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Abstract: Studies have described the occurrence of nanoparticles (NPs) in aquatic ecosystems, with
particular attention to the widely commercialized carbon nanotubes (CNTs). Their presence in
the environment raises concerns, especially regarding their toxicity when co-occurring with other
pollutants such as metals. In the present study, changes to the metabolic capacity, oxidative, and
neurologic status were evaluated in the presence of carboxylated multi-walled CNTs and chromium
(Cr(III)) using two of the most ecologically and economically relevant filter feeder organisms: the
clam species Ruditapes decussatus and R. philippinarum. Results indicated that although Cr, either
alone or in combination with CNTs, was found in a similar concentration level in both species, a
species-specific Cr accumulation was observed, with higher values in R. decussatus in comparison
with R. philippinarum. Inhibition of antioxidant defenses and neurotoxic effects were detected only
in R. philippinarum. The interaction between contaminants seems to have no effect in terms of
antioxidant enzyme activities and neuro status. Nevertheless, synergistic activation of responses to
both contaminants may have altered the metabolic capacity of bivalves, particularly evident in R.
decussatus. While both clams are tolerant to both contaminants (alone and together), they showed a
relevant accumulation capacity, which may represent a possible contaminant transfer to humans.

Keywords: bivalves; chromium; carbon nanotubes; bioaccumulation; oxidative stress; cellular
biomarkers; multiple contaminants

1. Introduction

Chromium (Cr) is a very stable metal, presenting different forms in nature, such as
divalent (Cr(II)), trivalent (Cr(III)), and hexavalent (Cr(VI)) forms [1]. This metal occurs
naturally in water either in the Cr(III) or Cr(VI) oxidation state, with Cr(VI) being known
as a highly toxic form of this metal with severe impacts on the environment [2], thus
representing a risk for coastal ecosystems [3]. Due to its easy permeability through the
cell membrane, several Cr(VI)-toxicological effects have been documented in marine in-
vertebrate communities, including decreased survival [4], enhancement of antioxidant
and biotransformation defenses [5], changes in the transcription of different genes [6],
impairment of functional and molecular immune parameters [7], lysosomal membranes
destabilization [8], changes on lipid and carbohydrate metabolism and the expression of
estrogen-responsive genes [8], DNA injury and suppression of protein synthesis [9]. In
contrast, Cr(III) is less membrane-permeable and is considered an essential trace metal,
being involved in metabolic processes and nucleic acid synthesis. However, it has also
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been identified as a potential hazard in aquatic environments, when available in high
concentrations [10]. There is evidence that, when able to pass through the cell membrane,
Cr(III) can induce damage to cell organelles [11]. As such, and with the increasing concern
regarding Cr contamination, more studies are required to assess the impact of Cr(III) on
aquatic environments. While the World Health Organization (WHO) estimated that the
Cr concentration in surface water can vary between 1 and 10 µg/L [12], this value can be
significantly affected by the discharge of contaminated effluents. Coastal Cr pollution is
mainly due to anthropogenic sources such as effluents from tanneries, textiles, mining,
electroplating, dyeing, printing, photographic printing, pharmaceuticals, stainless steel
manufacturing, and rubber manufacturing industries [13]. Cr-rich effluents usually contain
a mixture of Cr(III) and Cr(VI) and, among these, Cr(III) from tannery effluents represents
a major share of widespread contamination in water and soil [14]. Effluent regulations for
Cr(III) vary from 1 to 5 mg/L (in the case of direct discharge into water bodies), however,
values as high as 1500 to 3000 mg/L can be found on tannery effluents [15]. These effluents
may then contribute to the contamination of aquatic systems, which represents a risk to
both human and environmental health. For example, aquaculture waters in the vicinity of
large cities may be at risk of contamination from surrounding industrial and agricultural
activity. Ngoc et al. [16] reported Cr values from 0.32 to 4.32 mg/L in aquaculture waters
in Thủy Nguyên in Northern Vietnam, which is close to a shipbuilding company, thermal
power, and cement plant as well as a stone mine. In Lake Taihu, one of the most indus-
trialized areas in China considered an important source for fisheries, Cr was found up to
3.94 µg/L in aquaculture waters [17].

