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Abstract: p-nitrophenol (pNP) is a highly toxic organic compound and is considered carcinogenic and
mutagenic. It is a very stable compound with high resistance to chemical or biological degradation.
As a result, the elimination of this pollutant has been very challenging for many researchers. Catalytic
reduction is one of the most promising techniques, if a suitable catalyst is developed. Thus, this work
aims to prepare an eco-friendly catalyst via a simple and low-cost route and apply it for the conversion
of the toxic p-nitrophenol (pNP) into a non-toxic p-aminophenol (pAP) that is widely used in industry.
Manganese oxide was prepared in an environmentally friendly manner with the aid of Lawsonia
inermis (henna) extract as a stabilizing and capping agent and loaded on the surface of 13X molecular
sieve zeolite. The UV-Vis spectrum, EDS, and XRD patterns confirmed the formation of the pure
MnO2 loaded on the zeolite crystalline network. The TGA analysis showed that the samples prepared
by loading MnO2 on zeolite (Mn2Z, Mn3Z, and Mn4Z) lost more mass than pure MnO2 (Mn) or zeolite
(Z), which is mainly moisture adsorbed on the surface. This indicates a better dispersion of MnO2

on the surface of zeolite compared to pure MnO2, and thus a higher number of active adsorption
sites. SEM images and EDS confirmed the dispersion of the MnO2 on the surface of the zeolite.
Results showed a very fast reduction rate, following the order Mn2Z > Mn3Z > Mn4Z > Mn > Z.
With sample Mn2Z, 96% reduction of pNP was achieved in 9 min and 100% in 30 min. For Mn3Z,
Mn4Z, and Mn, 98% reduction was achieved in 20 min and 100% in 30 min. Zeolite was the slowest,
with only a 40% reduction in 30 min. Increasing the amount of zeolite in the synthesis mixture
resulted in lower reduction efficiency. The kinetic study indicated that the reduction of p-nitrophenol
on the surface of the prepared nanocomposite follows the pseudo-first-order model. The results show
that the proposed nanocomposite is very effective and very promising to be commercially applied in
water treatment, due to its low cost, simple synthesis procedure, and reusability.

Keywords: zeolite; 13X molecular sieve; p-nitrophenol; p-aminophenol; catalytic reduction; manganese
oxide; nanoparticles

1. Introduction

p-nitrophenol (pNP) is a highly toxic organic compound that is discharged to the water
system from the pharmaceutical, photographic, fungicides, medicines, hair dyeing agents,
leather, and corrosion inhibitors industries [1]. It causes many skin diseases and is consid-
ered carcinogenic and mutagenic [2]. Owing to the presence of the nitro group, pNP is a
very stable compound with high resistance to chemical or biological oxidation [3]. Accord-
ingly, many techniques such as adsorption [4], photocatalytic degradation [5], ozonation [6],
membrane [7], microbial treatment [5], and electrocoagulation [8] have been applied for
the removal of pNP from water. Among these processes, the conversion of the pNP into
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p-aminophenol (pAP) is very promising, because of its high efficiency, low cost, and simple
operation [9,10]. Furthermore, when pNP is reduced, it forms pAP, which is non-toxic
and widely used in pharmaceuticals [11,12], dyes, polymers, papers, explosives, corrosion
inhibitors, and anti-corrosion lubricant [12–14].

Although microbial treatment of pNP provides an effective and safe method compared
to the chemical treatment methods, it shows major shortcomings related to slow reaction
rate and difficulty in finding suitable microorganisms [5]. In addition, it is vital to consider
the cost, the feasibility of scaling up the process, environmental regulations, and operation
requirements such as safety, maintenance, control, and robustness. Despite the feasibility
of sodium borohydride (NaBH4) in reducing pNP, without a suitable catalyst, this reaction
requires a high temperature and high hydrogen pressure [5]. Otherwise, this reduction is
very slow [15]. Thus, it is crucial to find a suitable catalyst for this reaction to be able to
take place under moderate conditions.

