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Abstract: With the increase in heat power density in modern integrating electronics, thermal inter-
face materials (TIM) that can efficiently fill the gaps between the heat source and heat sinks and
enhance heat dissipation are urgently needed owing to their high thermal conductivity and excellent
mechanical durability. Among all the emerged TIMs, graphene-based TIMs have attracted increasing
attention because of the ultrahigh intrinsic thermal conductivity of graphene nanosheets. Despite
extensive efforts, developing high-performance graphene-based papers with high through-plane
thermal conductivity remains challenging despite their high in-plane thermal conductivity. In this
study, a novel strategy for enhancing the through-plane thermal conductivity of graphene papers by
in situ depositing AgNWs on graphene sheets (IGAP) was proposed, which could boost the through-
plane thermal conductivity of the graphene paper up to 7.48 W m−1 K−1 under packaging conditions.
In the TIM performance test under actual and simulated operating conditions, our IGAP exhibits
strongly enhanced heat dissipation performance compared to the commercial thermal pads. We
envision that our IGAP as a TIM has great potential for boosting the development of next-generation
integrating circuit electronics.

Keywords: graphene paper; Ag nanowires; thermal interface materials

1. Introduction

Development of integrated circuits toward miniaturization, higher intelligence, and
high-power density would inevitably lead to serious heat dissipation problems [1–3]. The
search for a way to prolong the service life and stabilize the performance of electronics,
conducting proper thermal management strategy to rapidly dissipate heat and regulate
the operating temperature of electronics is attracting increasing attention. However, in
current thermal management system, various micro-gaps filled with low thermal con-
ductivity air between the heat source and the heat sink would severely lower the heat
dissipation efficiency [4–6]. Thus, thermal interface materials (TIMs) that could not only
fill the gaps but also reveal high thermal conductivity have been proposed to address this
issue [4,7,8]. Conventionally, TIMs are fabricated by introducing high thermal conductivity
nanofiller, such as Al2O3, BN, into polymer matrixes [9–11]. Despite extensive efforts, the
heat transport capacity of TIMs prepared in conventional ways is far from meeting the
boomingly increasing thermal management requirement of modern electronics, whose
power density has been growing exponentially [12]. Therefore, developing TIMs with
significantly enhanced thermal conductivity has become the heart of the further progress
of electronics.
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Among all the emerged high thermal conductivity materials, graphene has become the
most promising candidate for fabricating high-performance TIMs owing to their ultrahigh
thermal conductivity and easy processing [13,14]. Represented by the graphene paper
with ultrahigh in-plane thermal conductivity, great flexibility, and excellent processability,
the graphene-based materials have been broadly commercialized as thermal management
materials in portal and domestic electronics [15–18]. However, the through-plane thermal
transport capability of graphene paper is extremely poor because of the high barrier for
phonon transmission across a van der Waals interface between graphene sheets [19,20].
Meanwhile, some group IV 2D materials (such as silicene, germanene, and its layered
structures (germanane (GeH), silicane, etc)) generally exist at extremely low through-
plane thermal conductivity [21,22]. Exploiting graphene paper-based TIMs with enhanced
through-plane thermal conductivity is of great significance and practical value; therefore,
various attempts have been made to enhance the through-plane thermal conductivity of
graphene papers and then promote this to other group IV 2D material paper. Functional
modification on the surface of the graphene sheets can improve the interface relationship
between graphene sheets, thereby increasing its through-plane thermal conductivity [23].
However, the gain brought by the total price of functional modification is not obvious,
which is mainly due to the low thermal conductivity of the modified organic matter and the
functional modification of the covalent price, which will destroy the continuous graphene
structure. Besides the functionalization, compositing with high-thermal conductivity metal
particles is considered to be a better solution to solve the low through-plane thermal
conductivity of graphene paper. Normally, when the metal nanoparticles are located on the
surface of thermal conductive frameworks, it is likely to construct scattering points, strongly
hindering the rapid heat transmission in the bulk materials [24]. However, Qiu et al. [25]
reported that the CNTs-based papers in situ deposited with Au nanoparticles showed
enhanced interface heat conduction, which is inferring to benefit from the inspiration of
the Au nanoparticles inducing the CNTs medium-frequency vocal mode, reassigning the
carbon atom on the interface to activate the resonance with the metal particles. Li et al. [26]
confirmed that Ag nanoparticles can induce low-frequency phonon mode excitation in
graphene. Ag nanowires (AgNWs) with high length ratio can provide more continuous
sound transmission pathways between graphene layers. Based on these reports, we believe
that introducing the AgNWs into the graphene layer would significantly improve the
thermal conductivity of graphene papers.