In addition to the increasing presence of trace elements in the environment, several
studies have demonstrated the growing occurrence of contamination by nanomaterials.
Nanomaterials have been considered crucial in different areas, such as nanomedicine, tech-
nology, the textile industry, computer science, energy sector, among others. The exponential
increase in their use has led to the need for studies that can identify their possible adverse
effects on organisms [18]. Due to specific properties such as exceptional electrical and
thermal conductivity and higher mechanical strength than traditional materials, carbon
nanotubes (CNTs) are considered to be one of the most important and commercialized
nanomaterials [19]. So far, worldwide CNTs production values have been estimated to
range from 350 tons/year to 500 tons/year [20] and their release has increased substantially
over the last decades. Interestingly, Petersen et al. [21] showed release pathways of CNTs
into the natural environment, with particular concern for the aquatic ones, which tend to
be the ultimate sink for this type of contaminant [22]. The authors reported that frequent
sources are related to incineration, disposal in landfills, or wastewater as a result of poor
removal efficiency in wastewater treatment plants. It is now recognized that the potential
biological implications of CNTs are related to their behavior in solution, which displays a
tendency to aggregate and form clusters that exhibit colloidal behavior [23]. In particular,
although individual CNT molecules are insoluble, formed aggregates are stable under
certain environmental conditions, which in turn can intensify the risk of exposure and toxi-
city [24]. While the usefulness of these materials is undeniable, their design and application
should be sustainable and, therefore, environmentally benign. As such, evaluating the
impacts of these materials and their interactions with other anthropogenic contaminants is
fundamental for their environmentally safe application. Information regarding CNT’s toxic
effects is available on different invertebrate species, such as bivalves, freshwater snails,
brine shrimp, polychaetes, and microcrustaceans [25–30]. The effects of these nanomaterials
include metabolic alterations, oxidative stress induction, cellular damage, neurotoxicity,
reproductive damage, genotoxicity, and DNA injury [27,31–34].

Despite the concerns regarding both trace metals and nanomaterials contamination,
no studies have yet reported the potential synergistic effects of both classes of contaminants
in aquatic fauna. After release, NPs can interact with other chemicals already present in
the environment, leading to a co-exposure of organisms and the occurrence of combined
effects [35,36], defined as Trojan-horse effects. For CNTs in particular, these NPs could



Nanomaterials 2023, 13, 690 3 of 16

adsorb metals, acting as carriers and, in turn, lead to a facilitated uptake of chemicals into
organisms, resulting in a toxicity increase [35]. Combined effects of CNTs and individual
metals such as Cr could lead either to antagonistic effects (two compounds compete for
the same binding site) or to synergistic effects (one compound promotes the uptake of
another) [36]; however, these interactions remain to be studied. The present study aims
to address this gap in the literature by examining the effects of co-exposure to Cr and
CNT (two of the most common contaminants in their classes) in two bivalve species:
Ruditapes decussatus and Ruditapes philippinarum. The choice of the studied species is based
on the fact that, in Portugal, these are the most successfully commercialized edible clams,
representing a major pathway to the bioamplification of contaminants along the food chain.
The native R. decussatus spatial distribution includes European and Mediterranean coastal
waters [37], while the invasive species R. philippinarum was introduced for culture in the
same area [38,39]. Due to their similar morphologies, feeding and habitat preferences,
the introduction of the invasive clam led to the competition between both species in
natural conditions [40], including in the Ria de Aveiro, Portugal [41]. Previous studies
have already demonstrated that these closely related species may respond differently to
the same environmental stressor, including to pollutants [42–44]. The adverse effects of
both contaminants, acting individually or in combination (Cr, CNTs, CNTs + Cr) in the
clams, were analyzed by comparing biochemical responses in both species. Specifically, we
evaluate if: i) the exposure to Cr and CNTs affects the physiological and oxidative profiles
of both clams, ii) the toxic impacts caused by the co-exposure of pollutants could generate
interactive effects, and iii) the possible toxic impacts can be species-specific. To meet these
hypotheses, a set of biomarkers was developed to evaluate the metabolic capacity, oxidative
stress, and neurotoxic status of clams after a chronic exposure period.

