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Abstract: Volatile organic compounds (VOCs) in indoor environments have typical features of
multiple components, high concentration, and long duration. The development of gas sensors
with high sensitivity to multiple VOCs is of great significance to protect human health. Herein, we
proposed a sensitive ZnO/WO3 composite chemi-resistive sensor facilely fabricated via a sacrificial
template approach. Based on the transferable properties of self-assembled monolayer colloidal crystal
(MCC) templates, two-dimensional honeycomb-like ordered porous ZnO/WO3 sensing matrixes
were constructed in situ on commercial ceramic tube substrates with curved and rough surfaces. The
nanocomposite thin films are about 250 nm in thickness with large-scale structural consistency and
integrity, which facilitates characteristic responses with highly sensitivity and reliability. Furthermore,
the nanocomposite sensor shows simultaneous responses to multiple VOCs that commonly exist
in daily life with an obvious suppression sensing for traditional flammable gases. Particularly, a
detection limit of 0.1 ppm with a second-level response/recovery time can be achieved, which is
beneficial for real-time air quality assessments. We proposed a heterojunction-induced sensing
enhancement mechanism for the ZnO/WO3 nanocomposite film in which the formation of abundant
heterojunctions between ZnO and WO3 NPs significantly increases the thickness of the electron
depletion layer in the bulk film and improves the formation of active oxygen species on the surface,
which is conducive to enhanced responses for reducing VOC gases. This work not only provides a
simple approach for the fabrication of high-performance gas sensors but also opens an achievable
avenue for air quality assessment based on VOC concentration detection.

Keywords: gas sensing; VOC detection; ZnO/WO3 composite films; in situ fabrication

1. Introduction

Volatile organic compounds (VOCs) are mainly emitted from anthropogenic sources
such as fossil fuel, paints, compressed aerosol, and biomass combustion, which have been
recognized as critical precursors for tropospheric ozone and secondary organic aerosols
(SOAs) [1–4]. Environmental problems generated by VOCs can also cause direct harm to
respiratory, allergic, or immune systems of human beings, and even cancer in organs [5].
Nowadays, VOCs have been recognized as prominent hazards in the environmental atmo-
sphere and have evolved into a global issue faced by all mankind [6]. Plenty of studies have
shown that indoor building paints and household products can constantly release complex
organic compounds, and their concentrations in indoor air may be an order of magnitude
higher than those outdoors [7]. Obviously, this will cause longer and more serious damages
to human health. Therefore, real-time monitoring of multiple VOCs and early warnings of
air pollution have extreme significance in air quality assessment and human health protec-
tion [8]. At present, the identification and quantification of atmospheric VOCs mainly rely
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on analytical instruments such as gas chromatography (GC) and mass spectrometry (MS),
which are commonly used for the accurate analysis of air components [9–13]. However,
despite high accuracy and low detection limits, those spectroscopic methods usually re-
quire expensive instruments, complex sample handling, and long analysis periods, which
are not conducive to frequent air quality assessments in daily life [14–16]. Therefore, it is
urgent to develop a cost-efficient, real-time method for the sensitive detection of multiple
VOCs simultaneously.