In this work, an in situ graphene/AgNWs hybrid paper (IGAP) with hierarchical
structure was fabricated by vacuum filtration. First, the Ag+ was enriched on the surface of
the graphene after dispersing graphene into the AgNO3 solution. Then, the AgNWs was
nuclear and previously grown in the axial direction of graphene nanosheets. Compared to
the original graphene paper, the thermal conductivity of IGAP increased slightly prior to
compression. Interestingly, under 60% of the compression conditions, the through-plane
thermal conductivity of IGAP can be further increased to 7.48 W m−1 K−1, more than
double that of the pure graphene paper (GP). The comparative test results with the most
advanced commercial TIM also prove IGAP’s excellent performance in cooling electronic
equipment such as TIMs.

2. Materials and Methods
2.1. Materials

The rGO with the typical side size of 5 ± 0.3 µm and the thickness of 10 ± 0.3 nm was
obtained by intercalation and exfoliation of graphite. The rGO was reduced by HI and
thermal annealing. Polyethylene pyrirol (PVP, K29-32), ethylene glycol (EG), ethanol and
AgNO3 were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
All chemicals were used without further purification.



Nanomaterials 2023, 13, 793 3 of 9

2.2. Preparation of in-situ rGO/AgNWs Hybrid Paper

AgNO3 (400 mg) and PVP (1000 mg) were dissolved in EG (100 mL), where the
temperature was controlled at 60 ◦C, and magnetic mixing was used to ensure the complete
dispersing of the PVP. The rGO (50 mg) solution in water was then subjected to a solvent
exchange process using EG (50 mL). These two solutions were mixed by ultrasonic. Then,
the mixture was treated at 160 ◦C for 4 h in a high-pressure reactor. The mixture was then
filtered through a Teflon filter membrane (pore size: 0.5 µm) to obtain a thin paper. The
paper was washed by ethanol and water to remove residual PVP and EG.

2.3. Preparation of Mixed rGO/AgNWs Paper (MGAP)

A total of 400 mg AgNO3, 1000 mg PVP and 100 mL EG were homogeneously mixed
in a 250 mL beaker after vigorous mechanical stirring at 60 ◦C. The solution was transferred
to a high-pressure reactor and reacted at 160 ◦C for 4 h, and the reactor was then cooled to
ambient temperature. Finally, 50 mg rGO and 50 mL EG were added to the solution and
dispersed through ultrasonication. The mixture was filtered with a Teflon filter membrane
(pore size: 0.5 µm) to obtain a thin rGO/AgNWs paper. The MGAP was washed by ethanol
and water to completely remove residual PVP and EG.

2.4. Characterizations

The morphologies of IGAP and GP were investigated using the scanning electronic
microscope (SEM, Regulus 8230, Hitachi, Japan). Transmission electron microscopy (TEM,
Talos F200X, Thermo Fisher Scientific Inc., USA.) and X-ray diffraction (XRD, Advance D8,
Bruker, Germany) with Cu Kα radiation (λ = 1.5406 Å) were utilized to characterize the
crystallinity and chemical composition of the IGAP, respectively. The compression tests
were carried out on an electron omnipotence tester of universal testing machine (UTM,
5567A, Instron). The thermal conductivity of the IGAP can be calculated by the equation
λ = α × Cp × ρ, in which thermal diffusivity (α) was measured using Hyper Flash laser
thermal conductivity meter (LFA467, NETZSCH, Germany); specific heat capacity (Cp)
was evaluated using a differential scanning calorimeter (DSC) (PYRIS Diamond™, Perkin
Elmer, USA); and density (ρ) was calculated by the equation ρ = m/V. Infrared (IR) photos
were captured using an infrared camera (Fluke, Ti480 Pro, Everett, DC, USA).

