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Abstract: A radiator is used to remove a portion of the heat generated by a vehicle engine. It is
challenging to efficiently maintain the heat transfer in an automotive cooling system even though
both internal and external systems need enough time to keep pace with catching up with evolving
engine technology advancements. The effectiveness of a unique hybrid’s heat transfer nanofluidwas
investigated in this study. The hybrid nanofluid was mainly composed of graphene nanoplatelets
(GnP), and cellulose nanocrystals (CNC) nanoparticles suspended in a 40:60 ratio of distilled water
and ethylene glycol. A counterflow radiator equipped with a test rig setup was used to evaluate
the hybrid nano fluid’s thermal performance. According to the findings, the proposed GNP/CNC
hybrid nanofluid performs better in relation to improving the efficiency of heat transfer of a vehicle
radiator. The suggested hybrid nanofluid enhanced convective heat transfer coefficient by 51.91%,
overall heat transfer coefficient by 46.72%, and pressure drop by 34.06% with respect to distilled
water base fluid. Additionally, the radiator could reach a better CHTC with 0.01% hybrid nanofluid
in the optimized radiator tube by the size reduction assessment using computational fluid analysis.
In addition to downsizing the radiator tube and increasing cooling capacity over typical coolants,
the radiator takes up less space and helps to lower the weight of a vehicle engine. As a result, the
suggested unique hybrid graphene nanoplatelets/cellulose nanocrystal‑based nanofluids perform
better in heat transfer enhancement in automobiles.

Keywords: CNC; coefficients; correlation; energy; GNPs; heat transfer; hybrid nanofluid; radiator

1. Introduction
Engine cooling is currently the largest technical difficulty confronting sectors in the

manufacturing, electrical, and automotive industries. Many industrial coolant systems, car
sectors, air‑conditioning, power generation, and chemical processes employ conventional
coolants like water, motor oils, mineral oil, ethylene glycol‑processing instruments, and
optoelectronic systems [1,2]. Enhancing the rate of heat transfer of ordinary is one of the
base fluid’s primary issues for current science and technology [3]. To boost thermal per‑
formance and cooling systems with the best thermal performance, temperature reduction,
accurate operating ability, and automotive cooling systems, such as electronic circuit cool‑
ing, heat exchanger cooling, high reliability. As a result, scientists and researchers were
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drawn to concentrate on comparing the heat‑transfer characteristics of solid particles to
those of common basic fluids [4,5].

Maxwell [6] is the earliest to perform an experiment to increase the rate of heat transfer
ofmicro‑sized particles dispersed in common fluids, but the researchwas unsuccessful ow‑
ing to sedimentation and flow pattern obstruction. Following multiple experiments, Choi
et al. [7] discovered that suspending the presence of nano‑sized particles in the host fluid
can accelerate heat transmission; this fluid is known as nanofluid. Additionally, nanopar‑
ticle suspension enhances the base fluid’s stability while also improving the base fluid’s
ability to transmit heat as compared to fluids containing milli‑ and micro‑sized solid par‑
ticles. Researchers are becoming increasingly interested in nanofluid applications since
the creation of this new concept [8–12]. Now, to enhance modern automobile technology
more efficiently and to be environmentally safe, new technological development is neces‑
sary [13]. Nevertheless, vehicles breaking down on the side of the road because they are
too hot are typical nowadays. A deteriorating water pump and a worn‑out radiator along
with inefficient coolant are the main causes of engine overheating. Overheating can cause
damage to different sections of the car, including cylinder head warping, radiator hose
distortion, as well as a car breakdown [14]. There is nevertheless tremendous room for
improvement, and numerous options are available. Improving car cooling system perfor‑
mance has been described. To improve cooling efficiency, there are three options: passive
cooling, active cooling, and amix of the two [15]. The engine’s running temperature should
be kept under control to avoid mechanical problems in the materials caused by high oper‑
ating temperatures, which allow for optimum fuel economywhile preventing overcooling.
In order to ensure the environmental condition, different writers have concentrated their
research in recent years on increasing the radiator’s thermal performance by suggesting
the utilization of cooling fluids with enhanced thermophysical properties. The effective
method, on the other hand, mostly requires the use of external power to improve cooling
abilities, like the installation of a cooling fan to eliminate extra heat or the use of an an‑
tifreeze (water and antifreeze) [16]. Equally, approaches are commonly employed by all
vehicles for increasing and maximizing heat transfer efficiency. However, while maintain‑
ing the same system size, area, or input power, these solutions have limits. As a result, the
addition of Nanoparticles for coolant, for example, has the potential to greatly enhance the
effectiveness of the implicit cooling technique, because this innovation has been proven to
significantly boost heat transfer performance in a wide range of subsystems [17,18]. The
fluids in this category, known as nanofluids, are made after colloidal suspensions with
solid nanoparticles (size 100 nanometers (nm)) in traditional coolant solutions. A total of
several research articles were retrieved, along with their associated data, such as citations,
author names, year, page, affiliation, keywords, title, and so on. Figure 1 shows the quan‑
tity of publications in graphene nanoparticles for research during the last 13 years, as well
as the growth of the field. Figure 1 shows the bibliographic data of nanofluids from Scopus
literature addressing the use of nanofluids in heat transfer application.



Nanomaterials 2023, 13, 808 3 of 28Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 27 
 

 

 
Figure 1. Magnetization Number of publications in graphene nanoparticles and bibliographic data 
of nanofluids from Scopus. 

Several studies show that using nanofluids in automobile cooling systems can help 
to minimize the size and weight of the radiator while also collective efficiency and lower-
ing fuel consumption [19]. To assess the performance of nanofluids, it is critical in vehicle 
cooling systems underneath an assortment of temperatures and situations to identify set-
tings that increase the overall heat transfer coefficient along with reducing the amount of 
energy consumed in pumping [20]. In contrast, the bulk of applications where water is 
frequently utilized as the base fluid to create nanofluids in the literature involves combi-
nations of water and ethylene glycol (at various ratios) and is also used in automotive 
cooling systems, given that the coolant fluid can reach temperatures of up to 200 °F [21,22]. 
To evaluate water-based alumina nano coolant, Gulhane et al. [23] used a fan-cooled ra-
diator experimental setup. The factors that were modified were the nanoparticle concen-
tration, flow rate, and temperature ranging from 0.1 to 0.4% (%), 2 to 5 L/min, and 50 to 
70 °C. The heat transfer coefficient was increased by 45.87% with the baseline coolant’s 0.4 
vol % Aluminium oxide nanoparticles. The authors recommended linear regression with 
a maximum variation of 3%. 