It has been well-recognized that gas sensors based on metal oxide semiconductors have
the remarkable advantages of low cost, simple operation, and easy usage, and they have
been widely applied in the field of leakage alarm for flammable and harmful gases [17–19].
It is known that more adsorption or reaction sites can be provided for nanomaterials due to
their high specific surface area, which is beneficial to the development of high-performance
devices [20–22]. For decades, many research groups have reported the trace detections
of individual VOC targets (such as toluene, formaldehyde, ethanol, etc.) with diverse
metal oxide nanostructures [23–28]. However, those works are commonly focused on
improvements in the selectivity and sensitivity towards one single organic vapor, and
inadvertently ignore or even deliberately reduce the response to other organic gases, which
makes it difficult to achieve air quality assessment by monitoring multiple VOCs. Currently,
investigations on the simultaneous sensing of diverse VOCs are also reported. For instance,
Nguyen et al. synthesized hollow, cubic assembled nanocrystal Zn2SnO4 via the one-
step hydrothermal method for the simultaneous detection of acetone and ethanol [29].
Vandna et al. prepared a Pt-sensitized MoO3/mpg-CN mesoporous nanohybrid for the
detection of targeted VOCs of acetone, ethanol, toluene, and n-butanol [8]. However, some
significant drawbacks still exist, such as low sensitivity and long response/recovery time.
The main reason is that a single type of sensing oxide or traditional noble metal surface
sensitization is extremely limited in improving the cross-sensitivity of organic vapors.
Alternatively, it has been reported that the combination of two semiconductors is beneficial
for adjusting the space-charge layer on the reactive surface of the sensing material, thereby
improving the gas-sensing performance in terms of sensitivity and response time [30,31].
Obviously, the combination of two sensing oxides can also inherit the response characteristic
towards specific gases of individual material, which is beneficial to expanding the types and
quantities of target gases. However, it is still a challenge to simply combine two gas-sensing
materials into one sensing matrix and effectively adjust their structure and composition
parameters to optimize their sensing performance, especially to realize device construction
on conventional ceramic tube substrates with rough and curved surfaces.

Herein, we proposed a template-assisted one-pot synthesis of ZnO/WO3 nanocom-
posite porous thin films, which possess two-dimensional (2D) ordered honeycomb-like
structures with structural uniformity and integrity over the entire ceramic tube substrates.
It demonstrates that the relative content of the two sensing oxides can be facilely adjusted
as desired by simply changing the chemical composition of the utilized precursors. Fur-
thermore, the ZnO/WO3 nanocomposite film with a 5% proportion of ZnO can sensitively
respond to multiple VOCs that commonly exist in daily life (benzenes, aldehydes, alcohols,
and ketones vapors) while suppressing other flammable or toxic gases. The detection
limit can be down to 0.1 ppm with a second-order response, which facilitates the trace
and real-time detection for air quality assessment. The proposed template-mediated in
situ fabrication approach possesses wide versatility to diverse sensing substrates, such as
curved ceramic tubes, interdigitated planar plates, and cantilever-equipped MEMS chips,
which is beneficial to the innovative design of not only VOC sensors, but also broad sensing
matrixes for gas detection applications.

2. Experimental Section
2.1. Materials

Ammonium metatungstate ((NH4)6H2W12O40·5H2O) and zinc acetate dihydrate
((CH3COO)2Zn·2H2O) were purchased from Sinopharm Chemical Reagent Co., Ltd.
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(Shanghai, China). Polystyrene (PS) sphere suspension (2.5 wt% in water, 500 nm in diam-
eter) was obtained from Shanghai Huge Biotechnology Co., Ltd. (Shanghai, China). All
the reagents were of analytical grade and used without further purification. Deionized
water was produced in an ultrafilter system (Millipore Milli-Q system) with a resistivity of
18.2 MΩ·cm at 25 ◦C.

2.2. In Situ Fabrication of ZnO/WO3 Ordered Porous Films

Figure 1 schematically shows the direct fabrication of ZnO/WO3 nanocomposite
sensing films on ceramic tube substrates via a sacrificial template approach. Typically,
the well-dispersed PS spheres were spread on the glass slide and self-assembled into
hexagonally ordered arrays (Figure 1a) [32]. After natural drying, the monolayer colloidal
crystal (MCC) was entirely transferred to the surface of the desired precursor solution
and then re-transferred to the ceramic tube surface (Figure 1b,c). (NH4)6H2W12O40·XH2O
and (CH3COO)2Zn·2H2O were mixed and dissolved in 50 mL distilled water in different
proportions and stirred with a magnetic rotor for 10 min to obtain a homogeneous solution
of the precursor so that the required precursor could infiltrate into the void between
adjacent PS spheres of the MCC. After annealing at 400 ◦C for 2 h, the ZnO/WO3 porous
film was in situ obtained on the ceramic tube substrate due to the thermal decomposition
of organic spheres and precursors (Figure 1d–f). By adjusting the relative content of
(CH3COO)2Zn·2H2O, ZnO/WO3 porous films with Zn/W atomic percentages of 3%, 5%
and 10% were prepared and labeled as 3% ZnO/WO3, 5% ZnO/WO3, and 10% ZnO/WO3,
respectively. The pure WO3 ordered porous film was also prepared as a control.
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Figure 1. Schematic diagram of template-assisted in situ preparation of ZnO/WO3 nanocomposite
porous sensing films. (a,b) A PS monolayer colloidal crystal (MCC) was prepared by interfacial
self-assembly. (c–e) The MCC was transferred intact to the precursor surface, followed by another
transfer using a ceramic tube substrate. (f) ZnO/WO3 nanocomposite porous films were obtained by
heat treatment at 400 ◦C for 2 h.