In the literature, a few researchers have reported the reduction of pNP over metal-free
catalysts such as graphene and MOFs-based catalysts [12,16]. However, metal [17–22] and
metal oxide [21–25] nanoparticles and nanocomposites have widely been applied, due to
their excellent efficiency in lowering the reduction potential value [26–28]. Furthermore,
their adaptable morphological, structural, chemical, physical, and optical properties have
contributed to utilizing them in a wide area of research, including sensing, imaging, elec-
tronics, adsorption, and heterogeneous catalysis [15]. Additionally, the reduction of pNP
using metal and metal oxide nanoparticle catalysts is very attractive, since it can be achieved
in the aqueous solution [11]. Catalytic reduction of pNP to pAP with the aid of sodium
borohydride (NABH4) on a nanoparticles catalyst has been investigated extensively in the
literature with different types of nanoparticles or nanocomposite, such as AuCu/Pt nano
alloy [15], silver nanoparticles [29], Au-ZrO2 nanocatalyst [30], Au [31], Pt, and Pd/SBA-
15 [3], FeNi [27], Co9S8 [26], Pd/TiO2, [23], CuO, [24], magnetic Pt nanocomposites [32],
Au-Pd [9], Au [33], SrTiO3/Ag [34], MoS2/ZnO [35], Ag/graphene [13], Au/TiO2 [25],
PtPdBi, [36], Ag/ZnO/AC [37], Au/AC [2], Fe/chitosan [11], and Pd [17].

The catalytic performance of metals/oxide is strongly related to the particle size distri-
bution and the dispersion of the nanoparticles on the surface of the support, if any exist [3].
Accordingly, one major requirement for a good nanoparticles-based catalyst is to minimize
aggregation. Much effort has been dedicated to preparing hybrid catalysts by immobilizing
nanoparticles on a surface of suitable support, such as activated carbon [2], silica-based
materials [38], metal, chitosan [11], graphene [39], polymers [28], and zeolite [40]. Among
all the reported supports, zeolites are considered very attractive supports for nanoparticles
due to their high thermal stability, high surface area, nanoporous crystalline structure,
stability in organic solvents, non-toxicity, eco-friendliness, availability at low cost, and
corrosion resistance [40]. Accordingly, they have been used to support a wide range of
nanoparticles for different applications [40–44].

The other strategy for minimizing aggregation is to surround the nanoparticles with a
layer to protect aggregation. This layer could be polymeric materials, organic functionality,
or a surfactant. Recently, a new approach was developed by utilizing plant extract as a
stabilizing and capping agent [37,45–51]. The synthesis of nanoparticles with the aid of
plant extracts offers a cheaper, safer, and eco-friendly pathway, since it removes the need
for extra chemicals as reduction and capping agents. In addition, these plants are usually
plentifully available at no or very low cost [31].

Lawsonia inermis (henna) belongs to the family Lythraceae and is a flowering plant,
2–6 m in height. L. inermis grows in North Africa, Asia, America, Australia, Egypt, and
India [52]. The important natural constituents of L. inermis include tannins, phenolic
compounds, alkaloids, and flavonoids, which are considered very effective reduction and
capping agents [53].
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MnO2 nanoparticles have been applied widely in catalysis, adsorption, oxidation
reactions, dry cells, pigment, ceramics, electrodes, and batteries [43]. However, MnO2 has a
major drawback related to its irregular pore structure that decreases the available surface
area and, accordingly, the catalytic efficiency [40]. Furthermore, fine particles formed at
relatively low temperatures tend to aggregate at high temperatures, leading to coarse
crystalline materials with a particle size in the range of 2.5–10 µm. Similarly, the surface
area decreases with an increase in the particle size distribution [54]. A promising solution
for this shortcoming is to combine MnO2 with suitable support. In this regard, so far, a
few studies have reported the synthesis of MnO2/zeolite composite. Thus, in this work, an
effective and eco-friendly catalyst will be prepared by combining 13X zeolite molecular
sieve as support with MnO2 nanoparticles prepared with the aid of L. inermis extract as
a stabilizing and capping agent. The attractive characteristics of the proposed catalyst
include the very simple and low-cost synthesis procedure, which eliminates the need for
harsh chemicals such as NABH4 or critical conditions such as high temperature, the flow of
inert gas, or multiple steps.