Arunkumar et al. [24] investigated the performance of automobile radiators employ-
ing EG and water filled with various nanoparticles (Al2O3, MgO, and TiO2) as coolants. 
There were two unique concentrations of the nanoparticles (0.12% and 0.4%), at a ratio of 
20:80(EG/W). The heat transfer coefficient was discovered to be linearly related to concen-
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Several studies show that using nanofluids in automobile cooling systems can help
to minimize the size and weight of the radiator while also collective efficiency and lower‑
ing fuel consumption [19]. To assess the performance of nanofluids, it is critical in vehicle
cooling systems underneath an assortment of temperatures and situations to identify set‑
tings that increase the overall heat transfer coefficient along with reducing the amount of
energy consumed in pumping [20]. In contrast, the bulk of applications where water is
frequently utilized as the base fluid to create nanofluids in the literature involves combina‑
tions of water and ethylene glycol (at various ratios) and is also used in automotive cooling
systems, given that the coolant fluid can reach temperatures of up to 200 ◦F [21,22]. To
evaluate water‑based alumina nano coolant, Gulhane et al. [23] used a fan‑cooled radiator
experimental setup. The factors that were modified were the nanoparticle concentration,
flow rate, and temperature ranging from 0.1 to 0.4% (%), 2 to 5 L/min, and 50 to 70 ◦C.
The heat transfer coefficient was increased by 45.87% with the baseline coolant’s 0.4 vol
% Aluminium oxide nanoparticles. The authors recommended linear regression with a
maximum variation of 3%.

Arunkumar et al. [24] investigated the performance of automobile radiators employ‑
ing EG and water filled with various nanoparticles (Al2O3, MgO, and TiO2) as coolants.
There were two unique concentrations of the nanoparticles (0.12% and 0.4%), at a ratio of
20:80(EG/W). The heat transfer coefficient was discovered to be linearly related to concen‑
tration, air, and nanofluid velocity. The behaviour of a copper‑argon nanofluid contained
in a nanochannel is investigated and the results imply that the surrounding structured liq‑
uid layers of the solid particles occupy a larger volume of the system in smaller channels,
improving the thermal conductivity of the nanofluid [25–28]. Sharma et al. [29] investi‑
gated the impact of partial slip with graphene nanoparticles composed of EG. In the case
of slip flow, it has been reported that increasing the fluid’s heating causes the Nusselt num‑
ber to rise.

According to the author [14] instead of the Nusselt number calculation, the overall
heat transfer coefficient (OHTC) to be provided in order of representing the heat transfer
performance in a vehicle radiator This is since various Nusselt numbers are computed for
all tubes or a single tube on the radiator. By adjusting the flow rate in the scope of 2–8 LPM,
Naveen et al. [30] studied the heat transfer output of a radiator using graphene (70 W:30
EG) as a cooling medium and reported around 65% enhancement in the heat transfer rate
and increment in the CHTC is 66% at a high flow rate. At increasing flow rates, the Nusselt
number increases by 53.4%. Tijani et al. [31] investigated the thermal performance of an
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automobile radiator using Al2O3 and CuO nanoparticles at a 50‑W:50‑EG at 0.05, 0.15 and
0.3%. At 0.3% and 6 LPM, CuO‑derived nanofluid illustrates a maximum heat transfer.

Hybrid nano coolants have also been proven to surpassmono‑nano coolants in several
investigations. Two or more types of nanoparticles are blended in with the base coolant to
create a hybrid Nano coolant. Palaniappan et al. [32] did a study in which they combined
a fly ash combination of many components (alumina, ferric oxide, titania, magnesia, silica
and calcium oxide, sodium oxide, Sulphur trioxide, and potassium oxide) in a mixture of
deionized water and ethylene glycol (DI/EG). A 6‑cylinder IC engine and a crossflow radi‑
ator were part of their arrangement. The optimal concentration (2 vol %) of fly ash could
increase the OHTC of base coolant, according to both energy and exergy calculations. Zad‑
khast [33] used MWCNT‑CuO/water hybrid nanofluids to develop a new method for de‑
termining thermal conductivity. It was discovered that at 50 ◦C and a volume percentage
of the thermal conductivity of nanofluid increasedwith an increase in nanoparticle content
at 0.6%, with amaximum increase of around 30.38%. Jamshed et al. [34] examined features
of hybrid nanofluids’ thermal transport comprising Cu and Zirconium dioxide nanoparti‑
cles derived from engine oil (EO). The numerical analysis found that compared to Cu‑EO
nanofluids, ZrO2‑Cu/EO hybrid nanofluids have a higher rate of heat transmission. When
compared to conventional nano coolants, the temperature of hybrid nanoparticle‑based
nanofluid rises faster [35].

Kumar et al. [36] examined two different hybrid kinds of nano coolants on an air‑
cooled radiator and identified that Al2O3‑graphene nanoplatelet (GNP) Nano coolant out‑
performed Al2O3 carbon nanotube (CNT) Nano coolant by 2.94%. They concluded that
the performance discrepancy was caused by the configuration of the carbon allotropes
since GnP is a planar variety of carbon nanotubes with many layers. Further Sahoo [37]
went on to improve the research by combining the three nanoparticles in water to generate
an Al2O3‑GnP‑CNT trihybrid Nano coolant. The strong pumping power of the trihybrid
Nano coolant is substantially higher than any of its ability to improve heat transfer, hence
based on their research, it is not advised to be used in place of a coolant. Due to their
superior thermal and heat transmission qualities, hybrid nanofluids have been the subject
of several investigations in a variety of sectors. Table 1 lists some of the hybrid nanofluid
applications. Due to the fact that hybrid nanofluids have remarkable heat transmission
capabilities, they were used in this work to investigate their behavior in an automotive
radiator. Table 1 gives a quick overview of how hybrid nanofluids are used in diverse
applications. In addition to radiator exchangers, hybrid nanofluids and base fluids are an‑
ticipated to be important in a range of industries in the near future, including renewable
energy, biomedical applications, sensor, compatibility, and so on [38–41].

The majority of the studies in the literature suggested that nanoparticles improve the
heat transfer performance of base coolant or even reduce the size of a radiator, implying
that they could be utilized as a replacement for traditional coolant. Various study scopes
lead to several results on nano coolant’s better heat transfer performance. However, re‑
search into the application of hybrid Nano coolant in a car radiator is currently limited.
Recent studies stated that hybrid nanoparticles can increase the thermal properties of a
base fluid since conventional heat transfer fluids such as water and ethylene glycol exhibit
very low thermal conductivity (aqueous ethylene glycol solution at 30 ◦C is 0.334 W/m‑
K). In this study, the author combines two types of nanoparticles, namely GnP with CNC
in a volume fraction of 0.2%, and variations of nanoparticles ratio GnP:CNC is 50%:50%.
While Ethylene glycol and distilled water are basic fluids to find out the variations in the
physical characteristics of the heat transfer. The main objective of the current study is to
improve the heat transfer performance of the radiator using novel hybrid nanofluids. This
study used a radiator test rig to simulate a car cooling system to examine the thermal per‑
formance of graphene‑based hybrid nano coolants with varying flow rates. The authors
have previously published work on the characterization, preparation technique, stability,
and thermophysical properties of the hybrid Nano coolant employed in this study [41].
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Table 1. Several hybrid nanofluid applications and important findings.