2.3. Characterization

The phase and crystal structures of the products were determined by X-ray diffraction
(XRD) patterns, which were recorded with the X-ray diffractometer (the Philips X’Pert) with
a 1D array detector using Cu Kα1 radiation (λ = 1.5406 Å). The morphology and structure
of the product were observed by field emission scanning electron microscope (FE-SEM, FEI
Sirion 200) and transmission electron microscope (TEM, JEOL JEM-2100). High-resolution
transmission electron microscopic (HR-TEM) images and selected-area electron diffraction
(SAED) patterns were acquired on a JEOL JEM-2100 transmission electron microscope at
an operating voltage of 200 kV. The energy-dispersive X-ray spectroscopy (EDS) spots
pattern scanning analysis was recorded by the TEM attachment. The X-ray photoelectron
spectroscopy (XPS) analyses were carried out on a photoelectron spectrometer (ESCALAB
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250XI) operated at an acceleration voltage of 15 kV and a current of 10 mA, and the binding
energy was calibrated with reference to the C 1s binding energy 284.8 eV.

2.4. Gas-Sensing Tests

The sensor characterization was conducted by a STP4 intelligent gas-sensing analy-
sis system (Nanjing Wisens Co. Ltd., Nanjing, China). The sensing performance of the
fabricated devices was monitored in a sealed gas-sensing chamber at room temperature
(25 ◦C) and 60% RH (relative humidity). Firstly, we injected enough liquid volatile organic
compound into a fixed volume glass container to make it volatilize long enough to reach its
saturated vapor concentration. Subsequently, a certain amount of target gas was extracted
from the glass container through a micro syringe, and then it was injected into the test
chamber. According to the volume ratio between the injected gas and the test chamber, the
actual concentration of target gas in the test chamber was calculated. To illustrate the chem-
ical gas-sensing ability of the ZnO/WO3 films, we focused on four representative analytes:
alcohols, aldehydes, benzenes, and ketones. These gases represent well-known toxic VOCs.
The gas responses of the sensors are evaluated as Ra/Rg, where Ra is the resistance of the
sensor in air and Rg is the resistance of the sensor in VOCs. The time taken by the sensors
to achieve 90% of the total resistance change was defined as the response/recovery time (t)
when exposed to the target gases or normal atmospheric environment.

3. Results and Discussion

Hexagonal packed MCC together with infiltrated precursor solutions were obtained on
a curved ceramic tube by transfer of the MCC, which was self-assembled with PS spheres
of 500 nm in diameter. After calcination, the bowl-shaped porous ordered ZnO/WO3
films were obtained in situ due to the spherical geometry of the monolayer PS spheres.
Subsequently, the structure, morphology, composition, and gas-sensing performances of
the ZnO/WO3 sensing films were systematically evaluated.

3.1. Structural and Morphological Characteristics

XRD analyses of the pristine WO3 and ZnO/WO3 nanocomposite films with different
Zn/W atomic percentages were firstly conducted, as demonstrated in Figure 2. It reveals
that the diffraction peaks of orthorhombic WO3 (JCPDS NO. 00-020-1324) were mainly
observed at 2θ = 23.08◦, 23.71◦, and 24.10◦, which were readily assigned to the (001),
(020), and (200) lattice planes, respectively. After ZnO and WO3 were combined, the 3%,
5%, and 10% ZnO/WO3 films also showed additional peaks at 36.26◦, arising from the
diffraction of the (101) lattice plane of hexagonal ZnO (JCPDS NO. 01-070-2551). While
there was an excessive combination of ZnO (10% ZnO/WO3), a monoclinic ZnWO4 (JCPDS
NO. 00-015-0774) would be also obtained.

