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Abstract: Si1−xGex nanowires (NWs) were prepared by gold-supported chemical vapor deposition
(CVD) using a single-source precursor with preformed Si–Ge bonds. Besides the tamed reactivity
of the precursor, the approach reduces the process parameters associated with the control of de-
composition characteristics and the dosing of individual precursors. The group IV alloy NWs are
single crystalline with a constant diameter along their axis. During the wire growth by low pressure
CVD, an Au-containing surface layer on the NWs forms by surface diffusion from the substrate,
which can be removed by a combination of oxidation and etching. The electrical properties of the
Si1−xGex/Au core-shell NWs are compared to the Si1−xGex NWs after Au removal. Core–shell
NWs show signatures of metal-like behavior, while the purely semiconducting NWs reveal typical
signatures of intrinsic Si1−xGex. The synthesized materials should be of high interest for applications
in nano- and quantum-electronics.

Keywords: nanowires; silicon; germanium; alloy; CVD; field-effect transistors

1. Introduction

Semiconductor nanowires (NWs) play a major role in intriguing technological applica-
tions in the field of high-performance nanoelectronics [1], photovoltaics [2], photonics [3],
thermoelectrics [4,5], chemical energy storage [6], and biomedicine [7]. Different aspects of
semiconductor NW research have been reviewed and the fundamental growth, structure,
and property relations have been described [8–14]. Among this wide field, group IV mate-
rials are of specific interest as these materials could be easily integrated into current device
processing approaches.

Today, Si1−xGex is already a key material in modern high-speed bipolar transistors.
Most notably, Si1−xGex and Ge have been identified as promising channel materials for
field-effect transistors (FETs) to enable higher drive currents, a reduction in dynamic
power consumption, and enhanced switching speeds compared with conventional Si
devices [15]. The group IV substitutional solid solution Si1−xGex is an alloy with complete
solubility over the whole composition range [16]. Si1−xGex nanostructures are extensively
used in a large portfolio of applications including advanced transistors, quantum devices,
photodetectors, electro-optical modulators, photovoltaics, microelectromechanical systems
(MEMS), and thermoelectric generators [17–23]. Moreover, Si1−xGex interlayers can be
used to control strain and defect densities in Si and Ge layers for electrical applications in
CMOS device architectures [24–26]. In addition, the first significant observations of band
edge photoluminescence were also based on fully strained Si1−xGex [27,28]. The electrical
properties of the Si1−xGex substitutional solid solution with cubic crystal phase have been
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summarized [29], but new developments can benefit from molecular precursors providing
pre-formed Si-Ge building blocks.

The controlled synthesis of thin layers and nanostructures of Si1−xGex is typically
based on molecular beam epitaxy using the elements as sources [30–32] and mixtures of
SiH4/GeH4 as precursors in chemical vapor deposition [33,34]. Similarly, Si1−xGex NW
growth has been described by metal-supported CVD using individual Ge and Si precursors
by various groups [35–37].

The single-source precursor approach was successfully demonstrated for different
binary materials in the past [38–41]. More specifically, previously described single-source
precursors for Si1−xGex material carrying exclusively hydride ligands are pyrophoric and
require rigorous safety measures similar to the individual SiH4 and GeH4 sources [42,43],
which makes the approach described here using a less reactive precursor intriguing. For
the thermal conversion of precursors to Si1−xGex, it should be noted that Si–C-containing
silanes typically lead to silicon carbide [44–47], while Ge–C can be cleaved even at very
moderate temperatures, yielding pure Ge material [48–50]. Applications based on non-
pyrophoric single-source precursors for Si1−xGex synthesis combine easier handling with a
simplified parameter set to control the materials’ synthesis, representing a viable alternative
to the conventional approaches.

Here, we report on the Au-assisted CVD synthesis of NWs using (H3Si)2Ge(nBu)2
precursor and their structural as well as chemical characterization by µ-Raman spectroscopy,
energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM). The electrical properties were investigated in two-
and four-probe geometry and reveal differences in the behavior between Si1−xGex/Au
core–shell NWs and Si1−xGex NWs.