2. Materials

Lawsonia inermis (henna) powder was purchased from the local market of Al-Ahsa,
Saudi Arabia. Zeolite (13X molecular sieves) (composition Na2O3, SiO2, H2O) was pur-
chased from ThermoFisher, Waltham, MA, USA. MnCl2·4H2O (purity ≥ 99%), NaOH
(purity ≥ 98%), and p-Nitrophenol (purity ≥ 99%) were supplied by Sigma-Aldrich
(St. Louis, MO, USA) and used as received.

3. Method
3.1. Preparing Lawsonia inermis (Henna) Extract

To prepare the Henna extract (HE), 10 g of the plant root powder was mixed with
100 mL of distilled water. The mixture was boiled for 10 min then left overnight. After that,
the mixture was filtered with Whatman filter paper and the filtrate was kept in the fridge
until it was used.

3.2. Preparing the MnO2 Nanoparticles (M)

Henna extract (25mL) was mixed with 100 mL of 0.1 M MnCl2·4H2O solution. The
pH of the mixture was adjusted to 11 using 1 M NaOH and an Orion 2-Star pH meter. The
mixture was then stirred at room temperature and 70 rpm for 24 h. After that, the mixture
was filtered and the solid was washed with distilled water and then ethanol. Finally, it was
dried in a convection oven at 100 ◦C for 3 h, then collected and kept in a sealed container
until it was used.

3.3. Preparing the MnO2 Nanoparticles Loaded on Zeolite

Figure 1 shows the steps followed in the synthesis of MnO2/Zeolite. Specifically,
100 mL of 0.1 M MnCl2·4H2O solution was mixed with 25 mL of the henna extract. A
certain mass of zeolite (13X molecular sieves), according to Table 1, was added to the
mixture and it was stirred for 30 min. The pH of the mixture was adjusted to 11 using 1 M
NaOH and an Orion 2-Star pH meter. The mixture was then stirred at room temperature
and 70 rpm for 24 h. After that, the mixture was filtered and the solid was washed with
distilled water and then ethanol. Finally, it was dried in a convection oven at 100 ◦C for 3 h,
then collected and kept in a sealed container until it was used.
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Figure 1. Schematic diagram of the synthesis of MnO2/Zeolite nanocomposite.

Table 1. Details of MnO2/Zeolite nanocomposite and N2 adsorption results.

Sample Amount of
Zeolite (g)

BET Surface
Area (m2g−1)

PJH Pore Volume
(cm3g−1)

PJH Pore
Diameter (nm)

Mn 0 4.45 0.0092 3.17
Mn2Z 2 32.22 0.097 1.77
Mn3Z 3 29.45 0.131 1.56
Mn4Z 4 22.78 0.058 1.76

Z Pure zeolite 406.75 0.722 1.89

4. Characterization

To confirm the formation of MnO2, all the nanocomposite samples were analyzed
by X-ray diffraction (XRD) using XRD-7000 with a Cu-detector (Shimadzu, Tokyo, Japan)
over the 2
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range of 10–80◦. Furthermore, they were dispersed in distilled water and the
UV-Vis spectra were recorded for the wavelength range of 200–1100 nm using a UV-Vis
spectrophotometer (Shimadzu, Tokyo, Japan). To test the thermal stability of the pre-
pared samples, thermal gravimetric analysis (TGA) was conducted under nitrogen with
a temperature ramp of 2◦/min from 20 ◦C to 500 ◦C using a TGA-51 Shimadzu Ther-
mogravimetric Analyzer (Tokyo, Japan). Dynamic light scattering (DLS) analysis was
performed for the MnO2 nanoparticles to calculate the particle size distribution. This
analysis was performed with a Thermo Scientific, Quattro S, USA. Scanning electron mi-
crogram (SEM) imaging was performed for all samples using a Thermo Scientific, Quattro
S, USA. FTIR analysis was performed with a Thermo Scientific, Quattro S, USA for the
wavenumber range of 4000–4000 cm−1. Nitrogen adsorption was measured for all samples
after degassing the samples at 70 K, and the BET technique was performed to estimate the
surface area. This analysis was performed with a NOVA 4200e (Quantachrome Instruments,
B Beach, FL, USA).