Despite the differences in chemical composition, it is rational for the template-assisted
method to produce metal oxide sensing films with similar microstructures. Therefore, the
5% ZnO/WO3 porous film was chosen for the following detailed demonstrations. Figure 3a
shows the FE-SEM observation of the utilized MCC template prepared by the self-assembly
process. It reveals that the PS spheres are hexagonally packed close to each other to form
two-dimensional (2D) colloidal crystals with long-range order. The upper illustration
of Figure 3a confirms its monolayer feature. After calcination in an air atmosphere, PS
spheres were removed and the honeycomb ZnO/WO3 composite porous film was readily
obtained (Figure 3b). The ZnO/WO3 nanocomposite sensing layer directly constructed on
the substrate retains a large-scale ordered arrangement of nanopores, revealing a faultless
template replication process. The porous structure makes the sensing layer have good
mechanical stability. It is worth noting that the so-called “ordered porous” here refers to
the overall honeycomb porous structure of the films, rather than the existence of many
micropores or mesopores inside the films. The magnified observation (Figure 3c) illustrates
that a single hexagonal aperture is about 500 nm. The monolayer structure is demonstrated
by the cross-section SEM image in Figure 3d. After the annealing treatment to remove the
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PS template, the thickness of the films finally obtained is the radius size of the colloidal
crystal (about 250 nm). Compared with the sensing films prepared by other brush-coated
methods, the ultrathin sensitive films prepared by the in situ growth method are more
uniform and stable, and the specific surface area is larger, which is conducive to the sensing
response of gas. This ultra-thin, porous structure facilitates the diffusion of gas molecules
from the surface to the interior of the film, thereby improving the sensing performance in
terms of gas-sensitive response and response/recovery time.
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The morphology and crystallinity of the porous films were characterized using trans-
mission electron microscopy (TEM) technologies. Figure 4a shows that the particle size of
the large-scale 5% ZnO/WO3 porous film is 500 nm. In the imaging area, the whole porous
film is tightly arranged with uniform pore size. Figure 4b–d show the high-resolution TEM
(HR-TEM) images of WO3 and ZnO, respectively. The spacing between adjacent fringes
is about 0.263 nm and 0.375 nm, which belong to the (220) and (020) crystal planes of
WO3, while the spacing between the neighboring fringes is about 0.247 nm and 0.281 nm,
belonging to the (101) and the (100) crystal planes of hexagonal ZnO phase. Moreover,
based on the energy-dispersive X-ray spectroscopy (EDS) elemental analysis, the O, W, and
Zn elements were uniformly dispersed on the surface of the 5% ZnO/WO3 porous film
(Figure 4e–g). The EDS result shown in Figure 4h demonstrates that the peaks of O, Zn, and
W can be clearly seen in the survey spectrum. The 5% ZnO/WO3 sensor was thus obtained.

In order to further investigate the elemental composition and chemical states of each
element, X-ray photoelectron spectra (XPS) measurements were conducted for the WO3 and
5% ZnO/WO3 sensing films (Figure 5). They reveal that the WO3 film is only composed of
two elements, W and O, while the 5% ZnO/WO3 film has an additional Zn element, which
was consistent with the previous XRD and EDS results (Figure 5a). The high-resolution
spectra of W 4f for both films (Figure 5b) show two distinct peaks located at 37.9 and
35.8 eV, which can be attributed to W 4f5/2 and 4f7/2, respectively, suggesting the presence
of W6+ in the film matrixes [33]. In comparison with the W 4f spectrum of WO3, the
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4f5/2 and 4f7/2 spin–orbit peaks of 5% ZnO/WO3 shift to lower binding energies of 37.9
and 35.8 eV, indicating that an n–n heterojunction might exist at the interface of ZnO and
WO3, and a part of the electrons might transfer. Furthermore, the spectrum of Zn 2p for
the 5% ZnO/WO3 film (Figure 5c) specifically shows two strong peaks located at 1045.1
and 1022.2 eV, which correspond to Zn 2p1/2 and 2p3/2 spin–orbit of the Zn2+ chemical
state, respectively. Meanwhile, for the high-resolution O 1s spectra, the binding energies
at 530.3, 531.3, and 532.4 eV can be ascribed to the lattice oxygen (OL), oxygen vacancy
(OV), and chemisorption oxygen (OC), respectively [34]. OL was commonly considered
as a non-active oxygen species, which did not participate in the sensing reaction with
target molecules, while OV and OC are positively related to the amount of active oxygen
species adsorbed on the surfaces. The proportion of varying oxygen species for two sensing
materials is displayed in Table 1, which displays that the addition of ZnO increases the
content of OV and OC to 43%, thereby providing more potential to improve the gas-sensing
performances for the 5% ZnO/WO3 sensors.
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Table 1. The content ratio of oxygen species derived from the fitting curves of the O 1s XPS spectra of
WO3 and 5% ZnO/WO3 sensing matrixes.