Hybrid Nanoparticles Volume
Concentration Application Area Main Conclusion Reference

Graphene
nanoparticles/Al2O3/W

0.3% Cooling of electronic
devices

Nusselt number increases by
15% when compared to

water.
[42]

Al2O3/Co3O4/W 0.015%/0.025% Solar energy 80% nearer absorbance in
radiation [43]

Fe3O4/CNTs/W 0.1–1.35% Double pipe heat mini
channel

54% of heat transfer
enhancement rate [44]

Al2O3/MWCNTs/W 0.01% Heat sinks mini
channel

Increase in Convective Heat
Transfer Coefficient by 44%. [45]

MWCNTs/CopperOxide/W 0.03 wt% Solar energy Full absorbance of solar
energy [46]

Al2O3/Copper/W 1% Heat sink micro fins

Nusselt number
enhancement of 26% when
compared to water. fins

with a Diamond shape were
crucial.

[47]

MWCNT/Al2O3/W 0.01% Heat exchanger‑plate Increase in convective heat
transfer coefficient by 15% [48]

Silicon
Carbide/MWCNT/EG 0.001–0.1 wt% Solar collector 97% increase in thermal

efficiency [49]

Aluminum/Nitride/W 1.0–4.0% Heat exchanger‑double
pipe 35%

35% of enhancement in
thermal performance [50]

2. Materials and Methods
2.1. Details of Nanofluids

Graphene nanoplatelets (GNP) with a purity of 99.9% (Nanografi Nanotech., Cams‑
dorfer Ufer 12 07749 Jena, Germany) and used untreated CNC with 7.4% weight/weight
suspension has been bought fromCanada’s BlueGoose Bio‑refineries Inc. As a base coolant,
Distilled Water/Ethylene Glycol was blended in a 40:60 ratio. The base fluid contains
nanoparticles, Graphene nanoplatelets (GNP), and cellulose nanocrystals (CNC). A total
of 4 L of Nano coolant was created for the test by vigorous magnetic swirling for 120 min
and ultrasonication for 5 h. FESEM images are shown in Figure 2. In order to prepare
hybrid nanofluids, the two‑step method has been applied and depicted in Figure 2. The
physical properties and weighing are detailed and discussed in the previously published
article [41]. Hybrid nanofluids preparation is depicted in Figure 3.
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2.2. Details of Heat Transfer Equipment
Figure 4 shows a test bed and a schematic illustration of the research’s heat transfer

test equipment. For the experimental run, the tank is full of 4 L of coolant. An electric
heater to warm the fluid, LM‑35 thermocouples, and K‑type DS18B20 thermocouples are
used tomeasure the surface and bulk temperatures of the radiator. An analog temperature
sensor and flow rate sensors are used to monitor the temperature and flow. As the heat
exchanger, a real automobile radiator (Perodua Kancil) with 31 tubes and 32 columns of
serpentine fins was employed. The radiator has a major diameter, D is 0.022 mm, and a
minor diameter, d of 0.002 mm with a length, L of 0.375 mm. Fins are made of up Alu‑
minium with 1 mm thickness to enhance heat dissipation. The geometrical specifications
of the radiator are defined and listed in Figure 4, Tables 2 and 3, respectively. A brushless
water pump, JT‑800D is used to provide a constant flow rate of nanofluid to the radiator
in a closed loop.
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Table 2. Components’ label from Figure 4a.

Label in Diagram Part Name Function

1 Electric heater To increase the heat of the fluid.
2 Pump To vary the flow rate for the radiator.
3 Flow rate Sensor To measure flow rate.
4 Temperature Controller To control temperature inlet.
5 Draft fan Providing airflow to remove temp.
6 K‑type DS18B20 Thermocouple Used for measuring inlet/outlet of the radiator (bulk temperature).
7 PLX‑DAQ Software to record the temperatures.
8 Radiator To remove heat from the operating fluid.
9 LM‑35 Thermocouple To determine the surface temperature of a radiator.

Table 3. Geometrical measurement for radiator and tube.

Details Symbol Configuration

Radiator height hrad 450 mm
Radiator length lrad 435 mm
Tube length ltube 375 mm

Tube thickness ttube 0.2 mm
Tube hydraulic (diameter) Dh,tube 3.73 mm

Number of tubes Ntube 31 no’s
The cross‑sectional area of each tube Atube,cross 0.0091304 m2

The outer surface area of each tube Atube,outer 0.0174 m2

Tube and fin material ‑ Aluminium
Fin height hfin 0.0016 m
Fin length lfin 0.0165 m

The coolant flow rate rangewas chosen based on previous experimentswith crossflow
type radiators. The coolant flow rate was set between 3.3 LPM to 7.2 LPM as in Figure 5
because the current study considered pump and Voltage limits. The temperature in the
room is 27–30 ◦C and was utilized to keep the radiator cold in all the tests.

Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 27 
 

 

7 PLX-DAQ Software to record the temperatures. 
8 Radiator To remove heat from the operating fluid. 
9 LM-35 Thermocouple To determine the surface temperature of a radiator. 

Table 3. Geometrical measurement for radiator and tube. 

Details Symbol Configuration 
Radiator height hrad 450 mm 
Radiator length lrad 435 mm 

Tube length ltube 375 mm 
Tube thickness ttube 0.2 mm 

Tube hydraulic (diameter) Dh,tube 3.73 mm 
Number of tubes Ntube 31 no’s 

The cross-sectional area of each tube Atube,cross 0.0091304 m2 
The outer surface area of each tube Atube,outer 0.0174 m2 

Tube and fin material - Aluminium 
Fin height hfin 0.0016 m 
Fin length lfin 0.0165 m 

The coolant flow rate range was chosen based on previous experiments with cross-
flow type radiators. The coolant flow rate was set between 3.3 LPM to 7.2 LPM as in Figure 5 
because the current study considered pump and Voltage limits. The temperature in the 
room is 27–30 °C and was utilized to keep the radiator cold in all the tests. 

 
Figure 5. Measurement of flow rate at various operating voltages. 

2.3. Experiment Procedure 
The experiment starts with working fluid being fed into the radiator until it reaches 

a steady condition. The working fluid is then heated using a constant-power heater until 
the equilibrium temperature at the radiator inlet reaches 80 °C. This experiment is con-
ducted under the influence of a radiator fan. A fan is employed to extract air from the 
radiator at a constant speed of 0.5 m/s. The experiment begins with a 3.3 LPM volumetric 
flow rate. The experiment is then repeated under identical conditions for volumetric flow 
rates of 4.3 LPM, 5.3 LPM, 6.3 LPM, and 7.3 LPM. With the use of PLX-DAQ connected 
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2.3. Experiment Procedure
The experiment starts with working fluid being fed into the radiator until it reaches

a steady condition. The working fluid is then heated using a constant‑power heater until
the equilibrium temperature at the radiator inlet reaches 80 ◦C. This experiment is con‑
ducted under the influence of a radiator fan. A fan is employed to extract air from the
radiator at a constant speed of 0.5 m/s. The experiment begins with a 3.3 LPM volumetric
flow rate. The experiment is then repeated under identical conditions for volumetric flow
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rates of 4.3 LPM, 5.3 LPM, 6.3 LPM, and 7.3 LPM. With the use of PLX‑DAQ connected
with Microsoft Excel software, raw data acquisition for inlet temperature, outflow temper‑
ature, and surface temperature at four locations is obtained once a steady state is reached.
Meanwhile, an infrared camera is utilized to photograph the radiator in order to analyze
the temperature distribution profile on the radiator for each parameter and condition. for
data verification purposes Four common laminar correlations and the well‑known Dittus‑
Boelter equationwere used to compare theNusselt number [51–54], after obtaining a range
of acceptable outcomes. Overall heat transfer coefficients of the radiator were compared.
Finally, the information gathered is analyzed and discussed.