4.1. Catalytic Reduction of p-Nitrophenol (pNP)

To study the catalytic activity of the prepared samples, 3 mL of 20 mgL−1 pNP so-
lution was mixed with 1 mg of NaBH4 and 10 mg of Z, Mn2Z, Mn3Z, Mn4Z, or Mn was
added to the solution; the concentration of pNP was monitored as a function of time by
measuring the UV absorbance at 400 nm every 3 min for 30 min, using a UV-Vis spectropho-
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tometer (Shimadzu, Tokyo, Japan). The removal percentage of pNP was calculated with
Equation (1):

R% =
A0 − At

A0
× 100% (1)

where At and A0 are the absorbance of p- nitrophenolate ion at any time t and at time
zero, respectively. The kinetics of the catalytic reduction were tested with pseudo-first-
order kinetics. The linear form of this kinetic model is given in Equation (2). The rate
constants (k), were evaluated by plotting Ln (At) versus time. The slope value of the
straight line represents the rate constant k (min−1).

Ln (At) = Ln (A0)− kt (2)

For the recycling experiment, the catalyst was collected by filtration, washed thor-
oughly with deionized water, and reused in the catalytic cycles.

4.2. FTIR Analysis

Figure 2 shows the FTIR spectra for Z, Mn2Z, Mn3Z, Mn4Z, Mn, and the plant extract
(HE). All the patterns have a broad peak in the wavenumber range of ~3200–3600 cm−1,
which is assigned to stretching vibrations of the O–H in hydrogen-bonded internal silanol
groups and O–H stretching of water attached to the surface [41] The peak at ~1620 cm−1

is related to vibration bending of coordinated (–OH) groups attached to the zeolite sur-
face. The peak at ~450 cm−1 in Mn2Z, Mn3Z, Mn4Z, and Mn is assigned to the Mn-O
bond [14,42], while the peak at ~450 cm−1 in Z is related to the bending vibrations of
Si–O and Al–O in zeolites [40]. The peak at ~740 cm−1 in Mn2Z, Mn3Z, Mn4Z, and Z is
assigned to the stretching vibration of Al–O [55], while the peak at ~960 cm−1 in the same
samples is related to Si–O stretching vibrations, and the asymmetric stretching of Si–O–Al
tetrahedral [55]. In the HE pattern, the peak at ~1437 cm−1 is assigned to the C-O bond
and that at ~1668–1725 cm−1 is related to the stretching vibration of the C=O cm−1 group
of the effective compounds in the extract.
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4.3. UV Analysis

Figure 3 shows the UV-Vis spectra of Mn2Z, Mn3Z, Mn4Z, and Mn for the wavelength
range of 200–1100 nm. The presence of the absorbance band in the range of 240–300 nm
confirms the successful production of MnO nanoparticles. The shift of the absorption bands
shows that different morphologies and sizes are presented [56].
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4.4. TGA Analysis

The TGA profile of the five samples is shown in Figure 4 for the temperature range
of 20–500 ◦C. Pure MnO2 has the highest stability, with a mass loss of only 10%, which
is mainly related to the water adsorbed on the surface. Bare zeolite lost 22%, mainly
in the temperature range of 150–250 ◦C, which is also attributed to the water adsorbed
on the surface. The three samples prepared by loading MnO2 on the surface of zeolite
showed a higher mass loss (24–26%) within the same temperature range, indicating that the
nanocomposite samples have higher adsorption capacity toward moisture. This indicates a
better dispersion of MnO2 on the surface of zeolite compared to pure MnO2, and thus a
higher number of active adsorption sites.

4.5. XRD Analysis

The phase purity and crystallinity of the prepared samples were investigated by X-ray
diffraction technique (XRD), and the results are shown in Figure 5. The XRD patterns of
Mn, Mn2Z, Mn3Z, and Mn4Z show peaks at 2θ values of 19.2, 28.6, 40.8, 50.4, and 66.6,
which are attributed to (200), (310), (301), (411), and (002) crystal planes, respectively [57].
The presence of these diffraction peaks confirms the presence of the α-MnO2 crystal phase,
according to the standard data (JCPDS card number 44-0141) [58]. Furthermore, extra
peaks appear in the pattern of Mn2Z, Mn3Z, and Mn4Z at 2θ of 11.73, 15.2, 20.1, 23.3,
26.7, 31, and 33.8, corresponding to the planes of (311), (331), (440), (533), (642), (662),
and (322), respectively, of the zeolite-13X substrate, which matches well with the pattern
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shown in sample Z related to pure zeolite [42,57]. These results confirmed the successful
impregnation of MnO2 on the surface of zeolite-13X.
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shifted vertically for better visibility.

