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Abstract: With the rapid prosperity of the Internet of things, intelligent human–machine interaction and
health monitoring are becoming the focus of attention. Wireless sensing systems, especially self-powered
sensing systems that can work continuously and sustainably for a long time without an external power
supply have been successfully explored and developed. Yet, the system integrated by energy-harvester
needs to be exposed to a specific energy source to drive the work, which provides limited application
scenarios, low stability, and poor continuity. Integrating the energy storage unit and sensing unit into a
single system may provide efficient ways to solve these above problems, promoting potential applications
in portable and wearable electronics. In this review, we focus on recent advances in energy-storage-
device-integrated sensing systems for wearable electronics, including tactile sensors, temperature sensors,
chemical and biological sensors, and multifunctional sensing systems, because of their universal utilization
in the next generation of smart personal electronics. Finally, the future perspectives of energy-storage-
device-integrated sensing systems are discussed.

Keywords: sensing; energy storage; integrated system

1. Introduction

With the mature development of electronic technology, the demand for smart sensing
systems is increasing rapidly, especially toward real-time wireless monitoring of changes in
the human body and environment by smartphones or watches [1–4]. In past decades, nu-
merous sensors that detect various physical and chemical information have been widely de-
veloped [5] including tactile sensors [6–9], temperature, sensors [10–12], image sensors [2],
humidity sensors [13], and chemical and biological sensors [14–16]. These well-developed
sensors show the advantages of thinness, a small volume, light weight, and flexibility, and
provide promising platforms for flexible and portable intelligent sensing systems. However,
they still need an external power supply, which greatly limits their practical application.

To solve the above problem, self-powered sensing systems without external power sup-
plies, including energy-harvester-integrated systems and energy-storage-device-integrated
systems, are regarded as effective methods and have received great attention. In energy-
harvester-integrated systems, various forms of energy can be converted into electrical
energy in a specific way to drive the sensors, such as the triboelectric and piezoelec-
tric effects for mechanical energy [17,18], the photovoltaic effect for solar energy [19],
and the thermoelectric and pyroelectric effects for thermal energy [20]. However, the
energy-harvesters usually need to be exposed to specific energy sources to work, so their
application scenarios are greatly limited, and the low energy conversion rate leads to poor
stability and continuity. In contrast, sensing systems integrated with energy-storage devices
can greatly avoid these drawbacks, and will work directly and effectively. Generally speak-
ing, energy-storage devices come in a variety of types, such as batteries (lithium-based
batteries [21–24], zinc-based batteries [25,26], and emerging biofuel cells [27]), supercapaci-
tors [28–30], and hybrid devices [31,32]. In recent years, the flexible energy-storage devices
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that are compatible with sensor components have been developed with an increasingly
mature manufacturing process, which provides more possibilities for wearable electronics
in practical meaning. Energy-storage-device-integrated sensing systems further connected
with the energy-harvesters, especially, will dominate the main trend of wearable and flexi-
ble electronics in the future [2,4,27]. In the past, there were some overviews on self-powered
sensing systems, and the energy-storage devices integrated sensing systems were briefly de-
scribed as a small part of them, but few overviews focused on them. Therefore, an overview
of the energy-storage-device-integrated sensing systems is provided here. We summarize
the recent achievements of four main types of energy-storage-device-integrated sensing
systems, including tactile, temperature, chemical and biological, and multifunctional types,
considering their irreplaceable position in the fields of human health monitoring, intelligent
robots, human–machine interaction, and so on (Figure 1). At last, the challenges and
perspectives of wearable electronics are also discussed.
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2020, Biosensors and Electronics.

2. Energy-Storage-Device-Integrated Sensing Systems

Table 1 summarizes the characteristics of energy-storage devices and integration
modes for various systems in this review. Next, we will introduce different types of energy-
storage-device-integrated sensing systems from the functional perspective, and summarize
their advantages and disadvantages, as well as future optimization direction in this part.
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Table 1. Comparison of energy-storage devices and their integration modes for sensing systems.

Characteristics Integration
Mode Devices Mechanism

Characteristics

Positives Negatives Positives Negatives

Excellent
sensing and

energy-
storage

performance

Low
integration

degree

Component
integration Energy-

storage
devices for

sensing
systems

Supercapacitor

Electric
double-layer
capacitance
or pseudoca-

pacitance

High power,
long cycle life

Low energy
density

Battery
Electrochemical

redox
reaction

High energy Low power
density

High
integration

degree

Sacrifice
sensing and

energy-
storage

performance

Function
integration

Hybrid
energy-
storage
device

Hybrid
charge–
storage

mechanism

High energy density and
high-power density

Note: Component integration mode means that energy storage device and sensors are integrated as independent
units; function integration mode means that the same device has both sensing and energy-storage functions.

2.1. Tactile Type

Tactile sensors convert tactile changes (friction, pressure, stress, etc.) into electrical
signal changes through certain principles. According to the transduction mechanisms, they
can be divided into resistive, capacitive, piezoelectric, and triboelectric types. In recent
years, the materials, manufacturing approaches, performance optimization strategies of
sensors, and their applications in the fields of human–machine interaction, electronic skin,
and personal health monitoring have been widely studied [36–39]. In this section, we
will cover the recent progress of energy-storage-device-integrated tactile sensing systems
according to the transduction mechanisms.

Resistive Tactile Sensors: Resistive tactile sensors convert the applied tactile input into
resistance variation based on energy band change of semiconductor or percolation theory,
tunneling effect, or interface contact resistance change of conductor, which are widely used,
due to their simple manufacturing process, high sensitivity, stable performance, and wide
detection range [37,40]. Various conductive materials are usually applied in the resistive
tactile sensors, such as carbon materials (carbon nanotubes (CNTs), graphene, carbon black,
etc.), conductive polymers, low-dimensional metallized nanomaterials, and so on, which
are often compounded with elastomers (polydimethylsiloxane (PDMS), polyurethane (PU),
etc.), followed by microstructure engineering to improve performance [36–41].