3. Results

Figure 1a shows the schematic of the fabrication procedure of IGAP. The graphene/
AgNWs were obtained by in situ-deposited AgNWs onto the surface of the graphene
nanosheets [27–29]. The hierarchical structure was created by a simple filtration process.
To act as the nucleation sites and silver sources, Ag+ is rich on the surface of graphene
sheets, and the EG serves as a reducing agent. PVP, as a structural orientation and stabilizer
prepared by AgNWs, affected the heat transfer between graphene sheets and AgNWs. To
remove residual PVP and EG, the paper was cleaned three times with alcohol and ionic
water. In situ growth produced direct welding of AgNWs and graphene layers, thus greatly
promoting the interface affinity. The morphologies of graphene before and after AgNWs
growth are present in Figure 1b. Before the reaction starts, a large number of silver ions are
adsorbed by graphene sheets. The IGAP constructed by AgNWs and graphene sheets were
further characterized by XRD, and the results are shown in Figure 1c. The rGO reduced
by HI and thermal annealing shows high quality. Compared with pure graphene paper
(GP), diffraction peaks of AgNWs also appeared in the hybrid fillers, verifying the presence
of AgNWs. In addition to the signal at 26.2◦ originating from the (002) plane of graphene
sheets, other diffraction peaks at 38.1◦, 44.3◦, 64.4◦, 77.4◦, and 81.5◦ can be assigned to the
(111), (200), (220), (311) and (222) crystal planes of AgNWs [30,31]. Benefiting from the
simple filtration process, a large IGAP can be manufactured (Figure 1d, diameter: 280 mm).
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Figure 1. (a) Schematic of the fabrication process of IGAP. (b) The TEM images of graphene/silver
ions and graphene/AgNWs. (c) The XRD patterns of IGAP and GP. (d) The photograph of IGAP.

The comparison of the microscopic morphologies of IGAP and GP is shown in
Figure 2a–f. The IGAP and GP present an obvious hierarchical structure. Contrary to
the smooth top surface of GP, there are more AgNWs on the top surface of IGAP. On the
cross-sectional morphology, the GP stacked with graphene sheets is consistent with the
conventional graphene paper. Graphene sheet stacking is fluffy, and most graphene sheets
are not arranged in parallel alignment. It can be seen from the SEM images that the AgNWs,
efficiently bridging the graphene layers, can provide better phonon transmission channels.
AgNWs with a high aspect ratio are connected to graphene layers to promote heat transfer
that is better in the through-plane direction.
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Figure 2. The top-view and cross-sectional SEM images of (a–c) IGAP and (d–f) GP.