Samples OL (eV) OV (eV) OC (eV) OL (%) OV (%) OC (%) OV + OC (%)

WO3 530.3 531.2 532.1 73 13 14 27
5% ZnO/WO3 530.3 531.3 532.4 57 14 29 43
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3.2. Gas-Sensing Performances

The VOC gas-sensing properties of the four sensors were investigated in detail. Herein,
we use toluene as a typical target gas to evaluate the gas-response performances. On account
of the importance of working temperature for metal oxide semiconductor gas sensors, we
tested the response of sensors at different temperatures to obtain the optimal operation
temperature. Figure 6 illustrates the responses of these sensors to 100 ppm toluene vapor
in the temperature range of 100–300 ◦C. The results show that all the responses of these
four sensors are the highest at about 300 ◦C. Even as the sensors’ operating temperatures
rise to 300 ◦C, their response tends to increase. This is consistent with that of traditional
n-type semiconductor sensors for reducing gases. However, as continued temperature
increase will result in a high energy consumption, which does not meet the actual real-
time detection requirements, 300 ◦C is selected as the optimal operation temperature of
those sensors in present work. In addition, the combination of ZnO and WO3 leads to
significant enhancement in sensing responses to toluene compared with the pure WO3
sensor in the temperature range of 100 ◦C to 300 ◦C. Simultaneously, the 5% ZnO/WO3
sensor demonstrates the best response performance over all temperature ranges, and for
excess addition of ZnO (the 10% ZnO/WO3 sensor), the gas-sensitive performances are
remarkably decreased [30,35,36]. It can be seen from the XRD pattern (Figure 2) that a
new material ZnWO4 appears in the 10% ZnO/WO3 composite system. The formation
of ZnWO4 may be the main reason for the decrease of gas sensitivity of 10% ZnO/WO3.
The gas sensitivity of the ZnO/WO3 composite system will be improved with the increase
of ZnO content, and the gas sensitivity will reach the best when the molar content of
ZnO is 5%. From the subsequent gas-sensing enhancement mechanism, we can know that
there are n–n heterostructures in the ZnO/WO3 composite system, which will significantly
improve the gas-sensing performance. The production of ZnWO4 will break the original
best composite system, thus reducing the gas sensitivity of 10% ZnO/WO3. The same
change trends can be observed for typical single-cycle response curves of the four sensors at
the optimal operating temperature of 300 ◦C. This emphasizes the significant importance of
the appropriate combination of ZnO for WO3 sensors. In addition, a response of Ra/Rg = 68
was obtained for the 5% ZnO/WO3 sensor towards 100 ppm toluene with a response and
recovery time of 0.66 s and 2.5 s, respectively. An assessment of sensing performances
towards toluene vapor in the literature is overviewed in Table 2, which confirms a significant
advance of the as-prepared ZnO/WO3 sensor in present work. The response/recovery
times of the ZnO/WO3 sensor for toluene are all less than 3 s, which is much less than
that of other toluene-sensing materials [37–39]. Such sensitive and fast responses are
beneficial to the trace and real-time detection of toxic VOCs for widespread household air
quality-monitoring applications.
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Table 2. Comparison of the sensing performances for the present 5% ZnO/WO3 sensor for toluene
vapor with those reported in the literature.