2.4. CFD Simulation Analysis and Governing Equations
The 3D model is designed using SOLIDWORKS 2020. The simulation process is per‑

formed in ANSYS FLUENT 2020 R1. The model is imported into the design modular in
Geometry for extracting the 3D model into the simulation environment and the model is
assigned as a fluid model. The mesh size of this model is 20 mm along with linear element
order and solver preference as fluent. The mesh quality is assigned with target Skewness
as 0.9 and smoothing is set to medium to increase themesh quality and accuracy of the out‑
comes. The inflation is applied over the tubes to create mesh structures that are starting
from faces or surfaces of geometric right inside to the below in layer format. The maxi‑
mum layer of inflation is set to 10 and the growth rate is 1.2 per layer. Then, face meshing
is assigned over the tube walls to map the face for smooth flow. The name selection is as‑
signed for respected places such as inlet, outlet, convection 1, convection 2, Fluid domain,
and tube wall. These name selections are assigned as per the below image Figure 6. In the
mesh independent analysis, the mesh is obtainedwith 380,253 nodes and 298,520 elements
for the high mesh and 462,015 nodes and 331,523 elements are obtained with the medium
mesh setting. As such for accuracy and using tetrahedralmeshes for curvature adaptations
the high mesh is chosen.
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Figure 6. Measurement of the radiator model in simulation software (SOLIDWORKS 2020, USA).

Then, the ANSYS Fluent is run for the radiator simulation. The solver type is selected
as pressure based with absolute velocity formulation and transient time. Gravity is as‑
signed in the direction y‑axis with −9.81 m/s2 for the downward direction. In models,
energy is on for the simulation process and viscous type is selected as k‑epsilon (2 Eqn)
realizable model along with enhanced wall treatment. After that, the materials are created
as per the proposed coolants in the material Table In cell zone condition, the respected
fluid is assigned for the fluid domain. The stationary wall motion and no‑slip require‑
ment for the momentum at convection zones 1 and 2 are the major boundary conditions
of the simulation used for the radiator analysis. Convection is listed as a thermal condi‑
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tion, and aluminum is the substance. The velocity magnitude (m/s) at the inlet named
selection is described with input flow rates ranging from 3 lpm to 7 lpm, with a maximum
inlet temperature of 348 K. In boundary condition, the inlet is set to velocity, the outlet
is set to pressure, and convection 1 and 2 are set to convection thermal condition along
with the respected coefficient of heat transfer value which is acquired because of the sim‑
ulation procedure. The tube wall is also assigned to convection thermal conditions with a
respected heat transfer coefficient value. In solution methods, the SIMPLE method is used
with Green‑Gauss node‑based gradient and second order for pressure. Similarly, seconder
order upwind is used in simulationmethods such as momentum, turbulent kinetic energy,
and turbulent dissipation rate. Thereafter, the setup is initialized, and the simulation is run
for 100 iterations. In the results, the code is used for discovering the heat transfer value in
the simulation area average (surface heat transfer coefficient)‑tube wall.

CFD method practices numerical calculation by solving mass, momentum, and en‑
ergy conservation governing equations as follows,

Continuity equation
∂ρ/∂t +∇_.(ρU) = 0, (1)

Momentum equation

∂/∂_t(ρU) +∇_.(ρUU) = −∇p+∇_.τ + ρg, (2)

Energy equation

∂/∂t(ρh) +∇_.(ρUC_pT) = ∇_.(k∇T), (3)

2.5. Assumptions
Because of the reservoir tank’s heating and the radiator’s cooling, the temperature of

the Nano coolant altered with the test rig. As a result of the thermophysical characteristics
of Nano coolant, which dramatically changed due to differences in temperature, different
performance measurements were altered. A few assumptions used by earlier researchers
were used in this study to considerably simplify computations with minor errors.

• There is no or very little heat in the environment. Due to the insulated pipe external
layer, the temperature gradient between the running coolant and the pipewall surface
is considered negligible. To attain a steady condition, the test rig is permitted to run
for 30 min. The RTD PT‑100 sensors are completely insulated from the inlet/outlet of
the radiator. As a result, the bulk temperature (Tb) could be regarded as the average
fluid temperature.

• In a continuous fluid flow, when operating circumstances remain constant, the flow
rate and velocity of the coolant are expected to be constant over time. Furthermore, the
excellent stability or homogeneity of the nano coolant indicates constant density and
viscosity. The turbulence and temperature variations induced because of the adjacent
flowing air are also reduced.

• Thermal dissipation among the outside and inside walls temperatures are projected
to be negligible due to the modest radiator tube thickness (0.0002 m).

The following assumptions are made in resolving the analytical model:
There is nodifference in changing the coolant flow rate. Effective thermal conductivity

via thewalls of the cooling tube is limited. Due to the fact that heat loss through coolantwas
solely delivered to the cooling air, no other heat transfer pathway, such as radiation, was
addressed. Each tube’s coolant fluid flow has reached its full potential. The proportions
are similar all through the radiator, and the heat transmission surface area is uniform and
spread equally in all CFD Simulation and Heat Transfer Analysis of Automobile Radiator
employing 31 Tubes. The radiator material’s heat conductivity is assumed to be constant.
Within the radiator, there are no heat sources or sinks. Fluid stratification, losses, and flow
misdistribution are not present. The tube wall is stationary at this time.
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2.6. Data Reduction
Convection heat transfer ismeasured by Equations (4) and (5) as stated below to study

heat transfer performance analysis [55].
.

QC = nA(∆T) = nhAs(Tb − Ts), (4)
.

QC =
.

mCp(∆T) =
.

mC(Tin − Tout), (5)

where QC = convection heat transfer (W), h = heat transfer coefficient (W/m2K), Tb = bulk
temperature (K), Ts = surface temperature (K),

.
m = mass flow rate (kg/s), Cp = specific heat

capacity (J/kg.K).
The mass flow rate,

.
m (kg/s) is calculated by multiplying density, ρ (kg/m3), and vol‑

ume flow rate, V· (m3/s) as shown in Equation (6).

m· = ρv·, (6)

Bulk temperature, Tb is the mean of temperature inlet and temperature outlet as shown in
Equation (7).

Tb = (Tin + Tout)/2, (7)

where Tin = temperature inlet (K) and Tout = temperature outlet (K).
Surface temperature, Ts is the wall temperature on the radiator surface and is calcu‑

lated by averaging the temperature on it as shown in Equation (8).