2. Materials and Methods
2.1. Chemical Description

A chromium (Cr) concentration of 3.5 mg/L was selected based on concentrations
found in highly contaminated systems (with regulations broadly limiting the discharge
limit to 1–5 mg/L), to simulate a scenario of anthropogenic contamination [15]. For this
experiment, Cr(III) was used. This form of Cr is generally considered less toxic than its
Cr(VI) counterpart but still presents a wide distribution in the aquatic environment (see
references above). For this reason, Cr(III) was considered more appropriate for this study,
in particular for the evaluation of the synergistic effects of Cr + CNTs. Functionalized multi-
walled carbon nanotubes (MWCNTs) were used in the present study by adding carboxyl
groups (-COOH) to the CNTs (TNMC1 series, http://www.timesnano.com, (accessed on 1
January 2023)). These groups ionize in water charging the oxygen atoms negatively in the
aqueous phase and the electrostatic repulsive forces between negative surface charges of
the oxygen-containing groups can lead to the stability of oxidized CNTs in the seawater
column [45]. The large specific surface area may facilitate pollutant adhesion and thus
influence CNT toxicity in itself and/or toxicity of co-pollutants and influence the bioaccu-
mulation of environmental contaminants [46]. The concentration of 200 µg/L was chosen
considering environmentally relevant concentrations, predicted values in the environment,
and previous studies that assessed the effects caused in aquatic species [30,47,48].

2.2. Experimental Conditions

R. decussatus and R. philippinarum specimens were sampled from the Ria de Aveiro
(northwest coast of Portugal) and immediately transported to the laboratory. Before the
experiment, clams were acclimated for 10 days in artificial seawater (salinity 30) under
continuous aeration, natural photoperiod, and constant temperature (17 ± 1 ◦C) and pH
(8.0–8.2). After the first three days in the laboratory and during the experimental time,
clams were fed with Alga Mac Protein Plus (15 × 104 cells per animal per day—Aquafauna
Bio-Marine) every 2–3 days.

http://www.timesnano.com
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After acclimation, organisms were subjected to different treatments for 28 days: con-
trol (CTL), where no exposure was tested; carbon nanotubes exposure (CNTs); chromium
exposure (Cr); and the combined exposure of both CNTs and Cr (CNTs + Cr). Each treat-
ment was represented by three aquaria, each with 4 organisms (12 organisms per treatment).
Stock solutions of 50 mg/L CNTs were prepared as described by Sturla Lompré et al. [49].
Chromium spiking was performed using an intermediate solution obtained from the dilu-
tion of a stock solution of 1000 mg/L (Cr(III), Inorganic VenturesTM). The stability of Cr(III)
in seawater had already been evaluated by Henriques et al. [50] for a solution of 2 mg/L
obtained from an identical stock solution. Water was renewed every week to re-establish
CNTs and Cr concentrations and physical parameters were checked every day. Water
samples were collected from each aquarium every week after spiking to determine the real
Cr exposure concentration and before water renewal for CNTs characterization. After expo-
sure, clams were frozen with liquid nitrogen for Cr quantification as well as biochemical
parameters determination. During the exposure time, no mortality was recorded.

2.3. Carbon Nanotubes Characterization

To verify the aggregation state of CNTs, three analyses per sample were performed by
dynamic light scattering (DLS) using a DelsaTM NanoC Particle Size Analyzer (Beckman
Coulter) (detection angle = 166.22◦). Each analysis was carried out by performing 120 ac-
quisitions. Briefly, water samples (50 mL per replicate) were taken from each aquarium
at different exposure periods: T7—water samples collected after one week of exposure;
T14—water samples collected after two weeks of exposure; T21—water samples collected
after three weeks of exposure; T28—samples collected after four weeks of exposure. Parti-
cle size distribution and distribution averages were carried out using CONTIN analysis
routines by Delsa Nano 3.73 software. The mean size of the suspended particle aggregates
and polydispersity index (PDI) of the dispersions were calculated by the cumulate method.

