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Abstract: Photodetectors based on vertical multi-walled carbon nanotube (MWCNT) film-Si hetero-
junctions are realized by growing MWCNTs on n-type Si substrates with a top surface covered by
Si3N4 layers. Spatially resolved photocurrent measurements reveal that higher photo detection is
achieved in regions with thinner MWCNT film, where nearly 100% external quantum efficiency is
achieved. Hence, we propose a simple method based on the use of scotch tape with which to tune the
thickness and density of as-grown MWCNT film and enhance device photo-response.

Keywords: carbon nanotubes; heterostructure; silicon heterostructure; photodetector; photodiode;
photoconductivity; quantum efficiency

1. Introduction

Photodetectors are devices that are able to convert an incoming optical signal into
an electrical signal. They are widely used in our society, from in the automotive indus-
try to biomedical and military applications. Cutting-edge devices try to achieve better
performance by combining classical semiconductors with low-dimensional materials [1–3].

Heterostructures formed by one-dimensional materials such as carbon nanotubes
(CNT) with silicon have gained more and more attention in recent years [4,5]. It is known
that the outstanding chemical, mechanical, and electrical properties of CNTs make them
suitable for many hybrid technological devices [6–13]. In particular, they are often used in
combination with traditional semiconductor substrates to realize improved optoelectronic
devices [14–19]. One way to realize such devices is by directly growing CNT above a
silicon substrate through chemical vapor deposition (CVD) [20,21]. The electrical contact
of CNT films with silicon generates a rectifying junction and, due to their high electrical
conductivity and optical transparency, the nanotubes work both as an antireflective layer
and conductive electrode for photo-charge collection [22–24].

In this study, we analyze the external quantum efficiency of silicon substrates covered
by multi-walled carbon nanotube (MWCNT) film grown by CVD. Firstly, the electrical
behavior of the device is tested in the dark and under a large-area light spot to characterize
the junction behavior. Since the light spot entirely covers the nanotube surface, the obtained
photocurrents are related to the position-averaged response of the detector. We then check
how the photo-response of the device changed as a function of the light spot position.
Afterward, we look at the sample morphology to correlate the electrical photo-response of
the device with the nanotube distribution inside the MWCNT film. We observe that a lower
thickness of MWCNT film corresponds to a higher photo-response. Hence, we develop a
simple process to mechanically control the thickness of the CVD-grown CNT film. Using a
piece of tape (normally used for the exfoliation of two-dimensional materials), a fraction
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of the nanotubes is removed from the surface of the device. The efficiency maps acquired
after the MWCNT film-thinning process confirm the initial observation. The proposed
thinning process therefore offers an innovative and easy way to improve the efficiency of
MWCNT-Si photodetectors and thus represents a further step toward the exploitation of
carbon nanotubes in real-life applications.

The main advantages of an MWCNT layer over a transparent metal contact are the
higher transparency, electrical conductivity, and chemical stability.

2. Materials and Methods

The devices were realized starting from substrates purchased from MicroSens (Neuchâtel,
Switzerland). The substrates were composed of a 500 µm n-type Si layer (resistivity 1–5 Ωcm,
doping ~1015 cm−3) with the top surface covered by a nominal 140 nm thick Si3N4 layer
(deposited via plasma-enhanced chemical vapor deposition) and the bottom surface covered
by a 60 nm Pt-Ta layer. The substrate also presented two Pt-Ta pads of 1 mm2 each on the top
side to facilitate the electrical measurements. The region of the MWCNT growth was selected
by the deposition of a 3 nm thick Ni film on a 25 mm2 square region on the top surface
of the substrate using thermal evaporation. After the Ni deposition, the substrates were
taken into a chemical vapor deposition chamber that was pumped down to a pressure lower
than 10−5 Torr. Successively, the substrates were annealed at 750 ◦C to enable the formation
of MWCNTs. An NH3 gas flow at a rate of 100 sccm for 20 min was used to prevent Ni
nanocluster oxidation. The annealing process transformed the Ni film into nanoclusters [25],
which was necessary for the catalysis of the MWCNT growth. To allow the nanotube growth,
C2H2 was added to the ammonia flow in the reaction chamber with a flow rate of 20 sccm
for 10 min, retaining the same temperature as that of the annealing process. After MWCNT
growth, the samples were slowly cooled down to room temperature.

