticles
showed higher ∆T/A values compared to the BiSe and BiSe ST samples.
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Figure 4. Temperature increase of the particle solution with 0.1 g/L (a) and corresponding heating
and cooling cycles (b). Final T reached after 5 min laser exposure at different concentrations (c),
specific adsorption rate (SAR) (d) and efficiency of adsorbed light conversion into heat represented as
∆T/A for different concentrations (e). Final temperatures after 5 min laser exposure vs. concentration
of the photo-thermal active particles in the sample (f). The experiments were conducted with laser
light of 808 nm and P = 3 W/cm2.

When determining photo-thermal properties, the concentration/mass of the photo-
thermal particles that actually perform the photo-thermal conversion is essential. In
our system, the Bi2Se3 nanoparticles represent the photo-thermal part of the material
that absorbs light and converts it into heat. For the uncoated nanoparticles (BiSe), the
mass of the photo-thermal active material was equal to the overall nanoparticle mass. In
the case of coated nanoparticles, the mass of the nanomaterials is the sum of the photo-
thermal core and the mass of the coating, either EG or silica. Taking this into account,
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the photo-thermal conversions shown in Figure 4a,c do not represent the true photo-
thermal values of Bi2Se3 nanoparticles alone, but of the Bi2Se3 and silica coating together.
Namely, at a certain concentration, the amount of the photo-thermal active nanoparticles
for the BiSe sample was equal to the mass of the sample, while in the case of the coated
BiSe-ST, BiSe@S-thin, BiSe@S-interm, and BiSe@S-thick samples, the mass of the photo-
thermal active particles was ≈3.6%, ≈26.6%, ≈93%, and ≈99.1% lower, respectively, which
was due to the coating (more details in the experimental section). To show the actual
photo-thermal conversion of the Bi2Se3 nanoparticles, the final temperatures obtained
after 5 min had to be plotted as the temperature at a certain concentration of Bi2Se3
nanoparticles in the sample (Figure 4f). Here, we see that the silica coating enhanced the
photo-thermal conversion. The conversion of BiSe@S-thin was slightly improved compared
to BiSe but was lower compared to BiSe-ST. When increasing the silica layer, the photo-
thermal conversion increased. The BiSe@Si-interm and BiSe@Si-thick samples displayed
significantly higher conversion compared to the BiSe, BiSe-ST, and BiSe@S-thin samples.
The desired temperatures could be achieved with a lower concentration of photo-thermal
active nanoparticles. For instance, a temperature in the range of 43–45 ◦C (temperature
needed for the cell apoptosis [68–71]) was reached with significantly lower concentrations
of photo-thermal active nanoparticles than in the case of the BiSe, BiSe-ST, and BiSe@S-thin
samples.

This increase in the photo-thermal conversion of the silica-coated nanoparticles com-
pared to the uncoated nanoparticles is consistent with reports in the literature. Namely, the
silica shell was transparent to visible and near-IR radiation. In addition to its protective
role, the silica coating also improved the thermodynamic stability of the nanoparticles
in suspension, and by suppressing light reflection, it improved the light absorption of
nanoparticles [72,73]. The same can also be concluded for the EG-coated nanoparticles. The
high photo-thermal conversion (>94%) obtained over multiple cycles and sufficient SAR
values make silica-coated nanoparticles good candidates for photo-thermal mediators in
biomedical applications.

Nanoparticles for biomedical applications must be non-toxic. Figure 5a shows the
hemotoxicity of the samples. The mixed-effect ANOVA test, which compared samples with
the PBS (negative control), showed that the hemolysis effect was significantly higher for
BiSe@S-interm at 0.3 and 0.5 g/L. However, at a concentration of 1 mg/mL for the same
sample, the hemolysis was found to be 0.3%. Therefore, this discrepancy falls within the
range of experimental method error, and we can conclude that the sample did not cause
significant hemolysis. In all cases, the determined hemolysis was lower than 2%, which
falls within the error area of the method and indicates that neither the BiSe and BiSe-ST nor
silica coated Bi2Se3 nanoparticles were hemotoxic under the given conditions.
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Figure 5. Influence of silica coated Bi2Se3 nanoparticles compared to their pristine and ethylene
glycol coated counterparts on red blood cells toxicity (a) and HeLa cell viability (b). Cells were
exposed to different concentrations of nanoparticles and compared with the control (PBS medium).
Negative control for hemotoxicity was 0%, and control for HeLa cell viability was 1.
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The biocompatibility of the silica-coated nanoparticles was further tested on a more
complex biological system of human cell lines. Figure 5b shows the viability of the HeLa
cells after 24 h of exposure to the nanoparticles, with test concentrations ranging from 0.1 to
1 g/L. No significant decrease in cell viability was observed at the lowest concentration of
0.1 g/L compared with PBS for all tested materials (two-way ANOVA, Dunnett’s multiple
comparisons test). However, at higher concentrations (0.3–1 g/L), the viability of cells
exposed to EG-coated nanoparticles was significantly reduced, whereas no significant
decrease in cell viability was observed with the pristine or silica-coated Bi2Se3 nanoparticles.
The viability of cells exposed to BiSe, BiSe@S-thin, and BiSe@S-interm decreased slightly at
concentrations higher than 0.5 g/L, whereas BiSe@S-thick showed a similar cell viability
to the control, even at higher concentrations. In contrast, the BiSe ST nanoparticle cell
viability decreased to 80% at 0.1 g/L, and this effect was even more pronounced at higher
concentrations (20%, 10%, and ≈0% cell viability for 0.3, 0.5, and 1 g/L, respectively).