Sensing Materials Con. (ppm) Tem. (◦C) Response
(Ra/Rg) Res./Rec. Time (s) Detection

Limit (ppm) Ref.

Zn2SnO4 sheet 100 280 25.2 1/3.5 5 [26]
Au-ZnO-NP 100 377 97 65/360 / [37]

Ni–ZnO core–shell spheres 100 325 210 2/77 0.5 [38]
Au-functionalized

WO3·H2O 100 300 50 2/9 / [40]

Pd-NPs/Pd-embedded
WO3 NFs 5 350 10 10.9/16.1 0.2 [41]

Core–shell ZnFe2O4
spheres 100 275 55.26 3/105 0.2 [39]

WO3 microflowers 100 320 16.7 2/12 1 [42]
Hierarchical Au-loaded

WO3 hollow microspheres 100 340 24 8/5 5 [43]

ZnO/WO3 composite
ordered porous films 50 300 68 0.7/2.5 0.1 This

work

The dynamic response–recovery curves of the four sensors to toluene vapor with
stepped concentrations were systematically evaluated at 300 ◦C, as demonstrated in
Figure 7a. Although the responses of all these gas sensors steadily increased with in-
creasing toluene concentration, the 5% ZnO/WO3 sensor displayed the most significant
sensitive performance. Despite having the strongest response to the target gas, the 5%
ZnO/WO3 sensor showed much smoother fluctuations of the electrical signal at the equilib-
rium state, revealing a perfect signal stability. Moreover, the composite sensor had a limit
of detection (LOD) down to 0.1 ppm, while pure WO3 had an LOD of 10 ppm. Meanwhile,
it was difficult for other sensing materials (Table 2) to achieve such a low detection limit.
The relationship between the response of the ZnO/WO3 sensor and the concentration of
toluene was further studied. As exhibited in Figure 7b, the response values followed an
approximately linear increase with the increase of toluene concentration in the range of
0.1−200 ppm, demonstrating that the 5% ZnO/WO3 sensor can work as a toluene vapor
sensor in a wide linear range.
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As we focus on assessing the air quality by monitoring concentrations of TVOC (total
volatile organic compounds), it is expected that the sensor should have simultaneous
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response towards multiple organic solvents that commonly exist in daily life while sup-
pressing the sensing performances to conventional flammable or toxic gases. Therefore, in
addition to toluene, we also chose formaldehyde, ethanol, and acetone as representative
VOC targets, and several reducing/oxidizing gas molecules such as methane, hydrogen,
carbon oxide, nitric oxide, and nitric dioxide as interfering gases. Figure 8a demonstrates
that the 5% ZnO/WO3 sensor shows sensitive and rapid response upon exposure of those
individual VOC targets with concentrations of 100 ppm at 300 ◦C, while no obvious re-
sponse can be observed for all those interfering gases. Furthermore, in comparison with
the WO3 sensor, the 5% ZnO/WO3 sensor shows significant improvement in responses to
those organic vapors, revealing a perfect cross-sensitivity towards VOC targets (Figure 8b).
This feature facilitates accurate recognition of the characteristic gaseous constituents in
complex environmental conditions, thereby providing more reliable diagnostic data for air
quality assessment.
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Figure 8. (a) Typical response curves of the 5% ZnO/WO3 sensor towards representative VOC targets
(typically benzenes, aldehydes, alcohols, and ketones) and conventional flammable or toxic gases
(methane, hydrogen, carbon oxide, nitric oxide, and nitric dioxide) with a concentration of 100 ppm
at 300 ◦C. (b) Comparison of sensitivities of the WO3 and 5% ZnO/WO3 sensors to evaluate their
sensing selectivity properties.