4.6. SEM and EDS Analysis

The scanning electron micrograms of Mn, Mn2Z, Mn3Z, Mn4Z, and Z were taken at
5000× and 20,000× magnifications, as shown in Figure 6. The SEM data of bare zeolite
show the typical crystalline structure, with smooth edges and crystallite sizes in the range
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of ~5–10 µm. [59] After depositing the MnO2 on the surface, the sharp edges are less clear
for all samples. The images also indicate a good distribution of MnO2 on the surface of
the zeolite-13X support and a low degree of MnO2 particle aggregation, with an average
particle size of ~0.5 µm. Table 1 shows that the specific surface area, specific pore volume,
and average pore diameter of pure zeolite, respectively, are 406.75 m2g−1, 0.722 cm3g−1,
and 1.89 nm, indicating a microporous structure [60], while for the pure MnO2, the values
are, respectively, 4.45 m2g−1, 0.0092 cm3g−1, and 3.17 nm. The EDS shown in Figure 7
confirms the dispersion of MnO2 on the surface of the zeolite. It is shown that the content
of Mn decreased by increasing the ratio of zeolite in the sample, with Mn content of 56.3%,
12.8%, 10.1%, 9.9%, and 0.0% for Mn, Mn2Z, Mn3Z, Mn4Z, and Z, respectively.
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The nitrogen adsorption/desorption isotherms are shown in Figure 8a. According
to the IUPAC classification, the pure zeolite exhibits type II adsorption isotherm with
a very slow increase in the adsorbed volume until a P/P0 of 0.8 is reached [60]. At
this point, a sudden increase occurred due to the mesoporous structure of the zeolite
sample. Furthermore, the appearance of the adsorption/desorption hysteresis loop is due
to capillary condensation within the mesoporous structure. The isotherms for the samples
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Mn2Z, Mn3Z, and Mn4Z exhibit the same pattern, with a drastic decrease in the volume
adsorbed, as shown in Table 1. This is mainly related to the blockage of the pores of zeolite
by the accumulation of MnO2 particles. The isotherm of pure MnO2 displays a non-porous
nature, with a very low pore volume, as shown in Table 1. Thus, the combination of
MnO2 with the zeolite resulted in better dispersion of the nanoparticles, leading to a better
catalytic activity, as will be discussed next. Combining MnO2 with the zeolite resulted in a
drastic decrease in the surface area, pore volume, and average pore diameter for Mn2Z,
Mn3Z, and Mn4Z. This is mainly due to the blocking of the pores of zeolite (1.89 nm) with
the MnO2 particles, which have an average particle size distribution of around 600 nm, as
shown in Figure 8b.

Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 22 
 

 

shown in Table 1. This is mainly related to the blockage of the pores of zeolite by the 
accumulation of MnO2 particles. The isotherm of pure MnO2 displays a non-porous na-
ture, with a very low pore volume, as shown in Table 1. Thus, the combination of MnO2 
with the zeolite resulted in better dispersion of the nanoparticles, leading to a better cata-
lytic activity, as will be discussed next. Combining MnO2 with the zeolite resulted in a 
drastic decrease in the surface area, pore volume, and average pore diameter for Mn2Z, 
Mn3Z, and Mn4Z. This is mainly due to the blocking of the pores of zeolite (1.89 nm) with 
the MnO2 particles, which have an average particle size distribution of around 600 nm, as 
shown in Figure 8b. 

  

Figure 8. Nitrogen adsorption isotherms of Z, Mn2Z, Mn3Z, Mn4Z, and Mn (a), and DLS analysis 
of MnO2 (b). 