2.4. Chromium Determination in Seawater and Organisms

Water samples were diluted by a factor of 10 in a matrix of HNO3 1% before analysis.
Chromium quantification was performed by Inductively Coupled Plasma Optic Emission
Spectrophotometry (ICP-OES) in a HORIBA Jobin Yvon, Activa M spectrometer. Calibra-
tion curves were built with five standards ranging from 0.01 mg/L to 1 mg/L, prepared
by successive dilutions of a commercially certified standard for ICP analysis (Inorganic
VenturesTM). Calibration curves were rejected if correlation coefficients were lower than
0.999 or if the variation coefficient between standards exceeded 10% (n = 3). The lowest
standard of 0.01 mg/L was considered the limit of quantification. For tissue quantification,
the clam’s whole soft tissue (two individuals per aquarium, six per treatment) was homog-
enized and subjected to acid digestion using a microwave CEM MARS 5. Homogenized
tissue samples (200 mg dry weight, DW) were added to previously washed Teflon tubes,
along with 1 mL of H2O, 1 mL of HNO3 (65%), and 2 mL of H2O2 (30%), and subjected to
high temperature and pressure conditions (15 min ramp to 170 ◦C, which was then held for
5 more min). The final sample was diluted to a final volume of 25 mL using ultrapure water
(18 MΩ/cm). The lowest standard of 0.01 mg/L was considered the limit of quantification.

2.5. Biomarker Responses

After the 28-day experimental period, soft tissues of frozen clams (4 per aquarium)
were homogenized using liquid nitrogen, divided into 0.2 g aliquots (fresh weight, FW),
and used to investigate biochemical alterations. To this end, clams’ metabolic capacity,
cellular damage, antioxidant and biotransformation defenses, and neurological status were
determined. Metabolic capacity biomarkers included electron transport system activity
(ETS) and protein (PROT) content. Cellular damage was evaluated by measuring lipid
peroxidation (LPO) levels. Antioxidant and biotransformation defenses were investigated
by measuring the activity of the enzymes superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPx), and glutathione S-transferase (GSTs). Finally, neurological
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status was evaluated by assessing acetylcholinesterase (AChE) activity. See Supplementary
Material (S1) for detailed methodologies.

2.6. Statistical Analysis

Statistical differences in chromium concentrations and biochemical parameters in
clam tissues were evaluated using PERMANOVA+ add-on in PRIMER v6 [51]. When
the main test revealed statistically significant differences (p < 0.05), pairwise comparisons
were performed. Data obtained from biochemical analyses and Cr concentrations were
submitted to the following null hypotheses for each biomarker: (a) for each species, no
significant differences exist among treatments; and (b) for each treatment, no significant
differences exist between species.

3. Results
3.1. Carbon Nanotubes Characterization

Performed DLS analysis showed a discontinuous trend of CNTs aggregation state
along different exposure periods as well as between exposure treatments. In detail, af-
ter 7 days, the presence of suspended materials in aqueous media was not detected in
both treatments (CNTs and CNTs + Cr) and species (R. decussatus and R. philippinarum)
(data not shown). By contrast, in R. decussatus, after 14 days, the largest NP aggregates
were detected in CNTs + Cr treatment, while an opposite behavior was observed after
21 and 28 days, showing the highest particle aggregation state under CNTs treatment
alone (Table 1). Considering R. philippinarum, CNTs treatment alone showed larger particle
aggregates compared to the combined one after 14 days. Instead, after 21 and 28 days,
the largest NP size was identified under CNTs + Cr treatment. These results confirmed
that suspended materials showed an opposite behavior not only between species but also
between treatments during the exposure period.

Table 1. Dynamic light scattering (DLS) results of size (nm) and polydispersity index (PDI) of carbon
nanotubes (CNTs) alone and in combination with chromium (CNTs+ Cr) suspensions collected along
different exposure times (days 7 (T7), 14 (T14), 21 (T21), and 28 (T28)) and tests (Ruditapes decussatus
and Ruditapes philippinarum). I.d.: not detected colloidal material in the analyzed sample at the end of
120 acquisitions).