For the electrical characterization, the devices were placed into a sample holder that
allowed precise movements in the horizontal plane. The light coming from different LEDs
(Ocean Optics, Ostfildern, Germany; with wavelengths: 380, 395, 470, 518, 590, and 640 nm)
was directed above the surface of each sample using an optical fiber. It was possible to
control the diameter of the light spot above the device by simply changing the distance
between the optical fiber and the device surface. Independently of the wavelength of the
LED radiation, the resulting light spot could be made as large as the MWCNT film to obtain
the average photocurrent of the detector or made to have a minimum diameter of 1 mm to
collect the photo-efficiency map.

Using a Keithley 236 source measure unit, we studied the current flowing between one
of the top pads and the back of the devices. Firstly, a repeated series of electrical stresses
was applied to a device until it showed reproducible behavior. The electrical stresses
thinned the nitride layer below the nanotubes, allowing the formation of a metal–insulator–
semiconductor (MIS) junction with the silicon nitride and the n-doped silicon. It is also
assumed that an ohmic junction was formed on the back [26,27].

After electrical stabilization, the I–V characteristics of the device were acquired both
in the dark and under a large light spot illumination. This initial characterization was
followed by a series of measurements to obtain photo detection efficiency maps. All of the
device’s surface was scanned by the small light spot, and the current was measured as a
function of the spot position while a voltage (Vph) was applied between the top pad and the
back of the device (Figure 1e). The photocurrent Iph as a function of the light spot position
was then calculated as Iph = Ilight − Idark (where Ilight is the current under illumination and
Idark is the current in the dark) and converted into quantum efficiency (QE) maps (through
the relation QE = (Iphhc)/ePλ where P is the LED power and λ is the light wavelength).
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linear behavior of the photocurrent in the Fowler–Nordheim plot in Figure 2b 
demonstrates that this increase was due to the tunneling of the photocharges through the 
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collection of photocharge is reached. After this point, the current does not grow further, 
and a plateau is reached. 

Figure 1. MWCNT film-thinning process: (a) device with pristine MWCNT film, (b) scotch tape
adhered to half area of the device, and (c) tape peeled off from the device. (d) The thickness of
the MWCNT film along the lines in (c). (e) The layout of the device and the setup used for the
photo-response characterization as a function of the light spot position.

We developed a procedure to reduce the density and thickness of the MWCNT film on
selected areas. This procedure consisted of putting a piece of tape (normally used for 2D
material exfoliation) above a portion of the device and then gently pressing it using a cotton
swab. Part of the nanotube remained attached to the tape, and the removal of it left part of
the device with a thinner MWCNT film (Figure 1a–c). Using a profilometer (Veeco, Tucson,
AZ., USA; Dektak 6M), we measured the thicknesses of the two parts of the MWCNT film.
The profiles taken along two lines, shown in Figure 1c, are reported in Figure 1d.

The morphologies of the MWCNT films of the devices before and after the removal
process were analyzed using a field emission scanning electron microscope (SEM, Zeiss
Leo 1530) at an accelerating voltage of 5 kV.