Sensing stability is one of the key criteria to evaluate whether the gas sensor can be
used for practical applications. A good stability requires that the sensor can repeatedly
respond to the target gas of a specific concentration without significant response decreases.
Hence, the response reproducibility of the four sensors to repeated exposure of toluene
vapor were experimentally explored. Figure 9a demonstrates typical sensing responses for
five repeatable circles to 100 ppm toluene vapor at the operating temperature of 300 ◦C. It
depicts that although the RSD (relative standard deviation) values of the corresponding
responses were all less than 10%, the 5% ZnO/WO3 sensor showed the best signal repro-
ducibility (RSD = 3.49%) among the four sensors, which is of great significance for reliable
quantitative gas monitoring. Furthermore, the long-term stability of the 5% ZnO/WO3
sensor to toluene with different concentrations was also measured, as demonstrated in
Figure 9b. It reveals that the sensor exhibited nearly constant responses (RSD < 2%) to 1, 5,
20, 50, and 100 ppm toluene with a long period of intermittent tests, confirming a perfect
stability of the as-developed ZnO/WO3 sensors for VOC detection.
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vapor at the operating temperature of 300 ◦C. (b) Long-term stability of 5% ZnO/WO3 films’ gas
sensors to 1, 5, 20, 50, and 100 ppm toluene vapor.

3.3. Gas-Sensing Mechanism

Gas sensing is known to be directly related to the adsorption of active species and
subsequent surface reactions [30]. At present, the most widely accepted sensing mechanism
in the literature is based on the redox reaction between the pre-adsorbed oxygen species
from the environment and the following target molecules, which occurs on the surface of
sensing materials [44–46]. When an n-type semiconducting matrix is exposed to the air
(Figure 10a), oxygen molecules are adsorbed on the surface and subsequently capture free
electrons from the conductance bands of the semiconductor, forming negatively charged
surface oxygen species (O2

−, O−, O2−) [36]. As a result, an electron depletion layer (EDL)
forms on the surface domains, and the sensing matrix is in a high-resistance state. The
corresponding reaction processes are shown in Equations (1)–(4) [47]:

O2(gas)↔ O2(ads) (1)

O2(ads) + e− ↔ O−2 (T < 100 ◦C) (2)

O−2 (ads) + e− ↔ 2O− (100 ◦C ≤ T ≤ 300 ◦C) (3)

O−(ads) + e− ↔ O2− (T > 300 ◦C) (4)
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Furthermore, it has been reported that the formation of heterogeneous structures
between two metal oxide semiconductors can significantly improve the adsorption of O2
due to the existence of electronic effects [35,48,49]. Thus, more O2 adsorption sites exist
on the surface of ZnO/WO3 nanocomposite films due to the formed n–n heterojunction.
Accordingly, compared with pure WO3, the ZnO/WO3 composite possesses a thicker
depletion layer on the surface and produces a larger bulk resistance (Figures 10b and S1).
When the sensing matrix is exposed to the reducing toluene vapor, the toluene molecules
undergo a redox reaction with the surface-adsorbed oxygen species and release electrons
into the interior of sensing material. For the ZnO/WO3 composite, it will result in a more
significant decrease in the bulk resistance and more active oxygen species on the surface,
which produce enhanced gas-sensing properties [50].

4. Conclusions

In summary, we proposed a sacrificial template-based in situ approach for the facile
fabrication of ZnO/WO3 ordered nanoporous sensing films on commercial ceramic tubes
with curved and rough surfaces. The as-fabricated nanocomposite films possess two-
dimensional honeycomb-like porous features with 250 nm in thickness and large-scale
structural consistency. Such features endue the nanocomposite sensors with sensitive re-
sponses, fast response/recovery, and repeatable detection performances. Typically, for the
5% ZnO/WO3 composite sensor, a detectable concentration of 0.1 ppm with a second-level
response time and perfect signal reproducibility (RSD = 3.49%) was obtained. Furthermore,
we verified that the combination of two sensitive materials would generate abundant het-
erojunctions inside and on the surfaces of the sensing matrixes. This significantly increases
the thickness of the charge depletion layer and the adsorption of active oxygen species
on the surface, which is conducive to increasing the cross-sensitivity of the gas sensor to
VOCs while suppressing the response to other kinds of interfering gases. The proposed
in situ strategy for the preparation of nanocomposite sensing films is not only conducive
to optimizing the performance of gas sensors through the regulation of nanostructures
and chemical composition, but also provides a technical route for the development of
cross-sensitive gas sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13040733/s1, Figure S1: The initial resistance of the four
sensors in air atmosphere at 300 ◦C.
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