To realize the integration of resistive tactile sensors and energy-storage devices,
the types of materials and the component manufacturing methods need to be consid-
ered. In the early stage, researchers have tried to explore and develop multipurpose
materials that can be used in both the tactile sensing and energy storage fields. In fact,
many kinds of materials can be used for both tactile sensing and energy storage due
to their excellent conductivity and special microstructure, including hydrogel [42,43],
polypyrrole/β-FeOOH/nylon strip [44], reduced graphene oxide/polyaniline wrapped
carbonized sponge [45], phosphorene-incorporated flexible 3D porous graphene [46], and
so on. For example, Wu et al. [42] developed a kind of organohydrogel with adhesiveness
and a high robustness for strain sensor (Figure 2a(i)), battery (Figure 2a(ii)), and super-
capacitor (Figure 2a(iii)) manufacturing. For the strain sensor, the tensile strain caused
changes in the cross-sectional area and length of the organohydrogel, and thus induced
a resistance change. By combination of the organohydrogel and a commercial Bluetooth
transmitter (Figure 2a(iv)), it could be used to wirelessly measure motions with high sensi-
tivity (gauge factor: 8.82), a fast response, and excellent reversibility. After introducing Cu2+

and Zn2+ into the organohydrogel, it could be directly used as the electrolyte of the battery.
The as-assembled battery exhibited an open circuit voltage of 1.02 V and remained stable
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for 144 h. Additionally, the organohydrogel compounded polyaniline was used to prepare
a sandwich supercapacitor, showing a capacitance of 14.3 mF cm−2. However, the research
of these above studied materials in energy-storage devices and sensors were separate and
independent, so there is a need to achieve integration of functions (or devices) to approach
the actual application.

Later, an integrated system containing a solar cell as the energy-harvester, an array
of micro-supercapacitors, and a strain sensor was successfully developed by Ha et al. [47]
on stretchable substrate (Figure 2b), which realized real-time pulse monitoring and bend-
ing motions of human joints. It can efficiently avoid the cumbersome external circuit in
Figure 2a(iv). Unfortunately, the tedious manufacturing process (especially the manu-
facture of an array of supercapacitors) greatly limited its practical application. Another
simple study for the integrated system was carried out by Han et al. [48] by using periodic
interleaving MXene/black phosphorus (MXene/BP) multilayer films (Figure 2c). The
periodic insertion of BP expanded the layer spacing of MXene flakes, which accelerated ion
transport, provided facile access to Ti atoms, and resulted in a high deformability, which not
only provided high electrochemical activity for the micro-supercapacitor, but also realized
various human signal monitoring (limb bending and pulse) as a pressure sensor. The
resultant integrated system exhibited a high energy-storage capacity (specific capacitance:
896.87 F cm–3 at 0.69 A cm–3) and an excellent pressure sensing performance (sensitivity:
77.61 kPa−1; response time: 10.9 ms). However, the preparation of MXene/BP through peri-
odic alternative filtration of MXene and BP was not conducive to large-scale production. In
recent years, the printing techniques applicable to various flexible substrates have attracted
extensive attention, and provided alternatives for manufacturing various flexible electronic
components and integrated systems [49–52]. For example, Wu et al. developed printable
multitasking MXene inks for current collector, energy storage, and sensing materials [53].
The MXene inks were directly used in supercapacitor manufacturing, which exhibited an
ultrahigh areal capacitance of 1.1 F cm−2. The MXene-based lithium titanate and lithium
iron phosphate inks were used in micro-battery manufacturing, and offered an excellent
areal energy density of 154 µWh cm−2. A pressure sensor using MXene ink–polyvinyl
alcohol hydrogel as piezoresistive layer was integrated with a micro-battery and a solar
cell to realize self-powered pressure sensing (Figure 2d). However, the sensor, composed
of a piezoresistive layer without microstructure and inter-digitated electrodes [54], has a
relatively weak sensing performance compared to those with microstructures. In addition,
breathability and comfort are equally important for wearable electronics. Wang et al. [55]
manufactured a pressure sensing system with a coplanar integrated structure similar to the
above by utilizing an all-fiber structure covered with two-dimensional conductive MOF ma-
terials (Figure 2e). Benefiting from the shell-core structure of active materials and all-fiber
structure of devices, this system presented high sensitivity (30 kPa−1), outstanding capaci-
tance (264.8 mF cm−2), good air permeability, and scalability. In addition, the integrated
devices built on the fabrics would have better breathability and comfort than other common
flexible substrates, and there are precedents for building energy-storage devices [56–59]
and tactile sensors [59–62] on our daily fabrics. For example, an all-fabric integrated system
with a strain sensor and a supercapacitor has been developed (Figure 2f) [63], in which
MWCNT/MnO3 and the three-dimensional structure of fabrics endowed a supercapacitor
with excellent energy storage and mechanical properties, as well as the strain sensor with
excellent sensitivity and cycling performance.
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sensor prototypes. Reprinted with permission from Ref. [42]. Copyright 2022, Advanced Functional
Materials. (b) Optical image and schematic illustration of the biaxially stretchable integrated system.
Reprinted with permission from Ref. [47]. Copyright 2018, Nano Energy. (c) Schematic illustration
of the MXene/BP-based integrated sensing system. Reprinted with permission from Ref. [48].
Copyright 2021, Advanced Materials. (d) Schematic diagram of integrated system prepared by
printing techniques and its current change in response to the bending of a finger, the bending of an
elbow, and pressing vertically. Reprinted with permission from Ref. [53]. Copyright 2021, Advanced
Materials. (e) Manufacturing strategy of the all-fiber supercapacitor-integrated pressure sensing
system. Reprinted with permission from Ref. [55]. Copyright 2022, Journal of Materials Chemistry A.
(f) Structure of textile-integrated system and conceptual diagram sewn onto clothes. Reprinted with
permission from Ref. [63]. Copyright 2019, ACS Nano.