In order to explore the effects of the IGAP hierarchical structure on thermal perfor-
mance, the thermal diffusivity rate of IGAP, MGAP, and GP was measured through the
laser flash method (α). The through-plane thermal diffusivity (TD) of the original IDAG
(18 mm2 s−1) is higher than that of GP (14.8 mm2 s−1). In contrast, the thermal conductivity
(TC) is close. As shown in Table 1, the corresponding thermal conductivity (κ) can be calcu-
lated by the equation κ = α × ρ × Cp, where ρ is the sample density and Cp is the specific
heat. Compared to graphene, AgNWs have higher TD and lower Cp. In electronic packag-
ing, a packing pressure was applied to ensure good contact between the mating surface
and TIMs to eliminate the micro-gaps at the interface. As shown in Figure 3a, the graphene
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sheets in the uncompressed GP are not completely arranged at a fully horizontal level.
After compression, the TD of the GP is 60.3% lower than the original GP, which is due to
the change in graphene sheets’ orientation after pressure. This is because graphene tablets
would be rearranged in the horizontal direction in the process of vertical compression.
However, the reduction in TD of compressed IGAP (21.1%) is lower than that of compressed
GP (60.3%). The in situ AgNWs reduce the phonon diffusion barrier across the basal planes
of graphene. Interestingly, we noticed that the TC of IGAP (7.48 W m−1 K−1) after com-
pression was ∼2.14 times higher than that of GP (3.50 W m−1 K−1). The density of IDGA
was greatly increased after compression (0.49 g cm−3→1.18 g cm−3), thus compensating for
the reduction in the transparent heat conduction capacity caused by the rearrangement of
graphene sheets. To the best of our knowledge, IGAP has the higher through-plane thermal
conductivity compared with the other graphene-based papers fabricated by filtration or in
situ growth in the previous literature (in Table 2) and is also much better than that of com-
mercial TIMs. Although covalent bond link has higher thermal conductivity, its production
process is more complex, and it is difficult to realize commercial application. As presented
in Figure 3c, the IGAP shows better mechanical compression performance than GP. Under
60% of the compression conditions, the compressive stress of IGAP is only 16.8 KPa, and
the compressive stress of GP is 61.8 KPa, which can be explained by the following factors:
the 3D network formed by the AgNWs with a high aspect ratio and graphene is fluffier than
GP, and AgNWs has better bending. Lower package pressure can prevent the chip from
damaging. As shown in Figure 3d, in order to compare the through-plane surface thermal
transfer between IGAP and GP, pieces of 10 mm × 10 mm × 0.1 mm paper were placed on
a ceramic heater (50 W) and originally kept at room temperature, followed by heating at
the same time, which was recorded by calibrated infrared (IR) camera and thermocouple.
The papers were sprayed with graphite on the upper surface to maintain the same infrared
emission rate. The calibration of the surface temperature evolution and heating time on
the surface temperature of the infrared thermal image were used. Figure 3e shows the
time dependence of its surface temperature evolution on the heating time. The surface
temperature of IGAP increases higher and shows a higher value than the surface tempera-
ture of the GP, which confirms IGAP has superior through-plane thermal conductivity. As
shown in Figure 3f, the thermal conductivity decreases with the temperature increase. It is
widely known that when the temperature rises, the electron and crystal heat motion in pure
metal is intensified, and the free electron movement is blocked. As the temperature rises,
the thermal conductivity of AgNWs will decrease. When the temperature is higher than
25 ◦C, the thermal conductivity of the graphene is negatively related to the temperature
due to Umklapp phonon scattering. Figure 3g shows the thermal conductivity changes
with 15 heating/cooling cycles between 25 ◦C and 100 ◦C. In the process of testing, the
thermal conductivity fluctuations at the same temperature are less than 0.08 W m−1 K−1,
indicating the preeminent thermal reliability and stability of IGAP.

Table 1. The thermophysical properties of GP and IGAP.

Sample TD mm2 s−1 Density g cm−3 Cp J g−1 K−1 TC W m−1 K−1

GP
14.8 0.33

0.754
3.7

5.88 0.79 3.5

IGAP
18 0.49

0.447
3.97

14.2 1.18 7.48
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Table 2. Comparison of thermal conductivity based on graphene papers prepared by various methods.

Method Name TC W m−1 K−1 Ref.