4.7. Catalytic Reduction of p-Nitrophenol (pNP) 
The catalytic performance of the prepared nanocomposites was investigated using 

the reduction of p-nitrophenol into p-aminophenol according to the proposed mechanism 
shown in Figure 9. The characteristic absorption peak of pNP, which has a light yellow 
color as shown in Figure 10a, is located around 317 nm (Figure 11a). When NaBH4 is added 
to pNP, without a catalyst, the solution color changed to dark yellow immediately (Figure 
10b). Furthermore, the peak position shifted from 317 to 400 nm (Figure 11a). These 
changes are related to the formation of 4-nitrophenolate anions, according to Equation (3) 
[5,61]. When the catalyst was added to the solution in the presence of NaBH4, the peak at 
400 nm started to decrease, while a new peak around 300 nm started to appear and in-
crease with time, due to the formation of pAP (Figure 11d–h). [2,5] Furthermore, the color 
of the solution started to disappear and it became colorless at the end of the reaction, as 
shown in Figure 10d–h, with the very large amount of gas bubbles confirming the reaction 
was taking place. 

Two blank tests were performed to confirm the necessity of both catalyst and NaBH4. 
In the absence of NaBH4, adding the catalyst to the p-nitrophenol solution did not result 
in any reduction after 24 h (Figures 10k, 8i and 10b). This is mainly because the formation 
of p-nitrophenolate requires high pressure of hydrogen that is achieved by adding NaBH4 

[5]. Furthermore, adding NaBH4 without the nanocomposites did not initiate the reduc-
tion into p-aminophenol, as observed from the solution color, which did not change after 
24 h, as shown in Figure 10i,j. Furthermore, in the presence of nanocomposites without 
adding NaBH4 to the reaction mixture, there was no reduction or change in the absorbance 

0

10

20

30

40

50

60

70

0.0 0.2 0.4 0.6 0.8 1.0

A
ds

or
be

d 
vo

lu
m

e (
cm

3 g
-1

)

P/P0

a
Z
Mn4Z
Mn3Z
Mn2Z
Mn

0

20

40

60

80

100

200 400 600 800 1000

R
el

at
iv

e i
nt

en
sit

y

Particle size (nm)

b

Figure 8. Nitrogen adsorption isotherms of Z, Mn2Z, Mn3Z, Mn4Z, and Mn (a), and DLS analysis of
MnO2 (b).

4.7. Catalytic Reduction of p-Nitrophenol (pNP)

The catalytic performance of the prepared nanocomposites was investigated using
the reduction of p-nitrophenol into p-aminophenol according to the proposed mechanism
shown in Figure 9. The characteristic absorption peak of pNP, which has a light yellow color
as shown in Figure 10a, is located around 317 nm (Figure 11a). When NaBH4 is added to
pNP, without a catalyst, the solution color changed to dark yellow immediately (Figure 10b).
Furthermore, the peak position shifted from 317 to 400 nm (Figure 11a). These changes are
related to the formation of 4-nitrophenolate anions, according to Equation (3) [5,61]. When
the catalyst was added to the solution in the presence of NaBH4, the peak at 400 nm started
to decrease, while a new peak around 300 nm started to appear and increase with time, due
to the formation of pAP (Figure 11d–h). [2,5] Furthermore, the color of the solution started
to disappear and it became colorless at the end of the reaction, as shown in Figure 10d–h,
with the very large amount of gas bubbles confirming the reaction was taking place.
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Figure 10. p-nitrophenol solution (20 mgL−1) (a), p-nitrophenol solution (20 mgL−1) directly after
adding NaBH4 (b), p-nitrophenol solution (20 mgL−1) directly after adding NaBH4 and catalyst (c),
p-nitrophenol solution (20 mgL−1) 30 min after adding NaBH4 and Z (d), Mn2Z (e), Mn3Z (f), Mn4Z
(g), Mn(h), and without adding catalyst (i). p-nitrophenol solution (20 mgL−1) 30 min and 24 h after
adding NaBH4 (i,j). p-nitrophenol solution (20 mgL−1) 30 min and 24 h after adding Mn2Z without
NaBH4 (k,l).
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Figure 11. Time-dependent UV-Vis spectral changes of the pNP solution catalyzed by Z, Mn2Z,
Mn3Z, Mn4Z, and Mn. The reduction conditions were: 3mL of 20 mgL−1 pNP solution, 1 mg NaBH4,
and 10 mg of the catalyst.