Capacitive Tactile Sensors: The working principle of capacitive tactile sensors mainly
depends on the applied tactile input to change the distance between electrodes or the
electrode area, resulting in capacitance variation. Compared to the resistive type, capac-
itive sensors consume less energy and are insensitive to temperature and humidity, but
exhibit relatively low linear dynamic range and are sensitive to electromagnetic interfer-
ence [64]. Appropriate electrode materials and dielectric layer materials are essential for
capacitive sensors, and the introduction of microstructure can further improve sensing per-
formance [38,64,65]. In addition, the field effect transistor (FET) structure can self-amplify
the piezo-capacitive response [66]. Capacitive tactile sensors are inherently capable of
storing energy, but it is difficult for a single device to perform well in sensing and energy
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storage at the same time. These dual-function capacitors are relatively few, the key is to
find a balance.

The abundant pore structures of graphene aerogel (GA) is conducive to the entry of
electrolytes and can realize multi-dimensional electron transport, which is widely used
in capacitor energy storage [67–69]. It is also applied as a resistive tactile sensor due to
its excellent elasticity [6,70,71]. Based on GA material, Zhao et al. [70] reported an elastic
supercapacitor using CoMn2O4/rGO as the positive electrode and N, B, and S co-doped
elastic GA as the negative electrode, which exhibited a high energy density (53.33 W h Kg−1)
at a power density of 400 W Kg−1 (Figure 3a). The elastic GA endowed the supercapacitor
with pressure sensing performance (0.1–10 N). The applied pressure caused the change of
an internal electric field, which was further converted into self-discharge current variation
(Figure 3b). Oriented CNTs arrays are another excellent energy storage and tactile sensing
material [72,73]. A kind of compressible CNT array (CCNA) with a gradually crosslinking
structure was reported by Peng et al. [74] (Figure 3c), which exhibited highly reversible
compressibility of more than 100,000 cycles. A single supercapacitor based on CCNA could
function as both an energy storage device and pressure sensor; the capacitance changed
steadily with the electrode thickness when external pressure was applied. An integrated
device consisting of four supercapacitors in series as power supply and a middle capacitive
sensing unit is shown in Figure 3d i, which could effectively sense different pressure
changes. However, the harsh preparation condition of CCNA limited its application. To
avoid the weak and poor mechanical properties (especially tensile deformation) by GA- and
CCNA-based devices, fibers as structural support for loading active materials have attracted
great interest and proved to be effective. For example, Dahiya et al. [75] used Lycra fabric
as a substrate for PEDOT:PSS/MnOx/PEDOT:PSS-based supercapacitor fabrication (SPMP-
SCs, Figure 3e). The SPMP-SCs encapsulated by Ecoflex realized strain monitoring based on
the disconnection mechanism with a sensitivity of −0.4% and a high capacitance retention
above 90% after 1000 cycles of 40% stretching. As shown in Figure 3f, an SPMP-SC was used
for capturing the volumetric expansion of the mannequin’s chest, and could also stably
supply energy for an LED during this period. In addition, fiber materials are also suitable
for the manufacture of one-dimensional stretchable fibrous supercapacitors that are more
flexible and easier to integrate with clothes. A kind of stretchable fibrous supercapacitor
based on CNTs/MXene-TPU hybrid fibers was reported by Wang et al. [76] (Figure 3g),
which exhibited high energy density (1.16 mWh cm−3) comparable to the commercial
supercapacitors due to the addition of MXene and the porous structure of hybrid fibers.
Meanwhile, it also possessed strain sensing performance because of introduction of a TPU
elastomer (Figure 3h). Thus, it can be seen that fibrous substrates have great potential in
stretchable dual-function supercapacitors manufacturing due to the advantages of porosity,
good ductility, low cost, and easy functionalization.

It is not difficult to see that compared with traditional capacitive sensors [7,77–79],
the sensing performance of these dual-function capacitors is relatively poor. Most of them
can only monitor strong signals such as bending and stretching, and can do nothing for
tiny physiological signals such as pulse.

Piezoelectric Tactile Sensors: Piezoelectric materials can produce a polarization charge
proportional to the applied pressure on the surface; this unique energy transduction enables
their applications in fields of energy harvesting and tactile sensing [64,80]. Many inorganic
and organic polymer piezoelectric materials, such as ZnO [81], lead zirconate titanate
(PZT) [7,18], and polyvinylidene fluoride (PVDF) [81,82] have been used for self-powered
tactile sensors with high sensitivity and fast response time. Most sensors based on the
piezoelectric effect can only be used for dynamic pressure measurement. In addition, owing
to their unstable output power, external energy storage systems are still required to realize
wireless sensing.
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2018, Journal of Power Sources. (c) CCNAs-based supercapacitors function as a strain sensor before
and after compressing. (d) i. Schematic diagram and photographs of the integration of CCNAs-based
supercapacitors. ii. Different degrees of pressure being applied on the integrated system to light up
LED. iii. Relative capacitance responses obtained from the CCNAs-based supercapacitors during
the compressing process. Reprinted with permission from Ref. [74]. Copyright 2020, Advanced of
Materials. (e) Schematic illustration of SPMP-SCs. (f) Dual function of the SPMP-SC (i, ii) as an
intrinsic strain sensor for monitoring the chest expansion during ventilation. (iii, iv) Constant power
out of the SC during ventilation (stretching) by lighting an LED. Reprinted with permission from
Ref. [75]. Copyright 2021, ACS Applied Materials & Interfaces. (g) Preparation and (h) Capacitance
changes corresponding to actions of fibrous supercapacitors. Reprinted with permission from Ref. [76].
Copyright 2021, Electrochimica Acta.