T14

CNTs CNTs + Cr

Size (nm) PDI Size (nm) PDI

R. decussatus
I.d. - I.d. -

1215.4 0.49 I.d. -
I.d. - 7387.2 3.10

R. philippinarum
I.d. - I.d. -
I.d. - I.d. -

4201.9 1.88 2279.8 1.02

T21

CNTs CNTs + Cr

Size (nm) PDI Size (nm) PDI

R. decussatus
9688.5 3.99 I.d. -

I.d. - 2243.6 0.85
I.d. - 4664.0 2.00

R. philippinarum
I.d. - I.d. -
I.d. - 4844.0 1.99

1237.5 0.75 5296.3 2.05
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Table 1. Cont.

T28

CNTs CNTs + Cr

Size (nm) PDI Size (nm) PDI

R. decussatus
I.d. - 2222.0 1.24
I.d. - I.d. -

4343.1 1.76 I.d. -

R. philippinarum
808.4 0.45 7200.7 2.84
I.d. - 1096.5 0.43

954.7 1.42 2209.0 0.85

3.2. Chromium in Seawater and Organisms

Chromium levels in seawater immediately after the spiking were 3.21 ± 0.37 mg/L and
3.15 ± 0.53 mg/L for the aquaria containing R. decussatus and R. philippinarum, respectively.
In CTL treatments, Cr levels were lower than the quantification limit of 0.01 mg/L, proving
the absence of contamination in the control aquaria (Table 2).

Table 2. Chromium (Cr) concentrations (mg/L) in water collected every week after spiking for each
species in control (CTL) and spiked conditions. LOQ is the limit of quantification.

Cr (mg/L)

R. decussatus R. philippinarum

CTL <LOQ <LOQ
Spiked 3.21 ± 0.37 3.15 ± 0.53

Chromium was also quantified in clams’ tissues at the end of 28-day exposure (Table 3).
In both species, Cr concentrations were higher in specimens exposed to this element in
comparison to those exposed to CTL and CNTs alone, but no significant differences were
observed between Cr and CNTs + Cr treatments (Table 3). Although in the CNTs + Cr
mixture, R. philippinarum tissues tended to accumulate higher Cr concentrations than in Cr
exposed alone, these differences were not significant. In both treatments (CNTs + Cr and
Cr), R. decussatus accumulated significantly more Cr than R. philippinarum.

Table 3. Chromium (Cr) concentrations in clams (µg/g dry weight (DW)) collected at the end of the
experimental period (28 days) and in each tested treatment. Significant differences (p < 0.05) among
exposure treatments were presented with different letters (uppercase letters for R. decussatus and
lowercase letters for R. philippinarum) and between species with asterisks (*). Values correspond to
3 clam samples per aquarium ± standard deviation.

Cr (µg/g DW)

R. decussatus R. philippinarum

CTL 1.36 ± 0.58 A 1.17 ± 0.36 a

CNTs 1.26 ± 0.19 A 0.98 ± 0.06 a

Cr 115.55 ± 15.80 B* 48.13 ± 20.85 b*

CNTs + Cr 118.51 ± 9.77 B* 71.6 ± 17.12 b*

3.3. Biological Responses
3.3.1. Metabolic Activity and Energy Reserves

Significantly higher metabolic activity was only observed in R. decussatus exposed to
CNTs + Cr compared to the remaining treatments, while ETS activity in R. philippinarum
was not affected by any of the treatments. No significant differences between species
were observed (Figure 1A). Exposed R. decussatus specimens presented no significant
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differences in PROT concentration in relation to non-exposed organisms. Similarly, exposed
R. philippinarum did not differ from the control either, but in the presence of Cr (acting
alone or combined), higher PROT content was observed. Between species, there were no
significant differences (Figure 1B).
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Figure 1. (A) Electron transport system (ETS) activity; (B) protein (PROT) content (mean values
+ standard deviation), in Ruditapes decussatus (light gray bars) and Ruditapes philippinarum (dark
gray bars) after a 28-day exposure period. For each species, tested treatments were: control (CTL),
carbon nanotubes (CNTs), chromium (Cr), and the combination of both contaminants (CNTs + Cr).
Significant differences (p < 0.05) among treatments are represented with different letters (lowercase
for R. decussatus and uppercase for R. philippinarum).