T_s = 1/4 ∑
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〖4/(i = 1)Tin〗, (8)

where Tin = temperature inlet (K)
The experimental heat transfer coefficient, hexp is calculated by dividing Equation (9)

by Equation (5) as shown in Equation (4).

hexp =

.
mC(Tin − Tout)

nAs(Tb − Ts)
, (9)

Hydraulic diameter, Dh, is computed by using geometrical radiator dimension as
shown in Equation (10). Major diameter,D, and minor diameter, d, are measured by using
a digital calliper. The measured major diameter is 0.022 mm, and the minor diameter is
0.002 mm.

D_h = 4(Area)/Perimeter = 4
[
π/4d2 + (D − d)d

]
/(πd + 2(D − d)), (10)

Meanwhile, the Reynolds number and Nusselt number are calculated by using Equa‑
tions (11) and (12).

Re = (ρvDh)/(nµ) = (4m·)/(nπDhµ), (11)

where;

Re = Reynold’s number
v = flow velocity (m/s)
µ = dynamic viscosity (kg/ms)

TheNusselt number represents the ratio of convective heat transfer to convective heat
transfer, which is another typical dimensionless measure used to represent heat transfer
enhancement. Nusselt number is calculated as follows:

RNu =〖hexpD〗_h/k, (12)

where;

Nu = Nusselt number
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Dh = hydraulic diameter (m/s)
k = thermal conductivity (W/m. K)
hexp = Experimental heat transfer coefficient (W/m2K)

To verify the experimental data, the Nusselt number was estimated using Equation
(12) related to the Nusselt number determined by means of association. The Nusselt num‑
ber may be calculated using these formulae for both base and nano coolants. Meanwhile,
theNusselt number is defined by the Dittus‑Boelter equation given below by Equation (13).

Nu = 0.023〖Re〗̂(0.8)〖Pr〗̂(0.4), (13)

where Re and Pr are the Reynolds and Prandtl numbers calculated using the coolant’s
bulk temperature Most researchers have examined their experimental results by using the
Dittus‑Boelter equation, which is suitable for internal turbulent flow in a single tube. For
the verification of the data, some correlations that are dependable in much research for
laminar flow are chosen. These correlations are expressed in the equations below [51–54].

Nusselt number correlation equation by [51].

Nu = 0.951〖Re〗̂(0.173)〖Pr〗̂(1/3), (14)

Nusselt number correlation equation by [48] for compact heat exchangers.

u = 0.28〖Re〗̂(0.35)〖Pr〗̂(0.36) (15)

Nusselt number correlation equation by [49] for the Reynolds number less than 33.33.

Nu = 1.953(Re.〖Pr D_h/l_ f in)〗̂(1/3), (16)

Meanwhile, the pressure drop is calculated as shown in Equation (17). Meanwhile,
friction factor, f is calculated as shown in Equation (19) for turbulent flow using the Blasius
equation, which is given below,

△ P = ρgh = L/D. ρu2f. 1/2, (17)

where the above equation is derived from Equation (14),

△P = pressure drop (Pa)
ρ = density of fluid (kg/m3)
g = gravity acceleration (m/s2)
h = height of fluid column (m)

f = (2 △ P)/
(

L/D ρu2
)

, (18)

f = 0.316/〖Re〗̂ 0.25, (19)

Equation (20) shows the calculation for heat transfer enhancement of thermal trans‑
port fluid in automotive radiators [56].

E% = (〖Nu〗_n f −〖Nu〗_ f )/〖Nu〗_ f × 100, (20)

Finally, the overall performance of the automotive cooling system is influenced by
thermal and hydraulic factors which are calculated as shown in Equation (21) [57].

η = ((〖Nu〗_n f /〖Nu〗_ f ))/( f_n f / f_ f )ˆ(1/3), (21)

The effectiveness of the radiator is calculated by using the equation below:

ϵ =
(
〖
(
(m)·_C_(p)

)
〗_h(Tin − Tout)

)
/
(
〖
(
(m)·_C_(p)

)
〗_cTin − Tout

)
, (22)
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The overall heat transfer coefficient (U) based on air side surface area was calculated
using the following Equation (23).

U = 1/
(

1/(n0ha) + 1/
((

An f /Aa

)
hn f

))
, (23)

2.7. Uncertainly Analysis
Using measured data such as temperature, mass flow rate, and thermophysical char‑

acteristics, the convective heat transfer coefficient, and overall heat transfer coefficientwere
calculated. The accuracy of the measurement instruments used determines the experi‑
ment’s uncertainty. Moffat et al. [58] noted that the accuracies of the measurement instru‑
ments were used to assess the experiment’s uncertainty. Uncertainty of the heat transfer
rate (δQ) is calculated with the help of the derived equation below.

δQ =

√(
∂Q
∂

.
m

δ
.

m
)2

+

(
∂Q
∂Cp

δCp
)2

+

(
∂Q
∂Tin

δTin

)2
+

(
∂Q

∂Tout
δTout

)2
, (24)

where,

∂Q/(∂
.

m) = Cp (Tin − Tout),
∂Q/∂Cp =

.
m (Tin − Tout),

∂Q/(∂Tin) =
.

m Cp,
∂Q/(∂Tout) =

.
m Cp,

Here, δ
.

m, δCp, δTin, and δTout are representing the uncertainties inmass flow rate, spe‑
cific heat capacity, inlet temperature, and outlet temperature, respectively. The following
derived equation is used to estimate the uncertainty in CHTC (δhexp).

δhexp =

√(
∂hexp

∂Q
δQ
)2

+

(
∂hexp

∂As
δAs

)2

+

(
∂hexp

∂Tb
δTb

)2

+

(
∂hexp

∂Ts
δTs

)2

, (25)

where,

(∂hexp)/∂Q = 1/(As (Tb − Ts)),
(∂hexp)/(∂As) = Q/((Tb − Ts)),
(∂hexp)/(∂Tb) = Q/(As (1 − Ts)),
(∂hexp)/(∂Ts) = Q/(As (Tb − 1))

Here, δQ, δAs, δTb, and δTs are denoting the uncertainty in heat transfer rate, surface
area, bulk temperature, and surface temperature, respectively.

The uncertainty in the OHTC (U) was estimated using the following Equation (26).

δU =

√√√√( ∂U
∂ha

δha

)2
+

(
∂U

∂hn f
δhn f

)2

+

(
∂U
∂ηO

δηO

)2
, (26)

where,

δη f =

√(
∂m
∂ho

)2

(Um)
2, (27)

The ambiguity in the gauging instruments and constraints is given in Table 4.
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Table 4. Uncertainly in the measurement instruments and parameters.