Therefore, piezoelectric sensors integrated with energy storage systems are extremely
beneficial for their practical application. As shown in Figure 4a [83], coupling piezoelectric
materials into supercapacitors to form piezoelectric supercapacitors (PSCs) can not only
harvest and store energy, but also realize pressure monitoring. The polarization charge
generated by piezoelectric material produces potential difference between the positive
and negative electrodes, driving the anions and cations in the electrolyte to move to a
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new balance, which is similar to the charging process of a supercapacitor, so as to realize
energy storage. PSCs-based tactile sensors with PVDF as piezoelectric materials, paper
sheets soaked with PEDOT: PSS as positive and negative electrodes were developed by
Cao et al. [84] as shown in Figure 4b, which simultaneously realized static/dynamic
pressure monitoring. The developed PSC-based sensor could charge itself up to 150 mV
per unit in 300 s by tapping. Its static detection ranged from 0.5 to 5 N·cm−2 with a
sensitivity of 2.47 nF N cm−2 and a detection limit of 0.1 N·cm−2 (Figure 4c), while dynamic
detection ranged from 1 to 5 N·cm−2 with a sensitivity of 15.5 mV cm2·N−1 and a detection
limit of 0.4 N·cm−2. In addition, storing mechanical energy in batteries has also proven
to be effective. A novel flexible self-charging power cell (SCPC) was prepared based
on electrospinning fluoride-trifluoro ethylene (P(VDF-TrFE)) porous membranes as the
piezoelectric separator and supporting layer of the electrode [85] (Figure 4d). The SCPC
sealed in a flexible case could harvest and store the tiny movement energy of human body
under low frequency and low pressure, which charged itself up to a storage capacity of
0.092 µA h in 330 s by compression (6 N,1 HZ) (Figure 4e(i)). The maximum charging
voltage was positively correlated with pressure and frequency (Figure 4e(ii,iii)). This
type of energy harvest-storage system based on the piezoelectric effect has been widely
studied [83]. Although most of them can realize sensing, energy harvest, and storage, their
sensing performance (sensitivity, detection range and limit, response time) is relatively low
compared to traditional piezoelectric pressure sensors.
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Energy. (b) SEM diagram of the tactile sensors based on PSCs. (c) Relationship between capacitance
and externally applied static force. Reprinted with permission from Ref. [84]. Copyright 2019, Nano
Energy. (d) Schematic of the SCPCs. The self-charging performance of flexible SCPC: (e) i. periodic
external force; ii. different force strengths; iii. force frequencies. Reprinted with permission from
Ref. [85]. Copyright 2022, Nano Energy.

Triboelectric tactile sensors: Triboelectric nanogenerators (TNGs) are also extensively
used in self-powered tactile sensing systems by harvesting mechanical energy since the
first prototype was reported in 2012 [17,86,87]. For instance, Chen et al. [33] developed a
textile triboelectric sensor and further integrated it with a Bluetooth transmission module,
realizing real-time wireless external pressure monitoring through the cellphone applica-
tion. TNGs-based electronic skin [88], fiber [89], visualized flexible film [90], and smart
gloves [91] have also been developed. Despite this, TNGs have the defect of unstable
output power, so it will be effective to integrate them with an energy storage system.

In addition to being directly connected to energy-storage devices, triboelectric ma-
terials can also be coupled into supercapacitors like PSCs. A triboelectric supercapacitor
(TSC)-based pressure sensor was developed by Wang et al. [92] (Figure 5a), which enabled
the detection of both static and dynamic pressures, Figure 5b shows the relationship of
capacitance and static pressure. Figure 5c illustrates the self-charging performance of a
TSC under different periodic external forces (2 HZ). TSCs in series could supply power
for electronic products such as LEDs and electronic watches, and their voltage is kept
constant for a long time in the case of an open circuit. Wang et al. [93] also reported another
uncoupled and highly integrated multifunctional coaxial energy fiber that consists of a fiber
supercapacitor and a TNG fiber, as shown in Figure 5d. The fiber supercapacitor presented
a good specific length capacitance density of 13.42 mF cm−1 and remained unchanged after
1000 cycles of bending, which proved its excellent bendability. This TNG fiber provided
a maximum power of 2.5 µW in single-electrode mode, realizing continuous charging
for capacitors to drive the watch or temperature and humidity sensor (Figure 5e). In the
contact-separation mode, it exhibited a pressure sensing sensitivity of 1.003 V·kPa−1 and
was used for motion monitoring and tactile interface (Figure 5f). Unfortunately, TNG fiber
power for the fiber supercapacitor has not been shown in this study. We suspect that the
power of the TNG was too small and can only supply power for small capacity capacitors
(10, 33, 100 uF).

Although most energy-harvester-integrated systems based on piezoelectric and tri-
boelectric materials have realized continuous wireless monitoring, the energy conversion
efficiency is still low and unstable. Therefore, the utilization of energy-storage devices is
extremely necessary. In addition, the stored electric energy can also be used to drive other
sensors, paving the way for multi-sensing function integrated systems.
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2.2. Temperature Type

There is a huge demand for sensors that can stably and continuously measure human
body or ambient temperature. The traditional rigid temperature detectors can only meet
some of the needs because of inflexibility, poor comfort, and low portability. Basically,
there are four main types of flexible temperature sensors: resistance temperature detec-
tors, thermocouple sensors, thermistor sensors, and thermochromic sensors [94–96]. Most
self-powered temperature sensors are manufactured according to the Seebeck effect, which
converts temperature into voltage signals and can be used for sensing and energy harvest-
ing [97–100]. In addition, the temperature sensors can be powered by harvesting other
forms of energy. However, these types powered by energy-harvesters are limited to specific
application scenarios, and energy-storage integrated temperature sensors can provide a
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wider range of applications. Therefore, several typical studies of the energy-storage-device-
integrated temperature sensors will be shown in the following section.