3.3.2. Indicators of Cellular Damage

R. decussatus exposed to Cr (Cr and CNTs + Cr treatments) revealed a significant
decrease in LPO levels compared to CTL. No significant cellular damage was identified
either in R. philippinarum contaminated with Cr, individually or in combination (Cr and
CNTs + Cr). Comparing clam species, R. philippinarum presented significantly higher LPO
levels compared to R. decussatus in all groups (Figure 2).
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Figure 2. Lipid peroxidation (LPO) levels (mean values + standard deviation), in Ruditapes decussatus
(light gray bars) and Ruditapes philippinarum (dark gray bars) after a 28-day exposure period. For each
species, tested treatments were: control (CTL), carbon nanotubes (CNTs), chromium (Cr), and the
combination of both contaminants (CNTs + Cr). Significant differences (p < 0.05) among treatments
are represented with different letters (lowercase for R. decussatus and uppercase for R. philippinarum).
For each treatment, significant differences (p < 0.05) between R. decussatus and R. philippinarum are
represented with an asterisk (*).

3.3.3. Antioxidant and Biotransformation Defenses

In R. decussatus exposed to CNTs + Cr, the activity of SOD was significantly lower
compared to the remaining treatments (Figure 3A). In R. philippinarum the activity of
this enzyme showed a significant increase in contaminated clams compared to CTL ones.
Comparing species, R. philippinarum presented significantly higher SOD activity than
R. decussatus regardless of the treatment (Figure 3A). Considering R. decussatus no variation
in CAT activity was detected among treatments, whereas in R. philippinarum, all treatments
generated activation of this enzyme, with significant differences between non-contaminated
clams and the ones exposed to Cr and CNTs + Cr. No differences in CAT activity were
registered between the two species in any of the treatments (Figure 3B).

Similarly, GPx activity in R. decussatus did not differ significantly among all treatments,
while it significantly increased in R. philippinarum exposed to CNTs alone and CNTs +
Cr. Comparing species, R. philippinarum presented significantly higher enzyme activity
in the presence of CNTs and CNTs + Cr than R. decussatus (Figure 3C). Similar GSTs
activity in R. decussatus was found between CTL and exposure treatments. By contrast,
in R. philippinarum, significantly lower enzyme activity was registered in CNTs and Cr
treatments compared to the control. Comparing species, R. decussatus showed significantly
higher GSTs activity regardless of the treatment (Figure 4).
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Figure 3. (A) Superoxide dismutase (SOD); (B) Catalase (CAT); (C) Glutathione peroxidase (GPx)
activities (mean values+ standard deviation), in Ruditapes decussatus (light gray bars) and Ruditapes
philippinarum (dark gray bars) after a 28-day exposure period. For each species, tested treatments were:
control (CTL), carbon nanotubes (CNTs), chromium (Cr), and the combination of both contaminants
(CNTs + Cr). Significant differences (p < 0.05) among treatments are represented with different letters
(lowercase for R. decussatus and uppercase for R. philippinarum). For each treatment, significant
differences (p < 0.05) between R. decussatus and R. philippinarum are represented with an asterisk (*).
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decussatus (light gray bars) and Ruditapes philippinarum (dark gray bars) after a 28-day exposure
period. For each species, tested treatments were: control (CTL), carbon nanotubes (CNTs), chromium
(Cr), and the combination of both contaminants (CNTs + Cr). Significant differences (p < 0.05)
among treatments are represented with different letters (lowercase for R. decussatus and uppercase
for R. philippinarum). For each treatment, significant differences (p < 0.05) between R. decussatus and
R. philippinarum are represented with an asterisk (*).

3.3.4. Neurotoxicity

The activity of AChE in R. decussatus showed no significant differences among test
groups, while R. philippinarum exhibited significantly higher activity when clams were
exposed to Cr in combination with CNTs. Comparing species, R. decussatus presented
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Figure 5. Acetylcholinesterase (AChE) activity (mean values+ standard deviation), in Ruditapes
decussatus (light gray bars) and Ruditapes philippinarum (dark gray bars) after a 28-day exposure
period. For each species, tested treatments were: control (CTL), carbon nanotubes (CNTs), chromium
(Cr), and the combination of both contaminants (CNTs + Cr). Significant differences (p < 0.05)
among treatments are represented with different letters (lowercase for R. decussatus and uppercase
for R. philippinarum). For each treatment, significant differences (p < 0.05) between R. decussatus and
R. philippinarum are represented with an asterisk (*).
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4. Discussion