3. Results and Discussion

Figure 2a shows the I-V characteristic taken from one of the devices in the dark and
under the light of a 380 nm LED. The dark curve shows that the device had a rectifying
behavior, with an on/off ratio of 20 at ± 4V. The blue curve shows that the reverse current
below −6 V started to increase exponentially when the device was under illumination. The
linear behavior of the photocurrent in the Fowler–Nordheim plot in Figure 2b demonstrates
that this increase was due to the tunneling of the photocharges through the triangular
barrier of the MIS structure constituted by the MWCNT film, the silicon nitride, and the
n-type silicon, as reported in our previous works [14,27]. The increasing reverse bias
improves the separation and collection of photocharges, resulting in an increase in the
current. This increase stops when an equilibrium between the generation and collection of
photocharge is reached. After this point, the current does not grow further, and a plateau
is reached.
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Figure 2. (a) I–V characteristic of the device in the dark and under illumination by a 380 nm LED. 
Vph is the voltage used to estimate the photocurrent. (b) Fowler–Nordheim plot of the blue curve 
in (a). (c) Band structure of the MIS junction formed between the nanotubes, the silicon nitride, 
and the n-doped silicon at equilibrium, forward, and reverse bias. In the reverse bias condition, 
the photogenerated holes inside the silicon can tunnel through the triangular-shaped barrier of the 
silicon nitride, giving rise to a photocurrent. 

We chose a value of VPh in the plateau region in reverse bias (Figure 2a) to obtain the 
quantum efficiency map. Figure 3a shows the efficiency map obtained from a device with 
a pristine MWCNT film. It is possible to see that the photo-response is different from zero 
only when the light spot is focused on the MWCNT film area. The efficiency of the device 
was almost constant along the MWCNT film, but along the top and bottom edges, it 
showed a higher response. To understand this behavior, we looked at the CNT film with 
a scanning electron microscope. Figure 3b shows the top-right corner of the MWCNT film. 
It can be observed that the film thickness on the upper edge slowly decreased until no 
nanotubes were present, while on the right edge, the thickness rapidly changed to zero. 
Comparing the map with the SEM images, it is clear that the regions with higher QE are 
associated with the regions with thinner MWCNT film. 
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Figure 2. (a) I–V characteristic of the device in the dark and under illumination by a 380 nm LED.
Vph is the voltage used to estimate the photocurrent. (b) Fowler–Nordheim plot of the blue curve in
(a). (c) Band structure of the MIS junction formed between the nanotubes, the silicon nitride, and
the n-doped silicon at equilibrium, forward, and reverse bias. In the reverse bias condition, the
photogenerated holes inside the silicon can tunnel through the triangular-shaped barrier of the silicon
nitride, giving rise to a photocurrent.

We chose a value of VPh in the plateau region in reverse bias (Figure 2a) to obtain
the quantum efficiency map. Figure 3a shows the efficiency map obtained from a device
with a pristine MWCNT film. It is possible to see that the photo-response is different from
zero only when the light spot is focused on the MWCNT film area. The efficiency of the
device was almost constant along the MWCNT film, but along the top and bottom edges, it
showed a higher response. To understand this behavior, we looked at the CNT film with a
scanning electron microscope. Figure 3b shows the top-right corner of the MWCNT film.
It can be observed that the film thickness on the upper edge slowly decreased until no
nanotubes were present, while on the right edge, the thickness rapidly changed to zero.
Comparing the map with the SEM images, it is clear that the regions with higher QE are
associated with the regions with thinner MWCNT film.
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Figure 3. (a) Quantum efficiency map of a device (with pristine MWCNT film) that shows efficiency
inhomogeneities across its surfaces. The device presents an average QE of 30%, but near the top
and bottom edges, the QE increases to nearly 100%. (b) SEM images of the top-right corner of the
MWCNT film. The film presents two types of edges: the top edge, which decreases gradually, and
the right edge, which is sharper and akin to a step.
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To double-check the anti-correlation between film thickness and photo-response, we
realized a second device wherein the film was mechanically thinned after CVD growth [28].
Figure 4a shows a SEM image of the MWCNT film after the thinning process. The nanotubes
on the right are longer than the ones on the left. Figure 4b shows an optical image of the
device after the thinning process. As reported in Figure 1d, the thickness of the MWCNT
film was thinned by 80% of its initial value. Figure 4c,d compare the QE maps obtained
before and after the thinning process. The QE was initially constant along all the MWCNT
film area; however, after the thinning process, the efficiency in the thinner portion of the
film showed a significant increase.
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Figure 4. (a) SEM image of the device tilted by a 15-degree angle from the surface plane after the
thinning process. (b) Optical image of the device after the thinning process. Quantum efficiency map
of the device before (c) and after (d) MWCNT removal. The black lines mark the real dimensions of
the substrate and metallic pads. Both maps were acquired using the right pad as an electrical contact.