Measuring Instruments/Parameters Accuracy/Uncertainty

Temperature controller (STC‑1000 Thermostat) ±0.1 ◦C
K‑type waterproof thermocouple (DS18B20) ±0.5 ◦C

LM‑35 thermocouple ±0.1 ◦C
Brushless water pump (JT‑800D) ±0.1%

Uncertainty in heat transfer rate (δQ) ±3–7%
Uncertainty in CHTC

(
δhexp

)
±5–10%

Uncertainty in CHTC (δU) ±6–10%

3. Results
Using various coolants such as distilledwater (DW), ethylene glycol/water (60EG/40W),

and a proposed GNP/CNC hybrid nanofluid with 0.2% volume concentration. The pres‑
sure loss as a function of the heat exchanger is shown for a particle concentration of 0.2%.
In every case, the greatest pressure gradient was detected at the heat exchanger’s input.
Even though the pressure at the intake is equivalent to the pressure drop, the differential
pressure between the inlet and outlet nozzle areas is visible. The temperature at the en‑
trance point is extreme, as shown in the following photographs by the red color. The blue
tint at the other end of the tube indicates that the hot fluid’s temperature has decreased
while the hot fluid can pass through it. As shown in Figure 7, pressure and wall nearby
temperature have similar observations of lowering temperatures. The steady‑state velocity
field for that iteration is represented by the velocity contour. Wall adjacent temperature is
the temperature of the area closest to the wall, and it can only be plotted or presented at the
wall. The most accessible temperature variable is the static temperature. The temperature
at the wall and the temperature next to it are the same.
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According to the data in Figure 7, as the coolant or working fluid flow rate in the
radiator cooling system increases, the rate of heat transfer increases [59]. When the flow
rate is larger, more heat energy is conducted from the coolant to the radiator flat tube.
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However, the coolant flow rate that can be used in an automobile cooling system has a
limit. If the flow rate exceeds, it is important to prevent the flow rate restriction, aeration,
or erosion on the radiator flat tube, and foaming of the coolant inside the system [60].

In the current study, the Reynolds number is used to determine the nature of the flow
pattern in the radiator test rig. Figure 8 displays a graph of Reynolds number vs. flow rate
for water, base fluid, and 0.2% hybrid nanofluid.
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According to the data collected, a directly proportional relationship exists between the
Reynolds number value and the flow rate. The developedReynolds number increaseswith
the measured flow rate. Figure 8 demonstrates that as compared to water and base fluid,
the suggested hybrid GNPs/CNC with 0.2% volume concentration has a lower Reynolds
number. The figure also illustrates thatwhen the flow rate increased, the Reynolds number
value increased. Reynolds number was shown to drop with particle loading in the base
fluid (0.2%) on account of increased density and viscosity, which results in a reduction in
the mass flow rate. The result is, it is clear that particle loading causes a pressure drop to
increase. As the flow rate increases, the Reynolds number also increases. The proposed
GNPs/CNC has achieved 1786.37 and 3863.55 Reynolds numbers for flow rates 3.3 and 7.2
LPM, respectively. According to the data gathered, the flow rate and the Reynolds number
value are directly proportional. The Reynolds number that develops increases with the
measured flow rate. For a 3.3 LPM flow rate, the Reynolds number achieved is 4805.2 and
at a 7.2 LPM flow rate, the proposed GNPs/CNC achieved Reynolds numbers of 10,413.58,
respectively. The resulting values can be used to demonstrate that the proposed fluid flow
is turbulent. Convective heat transfer, as shown in Figure 9, is another important heat
transfer performance analysis. The CHTC values obtained are plotted and illustrated for
various flow rates.
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Fluid properties, solid surface roughness, and fluid flow type together influence the
convective heat transfer coefficient ‘h’ (laminar or turbulent). The proposed coolant per‑
forms well with maximum CHTC values at varied flow rates, as shown in Figure 9. The
heat transfer coefficient still rises under the same conditions evenwhen the Reynolds num‑
ber is dropping fluid. This is a result of the loading of nanoparticles (0.2% GNP/CNC),
improving thermal conductivity. Due to the fact that rising fluid temperatures induce a
rapid rise in hybrid nanofluid’s heat transfer and an improvement in heat transfer coeffi‑
cient are more noticeable at higher flow rates (6.43% at 3.3 LPM and 11.02% at 7.2 LPM
with respect to base fluid) (due to enhancement in Brownian motion of nanoparticle). The
proposed coolant achieved 2762.06 and 5318.22 W/m2K CHTC at 3.3 and 7.2 LPM flow
rates, as related to base fluid EG/W, the suggested coolant CHTC value is 41.44% higher,
and 52.46% higher when related to water at a flow rate of 7.2 LPM. Acquired overall heat
transfer coefficient (OHTC) values in terms of various flow rates are shown in Figure 10.
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Figure 10 depicts the maximum OHTC values attained by the suggested coolant at
various flow rates. Heat transfer coefficient still rises under the same conditions even
when the Reynolds number is dropping (for hybrid fluid). This is a result of the loading of
nanoparticles (0.2% GNP/CNC), improving thermal conductivity. Due to the rising fluid
temperatures that induce a quick growth in the thermal conductivity of hybrid nanofluid,
enhancement of heat transfer coefficient is more noticeable at higher flow rates (6.43% at
3.3 LPM and 11.02% at 7.2 LPM with respect to base fluid) (due to enhancement in Brow‑
nian motion of nanoparticle). Figure 11 displays the pressure drop of used coolants as a
result of the flow rate.
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The proposedGNP/CNCobtainedmaximumpressure drop valueswith regard to var‑
ious flow rates, as shown in Figure 11. Aside from the heat transfer coefficient, calculations
of pressure drop are crucial in establishing the viability of applying hybrid nanofluids in
operation. Reynolds number, density, and viscosity of the nanofluids govern the pressure
drop inside the tube. The addition of hybrid nanoparticles to the base fluids increased
pressure decrease. The pressure drop observed by the hybrid nanofluid at 0.2% concen‑
tration is 1.4 times higher than the pressure drop obtained by the base fluid (EG‑W). This
increase in pressure drop might well be explained by the fact that the base fluid’s viscosity
rises as particles mix in the base fluid. The proposed GNP/CNC hybrid nanofluid pressure
drop increased from 4.81 kPa to 18.55 kPa for 3.3 to 7.2 LPM flow rates, respectively. The
pressure drop of the proposed GNP/CNC has increased by 12.35%when compared to base
fluid (EG/W) and a 34.06% increase as comparedwithwater at the flow rate of 7.2 LPM. The
determined friction factor for executed coolants is shown in Figure 12 in terms of varied
flow rates.
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The pressure drops seen between the outlet and the inlet of the radiator influences
the friction factor. The suggested GNP/CNC has achieved maximum friction factor val‑
ues with regard to various flow rates, as shown in Figure 12. As seen in Figure 12, the
hybrid particle‑based fluid raised the friction factor (f) in the radiator. The lowest fric‑
tion factor value is measured for the water at the flow rate of 7 LPM. These findings are
in line with those of research by Vajjha et al. [61]. The pressure drop between the flow’s
inlet and outlet in a radiator determines the friction factor. The friction factor was plot‑
ted against the flow rate and Reynolds number for base fluids and hybrid fluids in this
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study. When there is relative motion between two bodies in contact, friction, a resistive
force takes place. Three aspects primarily that determine the frictional force between two
bodies are adhesion between the fluid and wall surfaces, the roughness of the surface, and
the deformation factors. At a flow rate of 3.3 LPM for a hybrid nanofluid, the highest ob‑
served friction factor is 0.048, and the lower friction factor is observed at 0.040 at 7.2 LPM.
Similarly, a 0.039 value is obtained for base fluid (EG‑W). At the same flow rate, the lowest
friction factormeasured is 0.031 for water. The friction factor of the proposedGNP/CNC at
0.2% increased by 2.36% as compared with EG/W base fluid and by 21.82% increase when
compared to Water base fluid at the flow rate of 7.2 LPM. The graphs drawn using CHTC,
OHTC, pressure drop, friction factor, and Nusselt number in regard to Reynolds number
are shown in Figures 13–17.
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Increased Reynolds number (Re) influences CHTC, OHTC, Pressure drops, and Nus‑
selt number directly, according to Figures 13–15 and 17. As the Reynolds number (Re)
value improved, the value of the friction factor decreased. It is indeed apparent from the
friction factor to the Reynolds number graph (Figure 16) that as the Reynolds number in‑
creased, the fluid’s friction factor also decreased dramatically. The water and base fluid
achieved a lower friction factor in comparison to the hybrid GNP/CNC nanofluid. At a
continuous air flow rate of 2 m/s, the Nusselt number varies according to the Reynolds
number, and continual improvement is shown with 0.2% particle volume concentration
and Reynolds number. This is because particle addition has increased the Prandtl number
of the base fluid. Furthermore, because of the wide variability in the base fluids’ physi‑
cal characteristics, it is impossible to directly connect the Nusselt number to the Reynolds
number. Nusselt number for the proposed coolant has increased by 26.77% in compari‑
son to base fluid (EG/W) and a 59.76% increase when related to water at the flow rate of
7.2 LPM.