To date, there have been few reports of the use of EG-coated Bi2Se3 nanoparticles
as photo-thermal mediators for potential biomedical applications [9–12]. No cytotoxicity
was observed at lower concentrations, but with concentrations ≥1 g/L, the viability was
significantly reduced [10,11], which was similar to our results. The in vitro assay on HeLa
cells confirmed our predictions and is consistent with the reported limitations, whereby EG-
coated nanoparticles are toxic and, therefore, not appropriate for biomedical applications.
On the other hand, the silica-coated Bi2Se3 nanoparticles showed an almost negligible
cytotoxic effect and are therefore more suitable for biomedical applications.

4. Conclusions

LSPR is responsible for the occurrence of a photo-thermal effect in Bi2Se3 TI nanoparti-
cles, which makes them relevant in the field of medical diagnostics and therapy. However,
a problem that limits the application of Bi2Se3 in the mentioned field is colloidal instability
and oxidation in the physiological medium [13]. Therefore, the nanoparticles have to be
coated with a protective surface layer. However, in the case of the TI, a protective layer can
alter or mask the surface and optical properties originating from TSS, as was demonstrated
in the case of an EG coating [7].

There have been reports where EG coated Bi2Se3 nanoparticles were used as photo-
thermal mediators in biomedical applications [6,8–14]. However, as shown in this work,
EG coated nanoparticles are cytotoxic and, therefore, not suitable for clinical applications.

The alternative is a protective surface layer made of silica, which, unlike EG, is FDA
and EFCA-approved, being non-toxic and biodegradable. As we demonstrated here, silica
coated Bi2Se3 nanoparticles with thin (≈2–5 nm) and intermediate (≈50–80 nm) thick silica
layer do not alter or mask the optical properties that originate from TSS, as is observed in
the case of their EG coated counterparts. A change in the optical properties only appears in
the case of the thickest (≈200 nm) silica layers. Here, a thick silica layer probably masks
the true optical properties of the TI.

Compared to the uncoated and EG coated Bi2Se3 nanoparticles, the silica coated
nanoparticles displayed an improved photo thermal effect, which increased with an in-
creasing silica layer. The desired temperatures could be reached with 10–100 times lower
concentrations of photo-thermal active nanoparticles compared to their uncoated and EG
coated counterparts. With in vitro tests performed on erythrocytes and HeLa cells, we
showed that, unlike EG coated nanoparticles, the silica coated nanoparticles are biocompati-
ble. Silica coated Bi2Se3 nanoparticles displayed negligible hemolysis and cytotoxicity, even
at high concentrations (>0.5 g/L). Nevertheless, although uncoated Bi2Se3 nanoparticles
are biocompatible, however, they cannot be used in biomedical applications, since they are
not colloidally and chemically stable in the physiological medium.

An improved colloidal stability, easy functionalization, high photo-thermal conversion,
moderate SAR, and biocompatibility show that silica is a suitable alternative for coating and,
therefore, such silica-coated Bi2Se3 nanoparticles are a suitable candidate photo-thermal
material for biomedical applications.
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53. Rožič, B.; Jagodič, M.; Gyergyek, S.; Drofenik, M.; Kralj, S.; Jagličič, Z.; Kutnjak, Z. Mixtures of magnetic nanoparticles and the
ferroelectric liquid crystal: New soft magnetoelectrics. Ferroelectrics 2012, 21, 150–153. [CrossRef]
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