In addition to the simple integration of temperature sensor and energy storage
unit [101–104], some energy storage units can realize temperature sensing themselves [105,106].
For example, a Cu-Zn galvanic cell with both Ni2+-containing elastomers and Zn2+-
containing elastomers as solid electrolyte layers was developed by Wang [106] (Figure 6a),
which exhibited excellent temperature sensing performance in the range of 25–60 ◦C accord-
ing to the Arrhenius relationship between current density and temperature. As shown in
Figure 6b, it could be used to detect a temperature change of 0.3 ◦C by the palm contactless
approach. In addition, it could also be used as a pressure sensor due to the elasticity of the
electrolyte layer. Even though the studies mentioned above require external equipment to
collect and process data, which is far from the practical application of portable intelligent
temperature sensors, it is of great significance to develop and explore efficient ways for the
integration of data processing and transmission devices. As shown in Figure 6c, a sensing
system containing Bluetooth wireless signal transmission was developed for wound tem-
perature monitoring by Ma et al. [35]. Electronic components and a temperature sensor
were designed on the upper of the patch, and the lower layer was collagen–chitosan dermal
equivalent for skin regeneration. This patch featured flexibility, high accuracy (deviation
< 0.1 ◦C), reliability, and biocompatibility, but the only deficiency was that there was no
integrated and adaptive energy storage system.

In a separate study, a system for skin moisture and temperature wireless monitoring
was reported and shown in Figure 6d [107], in which the humidity and temperature sensing
layers were graphene/ZnIn2S4 and carbon CNT/SnO2, respectively. Although they have
designed a special jack to connect with the lithium battery and achieved wearability, the
huge volume and inflexibility of the energy storage device, data processing, and trans-
mission circuit greatly reduced its wearing comfort. In an earlier study, Arias et al. [108]
integrated various hard components that included a battery holder on one side of a single
Kapton polyimide patch, printed gold electrodes for electrocardiography (ECG) sensing,
and a printed NiO thermistor for temperature sensing on the other side, as shown in
Figure 6e. The thermistor exhibited a temperature coefficient of −5.84% K−1, a material
constant of 4330 K, and the sensing range covered the temperature range of human skin
(32–37 ◦C). This system was powered by a commercial button battery, which would involve
battery replacement and may cause environmental pollution and inconvenience. In this
regard, the intense integration of a rechargeable battery and flexible substrate will be very
promising. It is worth noting that the fabrication method of integrating hard and flexible
electrons in this system can be extended to other wearable sensing fields. Similarly, a
light-energy-harvested flexible wireless temperature-sensing patch (LTSP) for food cold
storage was manufactured on a polyimide film, and a liquid crystal display was also en-
gaged for the display of temperature-sensing data and micro-supercapacitor voltage [109]
(Figure 6f). The light energy was harvest by the solar cells and stored in a commercial
micro-supercapacitor (10 mF) through the energy management module, then supplied
power for the commercial temperature sensor and electronic components. In addition,
data could be read through near-field communication (NFC) or radiofrequency identifi-
cation (RFID). Systems that output data in multiple ways like this may further improve
the usability of wearable electronics. Unfortunately, LTSP was not suitable for human
body temperature measurement due to its large volume and low flexibility. Generally, the
energy-storage-device-integrated sensing systems used for human body detection should
have excellent resolution, and sometimes need to fit closely with human skin, which puts
forward higher requirements for the safety, flexibility, long-term stability, and comfort of
sensing and energy storage materials.
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2.3. Chemical and Biological Type

As people pay more attention to health, traditional diagnostic instruments are bulky and
expensive, which cannot meet the needs of personalized healthcare, telemedicine, and early
disease diagnosis in the future. Wearable chemical and biological sensors for different kinds of
biological and environmental indexes have been extensively applied [110,111]. Although the
use of energy-harvesters for power supply [112], wireless coil power supply [113], and colori-
metric analysis [114,115] has been proven to be effective, the chemical and biological sensing
systems with energy-storage devices facilitate wireless data transmission and collection, which
are essential for determination and alarm of dangerous chemical substances and prevention,
diagnosis, and treatment of diseases. In this part, we mainly summarize some energy-storage-
device-integrated sensing systems used for harmful gas monitoring and biochemical markers.

Gas sensors: The monitoring of harmful gases is of great significance to the protection
of the ecological environment. In addition, with the prevalence of COVID-19, the sensors
used to monitor exhaled gas are also very important for the prevention of respiratory
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diseases [116]. The integration of gas sensors with supercapacitors and energy-harvesters
has also been widely studied [117–123]. For instance, Bao et al. [119] seamlessly integrated
a solar cell, a rGO/CNT-based micro-supercapacitor, and a polypyrrole@rGO-based gas
sensor on a flexible substrate using a continuous centrifugal coating strategy (Figure 7a).
The supercapacitor exhibited an excellent volumetric capacitance (16.1 F cm−3) and a
volumetric energy density (1.43 mWh cm−3). The system provided excellent gas detection
performance toward NH3 and aniline.