As the flow rate of the fluids increases, the radiator’s effectiveness at a fixed inlet flows
temperature decreases. Similarly, as the flow rate increased, the nanoparticles mixed with
the hybrid nanofluid increased. Figure 18 shows how the suggested GNP/CNC gains ef‑
fectiveness at varied flow rates. The heat transfer improvement because of the addition
of hybrid nanoparticles is shown in the pattern obtained from the effectiveness calcula‑
tion. The effectiveness of the base fluid at 60:40 EG‑W has obtained a 0.41 value at 7.2
LPM. The proposed GNP/CNC obtained a 0.49 effectiveness value for a 7.2 LPM flow rate.
Overall, it was observed that hybrid nanoparticles’ heat transfer improves more than tra‑
ditional coolants (water/EG‑W) even at lower flow rate conditions. The results from the
effectiveness calculations prove that the proposed GNP/CNC (0.2%) has achieved a better
effectiveness value, and the maximum possible heat transfer can be possible with the hy‑
brid nanoparticleswith a 0.2% volume concentration. When it comes to the convective heat
transfer coefficient (CHTC), Figure 19 illustrates the experimental and simulation results
comparison.
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Figure 19. CHTC of experimental and simulation in terms of flow rate in LPM.

The percentage of the difference between the experimental and simulation processes
is assessed and marked in Figure 19. The difference between experimental and simulation
results for the proposed GNP/CNC is 0.3%, 0.24%, and 0.3% for EG/W and water, respec‑
tively. The obtained calculated results demonstrate that the experimental and simulation
results are consistent. The following sections correlate the experimental findings to the
existing literature.

3.1. Comparative Analysis
According to the comparison analysis, the proposed GNP/CNC with 0.2% volume

concentration performed well. It was also demonstrated that raising the flow rate and
velocity of flow results in more efficient output. It can be determined that the proposed
GNP/CNC hybrid nanofluid is more effective at removing heat from an automobile radi‑
ator. As an outcome of the combined effect of convective heat transfer and forced con‑
vection, and fluid influencing the rate of heat removal, increased efficiency is achieved.
Heat transfer enhancement has a bigger impact than the frictional factor. Despite the fact
that the friction factor in nanofluid is much higher than base fluid, the GNP/CNC hybrid
nanofluid overall performance in the automotive radiator test rig is better than base fluid
(EG/W).

A thermal infrared camera was used to record the heat distribution of fluid inside
the radiator. The temperature range is 30 ◦C to 80 ◦C, which is the radiator test rig’s opti‑
mal temperature. Thermal imaging of the fundamental fluid, which is distilled water and
Ethylene Glycol, is shown on the left side of Figure 20.
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Following the base fluids test, in the tank, a hybrid nanofluid with a volume con‑
centration of 0.2% and a ratio of 60:40 (EG:W) was poured, and the experiment was then
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performed on the test rig to obtain a thermal image of the fluid exclusively in the radiator.
The temperature range of nanofluid is the same as for base fluid, which is 30 ◦C to 80 ◦C.
The colors yellow and green at the radiator are shown in Figure 20b. This observation in
the image indicates thatwhen the hybrid nanofluid runs in the test rig, it absorbsmore heat.
Hybrid nanofluids absorb more heat and enhance better than base fluids when compared
to base fluids.

3.2. Size Reduction Analysis
This section used hybrid nanoparticles at different concentrations, GNP/CNC (0.2%),

and other possible concentrations to get amore efficient heat transfer coefficient value. The
actual and optimal radiator tube sizes are listed below in Table 5.

Table 5. Experimental dimensions of actual and optimized tub size.

Parameters Actual (m) Optimized (m)

D 0.022 0.016
d 0.002 0.002
L 0.375 0.24

The optimum size is determined by the CHTC value of GNP/CNC (0.2%) in actual
tubediameterwhile keepingGNP/CNCconstant (at 0.01%volume concentration). Figure 21
shows the surface HTC for actual tube sizes with GNP/CNC (0.2%) andGNP/CNC (0.01%).
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According to the simulation images above, the actual radiator tube size achieves
6860.17W/m2K for GNP/CNC (0.2%) and 5780.07W/m2K for GNP/CNC (0.01%). The tube
size analysis is performed first in order to reduce the radiator’s size, and the results for the
surface HTC for GNP/CNC (0.01%) with optimized size are shown in Figure 22.
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Figure 22. The pipe simulation at optimized size with G + CNC (0.01%).

The surface HTC of an optimal tube size maintained with the hybrid nanofluid GNP/
CNC at 0.01% volume concentration is 6661.21 W/m2K, which is close to the actual tube
size with GNP/CNC at 0.2%, as seen in the above simulation image. With the optimized
size of tube dimensions, the radiator may accomplish the Heat transfer coefficient value
of actual tube size dimensions with a reduced volume concentration of hybrid nanofluid
GNP/CNC at 0.01%, according to this simulation analysis by fluid flow. More space can
be gained by shrinking radiator tubes, and greater heat transmission in the radiator can be
attained with higher heat transfer coefficient values as nanoparticle concentrations in the
base fluid are extremely low in volume.