2. Materials and Methods
CVD Process and Thin Film Characterization

CVD was carried out in a home-built cold-wall reactor using high-frequency heating of
a graphite or steel susceptor for indirect heating of sapphire (0001) (Crystal GmbH, Berlin,
Germany). Prior to use, the substrates are coated with a ~5 nm Au film by sputtering. The
substrates are attached to the susceptor by silver paste to ensure efficient thermal contact.
Substrate temperatures were limited to TS = 750–783 K. The precursor was introduced
into the reactor through a glass flange applying a dynamic vacuum (~10−6 mbar) while
keeping the precursor temperatures in the range of 253–258 K using a cooling bath based
on chilled isopropyl alcohol as a coolant. Typically, 40–80 mg of the (H3Si)2Ge(nBu)2
precursor was used as source for the CVD experiments and the growth was carried out for
60–90 min. Growth experiments with similar parameters were verified at least three times.
Typically, higher substrate temperatures also result in higher density of NWs, but differ in
the microstructure as described below. The detailed description of the precursor synthesis
has been published recently [51]. A similar CVD setup has been described in the literature
for the growth of thin films and nanostructures using molecular sources [52,53].

The Au removal was carried out by post-growth oxidation at 1173 K for 20 min under
50 sccm oxygen flow. The oxide was removed by 60 s etching using buffered HF, which
is an ammonium fluoride etching mixture solution (Sigma-Aldrich, St. Louis, MO, USA).
Finally, the Au was removed by 60 s etching using commercial KI/I2 solution purchased
from Sigma-Aldrich. The NWs were washed twice with deionized water and once with
isopropyl alcohol. Electron beam lithography was used to define the electrodes and Al was
sputtered as electrode material using similar steps as described in the literature [54] and an
additional HF dip before Al deposition.

A JEOL JEM-3000F equipped with a Schottky field-emission electron source operating
at 300 kV was used to acquire TEM images, HAADF-STEM images, STEM-EDX line scans,
and STEM-EDS elemental maps. TEM images were recorded with a charge-coupled device
(CCD) camera (GATAN Orius camera). An Oxford Instruments INCA system and an
80 mm2 silicon drift detector (SDD) were used to perform EDX analyses. The data were
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acquired and processed with DigitalMicrograph from Gatan (Version 2.31.734.0/DigitalMi-
crograph™ 3.9.3 for GMS 1.4.3) and INCA from Oxford Instruments Nanotechnology Tools
Ltd. (Version 4.15).

The µ-Raman measurements were performed on a WITec Alpha300 Raman system
with a frequency-doubled Nd:YAG laser (λ = 532 nm) in a backscattering geometry. The
power of the incident laser was adjusted to 100 µW to prevent heated up of the NWs.
The laser was focused through an achromatic Nikon EPI EPlan 100× objective (NA = 0.9,
WD = 0.23 mm), enabling a diffraction limited spot size of ~720 nm. The integration time
was set to 60 s.

The electrical measurements were conducted at room temperature and ambient condi-
tions using a HP 4156B semiconductor analyzer and a probe station placed in a shielded
dark box to exclude the influence of ambient light and electromagnetic fields.

3. Results

Low-pressure CVD (LPCVD) without a carrier gas was used to grow Si1−xGex NWs on Au-
coated sapphire substrates. The recently described single-source precursor (H3Si)2Ge(nBu)2
containing Si and Ge in one molecule was used for the NW synthesis [51]. This molecular
source reduces parameters for the precursor delivery when compared with individual
precursors and, at the same time, its reduced reactivity allows for more convenient handling
without elaborate safety measures. For NW growth, the liquid precursor (H3Si)2Ge(nBu)2
was kept at 250–255 K during the LPCVD owing to its high vapor pressure. Figure 1a
illustrates the efficient formation of Si1−xGex NWs on Au-coated sapphire substrates. The
NW density, very low tapering tendency, and their length are ideal for following electrical
characterization. The expected Au seed is always observed at the tip of each NW, which is
a signature of the NW growth according to the vapor–liquid–solid (VLS) mechanism, as
described first for the growth of Si NWs [55] and investigated in detail over the last decades
for various systems [8,56,57].
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Si1−xGex crystal along the 111 axis. 

Figure 1. (a) The SEM image of Si1−xGex NWs grown at 773 K on Au-coated sapphire substrates
shows a high number of very long NWs (>20 µm). The TEM image in the inset illustrates the low
tendency for tapering of the NWs under these growth conditions. (b) A high-resolution TEM image
shows the single crystalline nature of the NWs and the corresponding FFT verifies the growth of the
Si1−xGex crystal along the 〈111〉 axis.