Most self-powered gas sensors currently rely on the photovoltaic effect (PV), because UV
light can activate the gas sensing ability of many metal oxides, and PV gas sensors can truly
achieve the goal of zero power consumption for independent devices by harnessing ambient
energy [124,125]. Storing PV energy can reduce excessive dependence on external energy
sources. Antonio et al. [126] reported a perovskite (FMCPIB)-based device for selective detection
of NO2. Its structure is shown in Figure 7b; photo-excited electrons and holes generated by
FMCPIB were transferred to the FTO layer and the FMCPIB/carbon electrode contact interface,
respectively, and stored. That was the mechanism of energy storage function. Additionally,
the amine groups in FMCPB endowed it with a gas sensing capability. The results showed
that the device could detect particle per million (ppm) concentrations of NO2 (detection limit
with 1 V bias: 0.2 ppm) under light irradiation, and enable continuous operation for 1.7 h in
darkness due to its energy-storage feature (Figure 7c). It can be seen that PV-based devices are
very promising for both energy storage and gas sensing. The electrode potential involving the
gas reactant changes with the gas concentration. According to this principle, a battery type
gas sensor can be designed to reflect the detected gas concentration by its output voltage. So,
Ho et al. [127] developed a battery–sensor hybrid that could be used as both a power supply and
a gas sensor. The hybrid consists of carbon cloth deposited with zinc and Fe-Nx doped porous
carbon catalyst, respectively, as electrodes. The sensing mechanism originated from the changes
of electrode potential under varying NO2 concentrations (Figure 7d). The optimal sensitivity
can be obtained by controlling the output current to adapt to the monitoring of different gas
concentration ranges, such as 10 uA for 400–600 ppm, 10 or 100 uA for 600–800 ppm. In addition,
NO2 was finally converted into NH4

+, which meets the demands of green chemistry.
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(b) The schematic of perovskite-based device and its (c) dynamic current response under irradiation
and darkness. Reprinted with permission from Ref. [126]. Copyright 2020, Advanced Optical
Materials. (d) Key reactions and mechanisms of battery–sensor hybrid device. Reprinted with
permission from Ref. [127]. Copyright 2021, ACS Applied Materials & Interfaces.

Biosensors: Biosensors can minimally and non-invasively detect various biological media
(blood, sweat, urine, etc.) to obtain physiological information, such as blood glucose level,
pH, [Na+] and [K+] content, etc. As mobile devices become ubiquitous, wearable integrated
systems of energy-storage devices and biosensors provide a broad platform for personalized
healthcare and will release the pressure of clinical resources in the future [110,111,128]. Several
representative energy-storage devices integrated biosensing systems for sweat, interstitial fluid
(ISF), and blood detection will be summarized below.

Shen et al. [129] integrated multiple micro-supercapacitors and sensors for detect-
ing glucose, [Na+], and [K+] contents in human sweat on a single Poly (ethylene tereph-
thalate) (PET) substrate (Figure 8a). The NiCo2O4-based micro-supercapacitors exhib-
ited a high energy density of 0.64 µW cm−2 at the power density of 0.09 mW cm−2. Fur-
thermore, the integrated system displayed excellent sweat detection performance with
high sensitivities of 0.5 µA/µM for glucose, 0.031 nF/mM for [Na+], and
0.056 nF/mM for [K+]. In addition, it can be further integrated with wireless transmis-
sion technology, and realized with a real-time wireless detection of about 2 h though
connecting with a smartphone. However, when no sweat is produced, special switch
control is required to avoid invalid operation of the system. Yu et al. [130] reported
a novel flexible sweat-activated battery (FSAB) with graphene/Ni foam and a Mg
sheet as electrodes, respectively (Figure 8b), which provided a new idea to solve this
problem. Once sweat was generated, it would be absorbed and diffused immediately
by the bottom cotton layer of the battery, and the battery was then activated within
30 s. The FSAB exhibited a high energy capacity of 74.4 mA h and a power density
of and 16.3 mW cm−2, which can power 120 LEDs for 4 h. In addition, they further
developed a FSAB-integrated multiple sensing system for wireless and continuous
physiological monitoring, including exercising intensity, skin temperature, pulse rate,
and oxygen saturation in blood. However, these two systems are just embryonic forms,
and their wearability is low due to the lack of appropriate packaging for their compo-
nents. Ye et al. [131] developed a flexible hydrogel–paper patch, which could serve
as low-impedance ECG electrodes due to the high conductivity, and the hydrophilic
wettability endowed it with glucose-sensing performance (after the deposition of Pt
nanoparticle), as shown in Figure 8c. A lithium battery was used to continuously
supply energy for the device. The special packaging method made its structure more
perfect and it could be directly attached to human skin. It is worth mentioning that a
3D microfluidic paper-based analytic device was designed to facilitate the collection,
detection, and evaporation of sweat (Figure 8c), and avoided the accumulation of sweat
and the pollution to the sensor, which is critical to the comfort and accuracy of sweat
detection systems. In a recent work, a skin sweat sensing patch consisting of sensors,
an Ag2O-Zn battery, an electrochromic display (ECD), and a small microcontroller unit
(MCU) was developed (they were all stretchable except the MCU, Figure 8d) [132]. The
working process was that the sensing electrodes detected sweat and generated voltage
signals which were then processed by the MCU. Meanwhile, the battery powered the
MCU and provided electrical potential to change the electrochromic pixel colors of
the ECD and display them logically. Therefore, it could work independently without
external wireless device connection. Based on this, the sensing platforms for detecting
pH, Na+, glucose, and lactic acid were also established. The visual pixels array used in
this study can quickly respond to physiological signals within 1 s, instead of directly
using the electrical signal to display the change of the detection signals, the complex
electrical components connection can be avoided, which is worth learning from.
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ISF can provide more biochemical marker information than sweat because of its
high degree of correlation with blood; further, the use of microneedle technology
provides a painless ISF analysis method, instead of traditional painful blood collec-
tion [133–135]. Wang et al. [136] reported a fully integrated patch for wireless and
continuous physiological monitoring, and featured small volume (just a coin size),
easy attachment, and high sensitivity. As shown in Figure 8e, this patch consisted of a
disposable microneedle array and reusable electronics. The microneedle array was en-
dowed with sensing ability after corresponding enzyme modification, which displayed
excellent real-time dynamic monitoring performance with sensing ranges and limits of
0–40 and 0.32 mM for glucose, 0–28 and 0.15 mM for lactate, 0–100 and 0.50 mM for al-
cohol, respectively. The reusable electronics were wirelessly connected to a smartphone
application to realize data capture and visualization. A wireless rechargeable energy
system (consisting of a charging coil and a lithium-ion battery) was engaged to power
the electronics, and power optimizations enabled ~30 days of battery life. This patch
is promising for use in actual human health monitoring. Interestingly, the organism
itself is a huge energy source; collecting and storing the electric energy generated by
redox reactions of biofluids provides a new idea for self-powered biosensing systems.
For instance, Park et al. [137] assembled two pieces of PDMS coated with rGO and
electrolyte (one side of which had a microneedle array), then loaded enzyme on the
microneedle array, thus a self-charging supercapacitor with an excellent capacitance of
1600 F/g was prepared (Figure 8f). The glucose oxidase oxidizing glucose generated
electrical energy to charge the supercapacitor, and the glucose concentration in the
range of 10–11,000 µM could be reflected by the charging voltage. Meanwhile, a blood
glucose alarm system was also established. Unfortunately, the integration degree of
signal processing and transmission system and sensor is too low to be used in practice.
This also reflects the urgent need for flexible integrated electronics.