Two blank tests were performed to confirm the necessity of both catalyst and NaBH4.
In the absence of NaBH4, adding the catalyst to the p-nitrophenol solution did not result in
any reduction after 24 h (Figures 10k, 8i and 10b). This is mainly because the formation of
p-nitrophenolate requires high pressure of hydrogen that is achieved by adding NaBH4 [5].
Furthermore, adding NaBH4 without the nanocomposites did not initiate the reduction
into p-aminophenol, as observed from the solution color, which did not change after 24 h,
as shown in Figure 10i,j. Furthermore, in the presence of nanocomposites without adding
NaBH4 to the reaction mixture, there was no reduction or change in the absorbance peak
(Figure 11c). Thus, for reduction to occur, both NaBH4 and nanocomposite are needed.

Figure 11 shows the time-dependent UV-Vis absorption spectra for the reduction of
pNP with the aid of Z, Mn2Z, Mn3Z, Mn4Z, and Mn. The difference between Z, Mn2Z,
Mn3Z, Mn4Z, and Mn is the catalytic activity and, thus, the time required to reach 100%
reduction of pNP and the disappearance of the absorption peak at 400 nm. This peak
decreased very slowly in sample Z, while Mn2Z showed the fastest rate of reduction. The
high efficiency of Mn2Z may be related to the ratio of MnO2, which resulted in good
loading of MnO2, with good distribution on the surface, leading to efficient accessibility of
the reactants to the active sites and high catalytic performance.

Figure 12a shows the reduction percentage of pNP as a function of time for the five
samples. It shows that Mn2Z is very fast, with a 96% reduction achieved in 9 min, compared
to 82%, 65%, 61%, and 3% achieved by Mn3Z, Mn4Z, Mn, and Z, respectively. A complete
reduction was observed by 30 min for all samples except the bare zeolite, with only a 40%
reduction achieved. The performance of the nanocomposites prepared by combining the
zeolite as support with the MnO2 (Mn2Z, Mn3Z, and Mn4Z) showed higher activity than Z
and Mn. This is mainly related to improving the dispersion of MnO2 and thus minimizing
the aggregation, resulting in a higher surface area and a higher number of active sites
available for the reduction process. A pseudo-first-order kinetic model was used to fit the
data, as shown in Figure 12b and Table 2. The results show that all the samples fit well
with the pseudo-first-order kinetic model, with an R2 value of more than 0.90. The k values
support the activity order of Mn2Z > Mn3Z > Mn ∼= Mn4Z >> Z.
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Figure 12. The efficiency of the catalytic reduction of pNP over Z, Mn2Z, Mn3Z, Mn4Z, and Mn
nanocomposites (a), The linear plot of the pseudo-first-order kinetics reduction of pNP over Z, Mn2Z,
Mn3Z, Mn4Z, and Mn nanocomposites (b). The reduction conditions were: 3 mL of 20 mgL-1 pNP
solution, 1 mg NaBH4, and 10 mg of the catalyst.

Table 2. The fitting parameters of the linear plot of the pseudo-first-order kinetics reduction of pNP
over Z, Mn2Z, Mn3Z, Mn4Z, and Mn nanocomposites.

Z Mn2Z Mn3Z Mn4Z Mn
k (min−1) 0.0011 0.2544 0.2473 0.1049 0.1473
R2 0.9000 0.9094 0.9730 0.9912 0.9447

Table 3 shows a comparison of the reduction percentage obtained in this work with
some other catalysts reported in the literature. As can be seen, the time required to
complete the reduction in this study is comparable to most of the previously reported results.
However, the catalyst reported in this work can be prepared from low-cost precursors and
via very simple procedures, without the need for complicated conditions such as high
temperature, multiple steps, a flow of inert gas, or the use of harmful chemicals such as
NaBH4 or KBH4, as shown in Table 3. Furthermore, the developed catalyst showed very
good reusability, by maintaining almost 95% of the original activity after four successive
cycles, as shown in Figure 13.

Table 3. Catalysts reported in the literature for the reduction of p-nitrophenol.

Catalyst Operating Conditions Degradation
Efficiency Ref. Drawback

Ag/poly(norepinephrine)/
MnO2

30 mL of 1 mM of 4-NP, 3 mL of 0.2 M of NaBH4,
and After that, 1 mg of catalyst. [62] Multiple-step synthesis

AuNPs 2.5 mL of the 4-nitrophenol (8 × 10−5 M), 0.5 mL
NaBH4 (0.6 M), and 0.25 mL gold nanocatalyst.