High-resolution transmission electron microscopy (HR-TEM) images, as shown in
Figure 1b, reveal the formation of Si1−xGex single crystals. Moreover, the fast Fourier
transform (FFT) of the HR-TEM image in Figure 1b shows the crystal growth along the
〈111〉-axis, as expected for group IV NWs of these diameters [58]. Typically, a thin amor-
phous shell is observed, which is caused by a simultaneous layer formation of amorphous
Si1−xGex and the crystalline NW. However, the metal-supported NW growth is much more
efficient than an amorphous layer formation at such low growth temperatures of 773 K as
described herein.



Nanomaterials 2023, 13, 627 4 of 10

The Si1−xGex NWs composition was determined by energy dispersive X-ray (EDX)
spectroscopy. Figure 2a reveals that the NWs contain a ~1.5–1.3:1 ratio of Si/Ge instead of
the predefined ratio of 2:1 in the (H3Si)2Ge(nBu) precursor. This suggests a variation in the
decomposition path in the Au-assisted growth, as the Si/Ge ratio is retained in the CVD
growth of amorphous layers from the same precursor [51]. Scrambling reactions on the Au
surface leading to volatile Si-containing fragments could rationalize the loss of Si. The slow
film formation from the same precursor at 773 K in absence of Au causes a thin, negligible
overlayer of amorphous Si2Ge. In proximity of the growth seed, no Au has been reliably
recorded, but the Au content on the surface of NWs increases over the length of several
micrometers, as illustrated in Figure 2a.
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Figure 2. (a) Elemental distribution of Si, Ge, and Au as well as Si/Ge ratio along the NWs’ axis. The
EDX line scan perpendicular to the NW growth axis in (b) shows the group IV elemental distribution
of the NW in proximity to the growth seed where no Au has been recorded. (c) The formation of a
Si1−xGex/Au core–shell NW towards the NW base is illustrated in the EDX line scan perpendicular
to the NW growth axis.

The cross-sectional EDX line scan in proximity to the growth seed shows no Au surface
coverage and the formation of a homogeneous material. In agreement with the observation
of a significant Au content along the NW, a cross-sectional EDX line scan closer to the
NW base illustrates the surface accumulation of Au and the formation of a Si1−xGex/Au
core–shell structure (Figure 2c). The minor change in the NWs’ diameter over the length of
several micrometers suggests that the Au diffuses along the NWs from the substrate surface
that acts as the reservoir, while the Au content along the wire appears to be constant, as
illustrated in Figure S1 (Supplementary Material). Moreover, a loss of Au from the growth
seed would lead to a significant tapering of the NWs, which is not observed herein. The
Au-containing shell is accompanied by slight roughening of the surface, as illustrated in
Figure S1. The roughness of the surface and comparably low number of NWs originating
from a 5 nm Au film suggest only limited activation of Au growth seeds in the initial stage.
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As a consequence, the Au is covered with a thin film, preventing further nucleation of NWs.
The density of NWs is higher with the increasing growth temperature, but at the same
time, an amorphous Si1−xGex-containing shell forms as a result of the competing thin film
growth, as discussed below. It should be noted that the Z-contrast within the tips illustrated
in the inset of Figure 2b is caused by the high solubility of the group IV semiconductors
in Au at a growth temperature of 773 K and the associated phase separation and further
growth of the semiconductor segment upon cooling.

As the CVD is carried out at the lowest decomposition temperatures for (H3Si)2Ge(nBu)
fragmentation, and thus in the reaction limited regime, a small increase in the substrate tem-
perature will favor the simultaneous formation of an amorphous Si2GeC0.1 layer (Figure S2,
Supplementary Material). The consequence is tapering due to the formation of an amor-
phous Si2GeC0.1 layer, which forms in this temperature regime in absence of Au as a
growth promoter [51]. The difference in composition is illustrated in Figure S3 of the
Supporting Information with the amorphous layer containing a higher Si content than the
inner core. Even though the Au diffusion on the NWs is prevented, the formation of the
Si2GeC0.1-based layer would require etching of the amorphous layer while keeping the
crystalline core intact, which requires elaborate selective etching. Therefore, the focus is on
the Si1−xGex/Au core–shell in the following investigations.