Filtration

Exfoliated graphite nanoplatelet paper
Carbon nanotube–graphene hybrid paper
Nanodiamond decorated functionalized

graphene oxide paper
Hierarchically structured graphene paper

1.3
0.2
0.3

12.6

[32]
[33]
[34]
[19]

In-situ growth

Au NPs decorated graphene nanoplatelet paper
Ag nanoparticle-intercalated graphene paper

Carbon nanoring–graphene hybrid paper
Graphene hybrid paper

1.6
3.3
5.8

17.6

[23]
[35]
[36]
[20]

In-situ growth +
Filtration Graphene/Ag Nanowires paper 7.48 This work

Based on its high-plane heat conduction rate, IGAP may have the potential of high-
performance TIM, which can effectively transmit heat on the heated water sink interface [37].
Therefore, as shown in Figure 4a, the verification system for the simulation heat dissipation
process for electronic components is developed and compared with the most advanced
thermal pads (a classic conventional TIM, approximately 5 W m−1 K−1, 5000S35, Bergquist).
The IGAP and 5000S35 with a size of Φ10 mm are placed between the ceramic heater and
the TGE radiator, respectively, and the thickness (BLT) of the bonding line (BLT) is 40 µm,
and the vertical pressure is 20 kPa. A chilling system was used to keep the radiator at room
temperature while evaluating the heater temperature. The saturation temperature of the
heater and the power applied are depicted in Figure 4b; the slope value is 1.56 (without
TIM), 1.23 (5000S35) and 0.99 ◦C cm2 W−1 (IGAP). This indicates that compared with the
system without TIM and with 5000S35 thermal pads, the cooling efficiency of IGAP has
increased by 45.5% and 27.3%. In Figure 4c, after the heater (25 W cm−2) was turned
on with the start of 300 s, the temperature of the heater rose rapidly, and then reached a
balance. Obviously, compared with the temperature without TIM, the cooling performance
of IGAP as TIM was reduced by 42 ◦C at 900 s, which is much better than the cooling perfor-
mance of 5000S35 thermal pads (34 ◦C). Then, the commercial computing fluid dynamics
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software (ANSYS ICEPAK) was used for testing the heat analysis of test configuration at
25 W application power (Figure 4d). The background was set to 1 atm and 25 ◦C in the
atmosphere. The cooling medium was water with the volume flow of 250 mL min−1 at
25 ◦C. Table 3 shows the detailed settings of the heat sink and the heater, which can be
estimated as effective thermal conductivity conditions (Figure 4e). Based on the effective
thermal conductivity of the IGAP (~2.06 W m−1 K−1) and 5000S35 (~1.1 W m−1 K−1), not
only does the IGAP have superior through-plane thermal conductivity, but also the heating
contact (two sides) of the IGAP (35 K mm2 W−1) is significantly lower than the side of
5000S35 thermal pads (68 K mm2 W−1). As a result, a soft and compressible IGAP is easier
to use in order to fill the micro gaps between the mating surface under the packaging, which
leads to the maximum contact area and lowers thermal contact resistance at the microscope.
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Figure 4. (a) Schematic configuration of TIM performance evaluation system. Temperature evolution
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Table 3. The detailed settings of the heat sink and the heater.

Materials Size cm3 TC W m−1 K−1 Cp J g−1 K−1

Heat sink
Heater

Aluminum alloy Φ1*0.2 205 0.88
Alumina 10*4.5*1.5 27 0.86

4. Conclusions

A hybrid graphene paper fabricated via filtration shows a characteristic structure in
which the AgNWs connect graphene layers to enhance through-plane thermal conductivity.
Ag+ would be enriched on the surface of the graphene to achieve in situ preparing. At
low compression pressures, the through-plane thermal conductivity of IGAP reaches
7.48 W m−1 K−1, more than twice of that of the graphene paper. Therefore, we have proved
that in the TIM performance test, the temperature of the heater using the compressed IGAP
is reduced by 42 ◦C, which is superior to the 34 ◦C of the commercial thermal pads (5000S35,
Bergquist). Under actual application conditions, IGAP, without aging like traditional
polymers, has huge potential to be used as the new generation high-performance TIMs with
good thermal stability. Meanwhile, inserting high TC materials into other layered materials
is also of great significance to enhance the through-plane TC of composite materials.
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