100% in 9 min. [31] Expensive precursors.

CuNPs
1.7 mL of p-nitrophenol (0.1 mM), 0.7 mL of
NaBH4 (0.04 M), and an aqueous solution of Cu
NCs (0.1 mL, 15 mM).

100% in 10 min. [63]

AuCu@Pt nanoalloys 100 mL of 10 nM AuNPs,100 mL of 1 mM 4-NP,
3.5 mL NaBH4 (100 mM). 100% in 10 min. [15] Complicated synthesis,

expensive precursors.

AuNPs 2 mL of NaBH4 (0.1 M), 1 mL of 4-nitrophenol
(2.0 × 10−4 M), and 2 µL of AuNP. 100% in 8 min. [64] Complicated synthesis,

expensive precursors.

PtPdBi nanowire 3.3 mL of 0.09 mM p-nitrophenol and 0.10 mL of
0.10 M NaBH4 and 15 mg of the metal catalyst. 100% in 24 min. [36] High temperature, flow

of argon.

AgNPs 4-NP (2 mL, 10−4 M), NaBH4 (1 mL, 10−4 M),
and AgNPs (2.5 µL, 6 nmol).

96% in 3 min. [20] Use of NaBH4 during
synthesis.
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Table 3. Cont.

Catalyst Operating Conditions Degradation
Efficiency Ref. Drawback

AuNPs
1.0 mL of 0.015 M NaBH4, 1.7 mL of 0.2 mM
4-nitrophenol, and 0.3 mL of the AuNPs colloidal
suspension.

100% in 8 min. [18] Expensive precursors.

PdNPs
1 × 10−4 M of 4-NP (1.5 mL) and 5 × 10−2

MNaBH4 (1.0 mL, ice cold) 1 mgL−1 (0.5 mL) of
PdNBs.

100% in 30 min. [17] Complicated synthesis,
and flow of nitrogen.

Zerovalent iron NPs 4-NP (50 mgL−1) and 1.5% Pd/NZVI catalyst. 100% in 5 min. [65] Use of NaBH4 during
synthesis.

Chitosan/CuNPs 100 µL of the colloidal catalyst, KBH4 solution.
and 20 µL of 4.66 × 10−2 M p-NP. 100% in 30 min. [66] Use of KBH4 during

synthesis.

Co9S8 nanotubes 1.0 × 10−2 M (4-nitrophenol), 2.0 × 10−2 M
(NaBH4) and 10 mg L−1 (Co9S8 nanotubes).

100% in 8 min. [26] Complicated synthesis,

MOFs-derived N-doped
carbon 100% in 10 min. [12] Complicated synthesis,

Carbon nanotube/Pd
NPs

2 mL of 4-nitrophenol aqueous (5 × 10−5 M) and
1 mL of NaBH4 (0.05 M) and 100 mL of catalyst
(0.05 gL−1)

100% in 7 min. [67] Complicated synthesis,

MnO2/Zeolite 3 mL of 20 mgL−1 pN, P 1 mg of NaBH4, and
10 mg of MnO2/Zeolite.

96% in 9 min. This
work Simple synthesis

Figure 13. The efficiency of the catalytic reduction of pNP over Mn2Z. The reduction conditions were:
3 mL of 20 mgL−1 pNP solution, 1 mg NaBH4, and 10 mg of the catalyst for 10 min.
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5. Conclusions

Zeolite-supported MnO2 nanocomposite catalysts were synthesized successfully by
utilizing plant extract as a stabilizing and capping agent. The synthesis route followed
in this work was very simple, eco-friendly, cost-effective, and utilized very mild condi-
tions. The catalytic efficiency of the nanocomposites was tested through the reduction
of p-nitrophenol into p-aminophenol. Results indicated that almost 100% reduction was
achieved in less than 30 min. Results of this study showed that a zeolite-supported MnO2
catalyst is very promising for the reduction of organic pollutants. Furthermore, the reusabil-
ity of the catalyst was tested, and the results showed that 95% of the activity was maintained
after four successive cycles, which is very important for commercial application.
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