Using different LEDs, we evaluated the quantum efficiency of the two regions for
different wavelengths. Figure 5a shows that the increment of efficiency was similar for the
different wavelengths.

Figure 5b shows a comparison of the I-V curves taken using the left (L) or right (R)
metallic pad as the electric contact in the three different conditions: dark and light focused
on the pristine or thinned film. Looking at the dark currents of the device (black and grey
dotted lines), it can be observed that for forward bias, the current was almost an order of
magnitude greater when the contact was made on the right pad (the one on the pristine
film). This could have been due to a lower contact resistance between the pristine MWCNT
film and the metallic pads that directly affected the series resistance of the junction. Once
illuminated, the response of the device changed accordingly with the contact used and the
position of the spot above the film. Using the same power for all the measurements, the
currents measured from the left pad (indicated by “L”) were always smaller than those
measured from the right pads (indicated by “R”). Independently from the pad used for the
measurements, it can be observed that the current plateau in reverse bias was reached at a
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lower bias when the spot was located above the pristine film, but its height was always
lower than that reached when the spot was above the thinned film. It is therefore possible
to recognize two regimes: one at a lower reverse bias where the photo-response is higher in
the pristine film and one at a higher reverse bias where the thinned film is more efficient.
To explain this phenomenon, it is necessary to consider how the photocurrent is generated:
Firstly, the light must penetrate inside the device to generate electron-hole (e-h) pairs in the
Si substrate; then, the e-h pairs need to be separated and collected through the electrical
contacts to measure a photocurrent. Although the reduced thickness of the film enhances
the photon flux to the Si substrate (and consequently the photocharge generation), on the
other hand, the lower density of the nanotubes makes the process of photocharge collection
less efficient.
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Figure 5. (a) Average QE of the device at the plateau and associated standard deviation (error bars)
as a function of the wavelength. Red dots represent the values of the QE obtained on the pristine
portion of the film, while the blue dots represent the values from the thinned portion. (b) Comparison
of the I-V curves acquired using the left or right pads as electric contacts (indicated by the letters L
and R), in the dark and under the light of a 650 nm laser at 250 µW (with light spot focused on the
thinned or pristine film).

The nanotubes constitute a semi-transparent metallic layer that work both as an
antireflective layer and as a charge-collection film [29]. The thickness and density of the
nanotubes need to be controlled to improve device performance.

The thinning process that we propose offers a very simple and cheap way to reduce
the thickness and density of an MWCNT film directly grown on a substrate. The adhesive
tape removes the highest nanotubes that shade the substrate, leaving only the shorter
nanotubes. Thus, a higher number of photons can reach the silicon substrate and increase
the quantum efficiency of the device. Other factors must be considered; the thinning
process also increases the resistance of the film, increasing the voltage required to reach a
plateau. Repeated thinning processes can also remove all the nanotubes from the substrate,
nullifying the response of the device.

4. Conclusions

Photodetectors were realized by growing MWCNTs on the surface of an n-doped
silicon substrate with surfaces covered by Si3N4 layers. The photo-responses of the devices
were studied across their active surfaces to find possible differences in the local QE.

Comparing the results from the electrical measurements to the morphology of the
MWCNT film, it was observed that a higher photo-response was associated with a lower
nanotube film thickness. This observation was confirmed by devices where a portion of
the film was thinned through a scotch tape exfoliation-like process. An efficiency map
evidenced that a thinner MWCNT film resulted in a higher photocurrent.

The findings of this work indicate that MWCNT film acts both as a barrier that prevents
light from reaching the substrate and as a conductive electrode for photo-charge collection.
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To attain the best device for photocurrent generation, the MWCNT film must be as large as
possible to increase the active surface area and with a density of nanotubes that guarantees
the electrical interconnection of the film and to minimize the dispersion of incoming light.
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