In addition, microelectronics provides the possibility for in situ detection in blood. Sev-
eral intravascular bioelectronic devices have been developed [138–140]. Schmidt et al. [141]
reported a full microsystem-integrated nano-biosupercapacitor (nBSC) with a volume of
1 nL, which could generate a voltage of 1.6 V and display an average volumetric energy
density of ~90 nWh mm−3 in blood (Figure 8g). Based on this, a self-powered system that
consisted of three charged nBSCs, a nBSC based ring oscillator, and a pH sensor was suc-
cessfully developed for blood monitoring, with a sensitivity of 5 ± 0.5 µF mm−3 per acidic
pH and 2 ± 0.4 µF mm−3 per basic pH. Owing to the small volume, high electrochemical
performance, and biocompatibility of nBSC, it provides more opportunities for the next
generation of implantable microelectronics.

Although most of the current biosensor systems feature the characteristics of flexibility
and biocompatibility, they are often unable to overcome the interference of various body
fluids, limb movements, and the surrounding environment. Their comfort and stability
are also relatively poor in the long-term wearing process. In addition, portable electronic
devices for data capture and visualization are very scarce now, which is urgently needed to
be overcome.
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Figure 8. (a) Schematic of sensors that detect glucose, [Na+], and [K+] in sweat. Reprinted with
permission from Ref. [129]. Copyright 2019, Nano Energy. (b) Schematic of FSAB-integrated mul-
tiple sensing system. Reprinted with permission from Ref. [130]. Copyright 2022, Nano Energy.
(c) The exploded view of the system for monitoring of electrocardiogram signal and glucose in
sweat. Reprinted with permission from Ref. [131]. Copyright 2022, Biosensors and Bioelectronics.
(d) Schematic of sweat monitoring patch and the readout of potentiometric sensor changing with
electrolyte concentration. Reprinted with permission from Ref. [132]. Copyright 2022, Nature Elec-
tronics. (e) The structure of highly integrated patch. Reprinted with permission from Ref. [136].
Copyright 2022, Nature Biomedical Engineering. (f) Schematic of self-charging supercapacitor for
glucose sensing and its working principle. Reprinted with permission from Ref. [137]. Copyright
2022, ACS Applied Materials & Interfaces. (g) i. Schematic of nBSC; ii. microscope image of pH
monitoring system before and after roll-up. Reprinted with permission from Ref. [141]. Copyright
2021, Nature Communications.
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2.4. Multifunctional Integrated Type

At present, single function sensors have difficulty to meet the actual needs in prac-
tice, so systems with multi-sensing functions are the dominant direction of wearable
electronics [142]. Li et al. [143] developed a system with a triple-mode sensor for pres-
sure/temperature/light sensing and flexible micro-supercapacitors as the power sup-
ply. The triple-mode sensor exhibited excellent sensitivities of 19.3 kPa−1 for pressure,
0.0034 ◦C−1 for temperature, and fast UV response/recovery time of 0.8/0.9 s. Additionally,
the micro-supercapacitor displayed a high volumetric capacitance of 148.25 F cm−3 and
good cycle stability (93.75%, after 6000 cycles). Later, many similar multi-mode sensors
have been developed [144–149], but the cross-talk between the measured parameters will
lead to poor accuracy of single parameter measurements [118]. Therefore, the system
integrated with multiple sensors shows advantages.

Figure 9a shows an example, a system with multiple sensors highly integrated on a
flexible substrate [150]. Although the energy-storage devices were not integrated into it,
the maturing of the printed circuit manufacturing process will clear the way for it. In an
earlier study, Shen et al. [151] developed a multifunctional integrating system by only using
rGO-on-PVDF-nanofibers for both sensing and energy storage, while sensors (pressure
sensor, photodetector, and gas sensor) and on-chip micro-supercapacitors were integrated
into a single pixel, as shown in Figure 9b. The rGO-on-PVDF-nanofibers exhibited a high
capacitance of 595.4F/g, and four prepared supercapacitors in series supplied power for
the sensor pixels, which could detect pulse, swallowing, voice, and body movement by
the pressure sensor, light intensity by the photodetector, and the concentration of volatile
organic compounds by the gas sensing part. This technology can be scaled-up to fabricate
more integrated and higher performance multi-sensing systems in principle. As shown
in Figure 9c, Gao et al. [34] demonstrated a highly integrated soft E-skin with wireless
multi-sensing parts. This E-skin was powered by lactate biofuel cells, which featured
high power density (3.5 mW cm−2) and long-term stability (continuous operation for
60 h) by use of unique zero- to three-dimensional nanomaterials. It could be used to detect
various metabolic analytes (urea, NH4