The present findings revealed a similar accumulation of Cr either alone or in combi-
nation with CNTs, especially noticed in R. decussatus, indicating that CNTs may not act as
a carrier of Cr. Although the literature has shown that CNTs may facilitate the transport
of other elements [35], different authors, analyzing the interaction between CNTs and
other compounds, observed that the bioconcentration of the two chemicals was indepen-
dent [34,49,52]. A review by Anastopoulos et al. [53] reports that Cr(III) can be adsorbed
onto the surface of CNTs to some extent. The reported sorption efficiency of this material is
higher towards Cr(VI) at lower pH (2–4). In contrast, the removal of Cr(III) has shown to be
more substantial at higher pH (5–8), which raises the possibility of Cr(III) adsorption onto
CNTs under the experimental conditions of the present study. However, previous studies
have only evaluated this sorption capacity using simplistic matrices such as deionized
water (See Atieh et al. [54]). Seawater is an exceptionally complex medium that can be
a detriment to the efficiency of many adsorption processes due to the increase in ionic
strength and competition with other elements onto the binding sites of the material [55,56].
Since the sorption ability of Cr(III) by the CNTs was not evaluated under the exact ex-
perimental conditions, it is not possible to correctly predict the degree to which these
interactions may occur; however, this possibility cannot be excluded. On the other hand,
different Cr content between species was observed, with higher metal accumulation in
R. decussatus compared to R. philippinarum. Bivalves stay isolated from the environment
by maintaining their valves closed, which reduces their filtration and thus prevents accu-
mulation of pollutants in their tissues [57]. A decrease in filtration capacity is related to an
energy-saving mechanism, associated with shell closure. Although both species did not
differ in metabolic capacity (measured through electron transport system (ETS) activity),
R. decussatus showed slight increases than R. philippinarum in the presence of Cr, especially
when combined with CNTs, which may have contributed to higher Cr concentration in
the native species. Furthermore, even though in the present study, R. decussatus was the
species with the highest detoxification capacity, this capacity was similar regardless of the
presence or absence of Cr, as showed by R. philippinarum, which might indicate the limited
role of GSTs on Cr and CNTs detoxification.

Despite the similar accumulation of Cr when alone or in combination with CNTs,
the interaction between these two contaminants may synergistically activate signaling
pathways in response to adverse conditions, which may explain higher metabolism in
R. decussatus clams exposed to CNTs + Cr. Higher metabolic activity in response to a
combination of xenobiotics was also documented by Britto et al., 2020 [58]. The authors
observed an increase in ETS activity when R. philippinarum was contaminated with copper
(Cu) together with graphene oxide (GO) under a 7.3 pH level, fueling up filter-feeder
defense mechanisms. The results here presented also demonstrated that the PROT content
was maintained (R. decussatus) or even increased (R. philippinarum) in the presence of
contaminants which might indicate that clams increased the production of proteins, namely
enzymes, to enhance their defense mechanisms (e.g., increase in the number of antioxidant
enzymes) and/or might indicate that clams were capable of preserving this energy source
using others such as glycogen or lipids. This behavior was already reported by Sokolova
et al. [59] as a predominant adaptive strategy of metabolic responses (energy conservation)
that allows an invertebrate organism to survive environmental disturbances.

Results of metabolic alterations were accompanied by variations in enzyme activities,
namely antioxidant and detoxification ones, to fight against the stress induced by CNTs
and Cr (alone or combined) and to avoid damage caused by ROS generation. Briefly, ROS
production is a physiological process that is maintained in normal function by superoxide-
dismutase (SOD) [60]. This enzyme is directly responsible for the removal of the superoxide
anion (O2