3.3. GNP‑CNC Hybrid Nanofluids Benefits for Heat Transfer
According to the mentioned experimental findings and analyses, the GNP‑CNC hy‑

brid nanofluids have a large thermal increase, which might significantly increase the ef‑
ficiency of heat consumption. However, it was also necessarily followed by a rise in vis‑
cosity with volume concentration, which will have an influence on the time and energy re‑
quired for pumping. The proposedhybrid nanofluid increasedCHTCby 51.91%,OHTCby
46.72%, and pressure drop by 34.06% when compared to the existing hybrid nanofluid us‑
ing distilledwater as the base fluid. For distilledwater and the suggested hybrid nanofluid,
from the suggested dimensions, the CHTC value at 7.2 LPM is 2528.19 and 5318.22W/m2K.

4. Discussion
This article looks into the effectiveness of an automotive radiator employing the

Reynolds number, Nusselt number, CHTC, OHTC, pressure drop, and friction factor. The
experiment is conducted at several flow rates, involving 3.3, 4.2, 5.3, 6.1, and 7.2 LPM.
The outcomes of the experimental and simulation processes are discussed in this section.
Furthermore, ANSYS Fluent 2020 R1 is used to carry out the simulation procedure. The
numerical and graphical representations of computational simulation results can be stud‑
ied (contour plot. In CFD post‑processing, blue denotes the lowest value and red denotes
the highest value [62].

The obtained results from the experiments are validated by comparing them to pre‑
vious literature. Figure 23 shows the comparison of obtained Nusselt number from ex‑
perimental data with the Dittus‑Boelter equation, which is widely used, along with Maiga
et al. [51], Dehghandokht et al. [52], and Shah et al. [53] equations.
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The Dittus‑Boelter equation result obtained the highest Nusselt number in terms of
various flow rates, as shown in Figure 23. When compared to Maiga et al. [51] equation,
49.86% when compared to the Dehghandokht et al. [52] equation, and 40.24% when com‑
pared to the Shah [53] equationwith a flow rate of 7.2 LPM, the presentedwork experimen‑
tal value is enhanced by 69.29%. Furthermore, the present research result has been reduced
to 66.24% to the Dittus‑Boelter equation. In addition, Figure 24 shows a comparison of the
current study’s CHTC value with existing literature [63–65].
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When compared to earlier literature, the preceding image reveals that the current
study has attained the highest CHTC value. The comparison is made at three different
flow rates: 3.5, 4.5, and 5.5 LPM. The CHTC value of the current study is increased by
76.38% when compared to Al2O3/CNC hybrid nanofluid, and by 60.82% when compared
to Al2O3/water single nanofluid in the same research [63], with 61.79% improvement over
the CuO/water single nanofluid [64], and 2.06% improvement over the GnP/Water single
nanofluid research [64,65]. At a 4 LPM flow rate, the CHTC value of the proposed coolant
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is 43.19% higher than the GNP/H2O‑EG nanofluid research [66]. Figure 25 shows a com‑
parison of pressure drop with the literature [67,68].
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In comparison to earlier literature, the current investigation shows a better perfor‑
mance in terms of pressure drop (Figure 25). For the comparison process, flow rates of 3.5,
4.5, and 5.5 LPM are used, and literature results are obtained from the author [68]. There is
no data on thw pressure drop because this study is not conducted at 3.5 LPM. When com‑
pared to [67], an identical experimental setup, the pressure drop is 92.75% lower at 5.5 LPM,
and 98.67% lowerwhen compared to the author [68] data. The experimental techniquewas
carried out in this study, with findings achieved at 70 ◦C and 0.2% zinc oxide nanoparticle
concentration. The friction factor value obtained above 0.34 indicates the lowest level of
pressure drop data obtained. The pressure drop value achieved by [67] at a volumetric
concentration of 0.03% was low in comparison to the current proposed GNP/CNC (0.2%)
investigation.

5. Conclusion
The primary goal and objective of this research is to improve the heat transfer coeffi‑

cient of automobile radiators by using a novel hybrid nanofluid as a coolant. This work
utilizes a mixture of graphene nanoplatelets and cellulose nanocrystals as a coolant for the
radiator. The observations of the present study can be outlined as follows.

Heat transfer enhancement results using 0.2% novel hybrid nanofluid in car radiators
are obtained. The experiment is carried out at various flow rates ranging from 3.3 to 7.2
LPM. From the previous studies of Stability analyses, thermophysical measurements, and
RSM analysis results 0.2% hybrid nanofluid concentration acquires the best heat transfer
property result. The results of the experimental test rig and amodel created in 3D and eval‑
uated by Computational fluid dynamics (CFD analysis in ANSYS software) conclude that
enhancing the fluid’s flow rate increases the convective heat transfer coefficient (CHTC),
overall heat transfer coefficient (OHTC), pressure drop, and Nusselt number. In compari‑
son to the existing hybrid nanofluid, the suggested hybrid nanofluid enhanced CHTC by
51.91%, OHTC by 46.72%, and pressure drop by 34.06%with respect to distilledwater base
fluid comparison. The obtained Nusselt number agrees well with other correlations.

Furthermore, the recommended dimensions of a single radiator tube are 0.022 m ma‑
jor diameter, 0.002 m minor diameter, and 0.375 m length. At 7.2 LPM flow rate, these
dimensions obtained 2528.19 and 5318.22 W/m2K CHTC for distilled water and proposed
hybrid nanofluid, respectively. When the tube size “D” is reduced to 0.016 m and “L” is
reduced to 0.185 m. The radiator could reach the CHTC of actual pipe size at hybrid 0.2%
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with 0.01%hybrid nanofluid in the optimized radiator tube, according to the size reduction
assessment using CFD analysis. Furthermore, this demonstrates that by downsizing the ra‑
diator tube and increasing cooling capacity over typical coolants, the radiator takes up less
space and helps to lower the weight of a vehicle engine. As a result, the suggested unique
hybrid graphene nanoplatelets/cellulose nanocrystal‑based nanofluids perform better in
heat transfer enhancement in automobiles.

6. Future Perspectives
Few other applications with flow rates higher than 10 LPM can be examined further,

even if there is a flow rate restriction in this study for a reason due to the nanoparticles
being added to the base fluid, the current work can be expanded to analyze the wear and
surface roughness aspects of radiator material. Graphene interactions with metal or metal
oxide nanoparticles in nanocomposite powders have made it possible to design and cre‑
ate new applications including everything from energy problems to the medical industry.
Therefore, it is essential to conduct additional research and develop newer processes for
the preparation of graphene‑basednanocomposites. Themajority of experimental research
has been carried out at room temperature but considering the wide range of applications
for graphene‑based nanofluids, it is equally crucial to assess their thermal properties char‑
acteristics at temperatures both higher and lower ambient levels. Future research should
paymore attention to hybrid techniques that integrate continuous fluid dynamics and com‑
putation for researching nanofluids including hybrids. Examining the potential of refrig‑
erants incorporating graphene to improve the thermal characteristics of condensers and
evaporators used in two‑phase heat transfer applications.

Radiator weight and size can be decreased by using the graphene family of nanoflu‑
ids for cooling. They can also be used physically in the change to achieve heat transfer
enhancement with the running load conditions. Finally, by addressing other enhanced
representation investigations with the real experimentation application, the size reduction
study employing CFD analysis in this research may be further expanded.
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