+, glucose, pH, etc.) and temperature, and could be
further connected with tactile sensors for human–machine interfaces. All rigid components
were highly integrated on a flexible substrate, and the serpentine-connected electrode
arrays endowed the E-skin with the ability to withstand certain deformation (Figure 9d).
The strategy of integrating rigid electronic components on flexible substrates provides
a very promising solution for manufacturing flexible wearable electronics [5,152]. In a
separate study, Zhang et al. [153] developed stacked multilayer network materials as a
general framework for ultra-high integration of electronic components, which exhibited
a moderate elastic stretchability of ~20% without elastic substrates, an ultra-high areal
coverage of ~110%, and small size (11 mm by 10 mm). Based on this framework, as shown
in Figure 9e,f, a multifunctional sensing integrated system powered by a lithium-ion battery
was manufactured for physiological signals (relative humidity, temperature, and heart
rate) wireless and real-time monitoring, and could work continuously for 80 min. At
present, the flexibility of various electronic components (capacitor, resistor, potentiometer,
transistor, relay, filter, etc.) is still in the initial stage of development. Compared with rigid
components, their manufacturing is cumbersome and costly, which is not conducive to
mass preparation, and the integration between flexible components is also greatly hindered.
The “flexibility” strategy of rigid components in this study provides significant inspiration
for the manufacture of small, stretchable, and complex electronic devices in the future.



Nanomaterials 2023, 13, 645 18 of 25Nanomaterials 2023, 13, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 9. Schematic of (a) the system with multiple sensors. Reprinted with permission from Ref.  
[150]. Copyright 2020, Science China Materials. (b) Sensors (pressure sensors, photodetectors, and 
gas sensors) and on-chip micro supercapacitors integrated in one pixel. Reprinted with permission 
from Ref. [151]. Copyright 2017, Nano Energy. (c, d) The highly integrated soft E-skin with wireless 
multi-sensing. Reprinted with permission from Ref. [34]. Copyright 2020, Science Robotics. (e) Ex-
ploded view and (f) photographs of a highly integrated system based on stacked multilayer network 
materials. Reprinted with permission from Ref. [153]. Copyright 2022, Science Advances. 

3. Conclusions and Prospect 
Wearable and flexible sensing systems have attracted extensive attention in the fields 

of personalized health monitoring, environmental monitoring, and human–machine in-
terfaces due to the diversity of their performance and forms. In this review, we summa-
rized the recent achievements of energy-storage-device-integrated sensing systems. It is 
easy to find that with the advance of materials science and process technology, we have 
made considerable achievements in this field. Features such as flexibility, extensibility, 
biocompatibility, comfort, and stability cannot be well expressed in a single system at the 
same time, it is a cutting-edge subject to gather all these advantages in one. In addition, 
the systems with energy-storage devices, especially multi-sensing systems with energy-
harvesters and storage devices, can achieve continuous and stable wireless monitoring 
without external power supply, which is the major trend of the sensing field in the future. 

Although considerable achievements have been achieved in energy-storage-device-
integrated sensing systems, great challenges still remain for emerging and practical appli-
cations. These challenges include the following: 

Figure 9. Schematic of (a) the system with multiple sensors. Reprinted with permission from
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3. Conclusions and Prospect

Wearable and flexible sensing systems have attracted extensive attention in the fields
of personalized health monitoring, environmental monitoring, and human–machine inter-
faces due to the diversity of their performance and forms. In this review, we summarized
the recent achievements of energy-storage-device-integrated sensing systems. It is easy
to find that with the advance of materials science and process technology, we have made
considerable achievements in this field. Features such as flexibility, extensibility, biocompat-
ibility, comfort, and stability cannot be well expressed in a single system at the same time,
it is a cutting-edge subject to gather all these advantages in one. In addition, the systems
with energy-storage devices, especially multi-sensing systems with energy-harvesters and
storage devices, can achieve continuous and stable wireless monitoring without external
power supply, which is the major trend of the sensing field in the future.

Although considerable achievements have been achieved in energy-storage-device-
integrated sensing systems, great challenges still remain for emerging and practical appli-
cations. These challenges include the following:
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(1) There are still many issues to be solved for the energy-storage devices, as well
as the electronics for energy management, multi-data capture, and visualization, such as
flexibility, safety, stability, tedious manufacturing processes, and high costs.

(2) Interferences on sensing signals from the external environment (such as various
pH condition, humidity, temperature) needs to be eliminated, but the research in this field
is still relatively limited.

(3) The demand for device application scenarios is increasing, especially in some
extreme conditions (such as extreme temperature and high pressure), which is a huge
challenge for the integrated energy-storage and sensing field.

(4) In order to convert the real world into binary and transmit to intelligent terminals,
the conversion between the sensing signals and the electrical signals needs to be extremely
rigorous, stable, and accurate. However, at present, a single sensor has a large error, and
the performance difference of the same batch of sensors is also large, which needs to be
solved urgently.

(5) The comfort of wearable devices is also very important, but at present, most of
them are not suitable for wearing for a long time, because they are air-proof and unfriendly
to human skin. In addition, aesthetic design is also very important.

In the future, the development of new materials and ingenious structures may be
a way to realize the miniaturization and flexibility of sensors, energy-storage devices,
and various electronic components. Overall, wearable devices will greatly promote the
development of the medical, environmental, robotic, and other fields.
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