-) with the formation of hydrogen peroxide (H2O2) that can be used by catalase
(CAT) or glutathione peroxidases (GPx) enzymes [61]. Under stressful conditions, ROS can
be overproduced, and in response, bivalves are known to activate antioxidant defenses
(e.g., [47,52,62–67]). A similar response was described here for R. philippinarum exposed to
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both contaminants showing increased antioxidant activity compared to control clams in an
attempt to eliminate ROS and mostly to prevent cellular damage (e.g., LPO). In fact, under
these conditions, no LPO was observed. Similarly, Mesquita et al. [68] observed the en-
hancement of antioxidant defenses in the bivalves Cerastoderma edule and Scrobicularia plana
when exposed to Cu. However, in this case, the antioxidant process was not effective, with
the occurrence of increased LPO levels. The results obtained in the present study confirmed
the efficiency of the antioxidant enzymes in the fight against the LPO, which may explain a
higher tolerance of R. philippinarum to contaminants, as reported by other researchers. This
hypothesis was also confirmed by results obtained in our previous study [49]. Using the
same species, the authors exposed R. philippinarum clams to CNTs, Terbium (Tb), and the
combination of both contaminants and observed no cellular damage as a consequence of
a greater antioxidant activation system. An opposite antioxidant behavior was observed
in R. decussatus. Indeed, CAT and GPx activities resulted unaltered in comparison with
their respective controls, while SOD activity showed a decreasing trend when clams were
exposed only to CNTs + Cr. The discrepancy in biochemical responses between the two
species may be explained by the different species’ sensitivity to contaminants; while in
contaminated R. philippinarum the antioxidant mechanisms were activated, preventing LPO
levels, in R. decussatus neither the enzymatic defense was stimulated, nor cellular damage
was observed. Considering that similar biochemical responses were shown previously in
both species exposed to Tb and CNTs acting alone and together [49], the present results
corroborated the higher tolerance of the native species R. decussatus to different types of con-
taminants compared to the invasive clam (R. philippinarum). When contaminated, bivalves
may also increase the activity of glutathione S-transferase (GSTs), a group of enzymes
involved in detoxification [69–71]. However, in the present study, clams exposed to both
contaminants showed a slight decrease (R. philippinarum) and unaltered (R. decussatus)
activity of GSTs, which could indicate that this group of enzymes was not involved in the
biotransformation of the tested contaminants into less toxic substances.

Acetylcholinesterase (AChE) is an important enzyme in the neural system, catalyzing
the hydrolysis of the neurotransmitter acetylcholine [72]. The inhibition of this enzyme
has been recognized as a biological marker of different contaminants such as metals and
NPs [47,52,67,73–77]. However, there is also evidence of its increases in marine organisms,
such as in Perna viridis in the presence of arsenic, lead, and cadmium, and in R. decussatus
and R. philippinarum in the presence of terbium combined with CNTs [49,78–80]. The
results obtained are in agreement with Liu et al. [80], who reported an increase in AChE in
Ruditapes philippinarum exposed to Hg. Bainy et al. [78] suggested that the increase could
be due to a new enzyme synthesis after being initially inhibited, and Romani et al. [81]
proposed that there might be an enhancement of the formation of the enzyme–substrate
complex increasing the activity of AChE. The effects of the increase in the synthesis of AChE
following CNTs exposure combined with the rare earth element Tb were also described
by Sturla Lompré et al. [49] not only in R. philippinarum but also in R. decussatus. On the
contrary, in the present study, only in R. philippinarum, which resulted in the most sensitive
species, AChE activity increased when exposed to both CNTs and Cr, probably due to
the interaction of both contaminants with the AChE-substrate complex. In the case of R.
decussatus, no changes in AChE were observed, reinforcing the tolerance of this species to
the tested pollutants.

5. Conclusions

This study demonstrates different Cr content between species, with higher metal
accumulation in R. decussatus compared to R. philippinarum. However, biological responses
were mostly detected in R. philippinarum, with R. decussatus being the most tolerant species.
Moreover, the interaction between CNTs and Cr seems to have no effect in terms of an-
tioxidant enzyme activities and neuro status. Nevertheless, synergistic effects may have
changed the metabolic capacity of clams. Bivalves play key function and economic roles in
the coastal environment, and assessing mechanisms behind specie’s responses to mixtures
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of pollutants appears paramount for sustaining marine biodiversity. Moreover, while both
clams were tolerant to both contaminants at used concentrations, they showed a relevant
accumulation capacity, which, in turn, may suggest a possible contaminant transfer to
secondary consumers, including humans.
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