Removal of the Au from the Si1−xGex NWs’ surface using commercial KI/I2 etchant
was unsuccessful, which is probably due to partial alloying of Au at the growth tempera-
tures and the formation of a protecting semiconductor-based surface termination [59,60].
Therefore, a harsh thermal dry-oxidation at 1173 K was carried out to oxidize the potential
semiconductor shell and subsequently remove the Si1−xGexO2−y by buffered HF. This
enabled the Au etching using a commercial KI/I2 solution. The number of longer NWs
is lower after the procedure and more fragments are encountered owing to the Au dif-
fusion and agglomeration, leading to segmented NWs as intermediates [61]. However,
for Si1−xGex/Au NWs exhibiting mostly surface agglomeration of Au, intact NWs with a
rough surface can be obtained that allow for the study of the Si1−xGex NW cores’ electronic
properties after the Au removal. Figure S4 (Supplementary Material) shows a TEM image
illustrating the rough surface of the obtained Si1−xGex NWs. However, it should be noted
that the overall composition of the NW core after this treatment is close to SiGe, showing
a preferred etching of Si within the structures. When a Si1−xGex alloy is oxidized, the
oxidation potential of Si is sufficiently greater than that of Ge, such that Si is preferentially
oxidized and Ge is rejected, which results in a pileup of epitaxial, single-crystal SiGe at the
SiO2/Si1−xGex interface [62–64]. Therefore, a Ge enrichment is observed in the Si1−xGex
NWs presented in this study. A low concentration of Au is not reliably determined by the
EDX investigations, but the electronic properties provide a reliable insight into the mate-
rial’s physical properties, and thus the potential presence of small metal concentrations.

In addition to the TEM/EDX analyses, µ-Raman spectroscopy was carried out on
Si1−xGex NWs in order to obtain additional information on the bonding in the substitutional
solid solution. Typically, three dominant peaks centered near 300, 400, and 500 cm−1 are
considered for Ge–Ge, Ge–Si, and Si–Si stretching motions, respectively. The origin of
these peaks in Si1−xGex is well understood [65] and the appearance of the two weak
features between 420 and 455 cm−1 as well as the shoulder at the low-frequency side of the
Si−Si band is regularly observed [66,67]. All Raman spectra herein are shifted vertically
for clarity, while the general intensity depends on the number of wires under focus and
will vary. Figure 3 shows the typical signals for Si1−xGex for the as-grown NWs as well
as the heat-treated and etched NWs, with the only difference being a slight shift in the
Raman peak position associated with the Si−Si mode. The Si−Si band position is the most
sensitive to the Ge concentration (x) and downshifts rapidly with increasing x, while the
other two bands are not effected significantly by changes in the composition [67]. The
general peak location for the as-grown sample with a peak maximum at 488 cm−1 agrees
well with literature reports for ~Si0.6Ge0.4 [67] and the aforementioned Si/Ge ratio for the
core material being ~1.5–1.3:1, as determined by EDX. However, the Si/Ge ratio of ~1:1 in
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the annealed and etched NWs according to EDX does not agree with a small shift in the
Raman peak position to 492 cm−1, which would be a signature for an increased Si content.
Such discrepancies have also been observed in the literature and have been related to either
inhomogeneity within batches of NWs or effects of growth temperatures [67].
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Figure 3. Raman spectra of as-grown Si1−xGex/Au NWs and Si1−xGex NWs after high-temperature
oxidation, annealing, and etching (abbreviated by heat treated).

The electrical characteristics of both Si1−xGex/Au NWs and Si1−xGex NWs were sys-
tematically investigated. Thereto, samples of both NW types were transferred to oxidized,
highly p-doped Si substrates. Using a combination of electron-beam lithography, sputter
deposition of Al, and lift-off techniques, the NWs were integrated into back-gated Schottky
barrier FETs with the Si wafer acting as a common back-gate [68]. In total, for both types
of NWs, 19 devices each were fabricated. Figure 4a shows representative I/V measure-
ments of both NW types for grounding the Si substrate (VBG = 0 V). Comparing the I/V
characteristics, it is evident that the Si1−xGex/Au NWs show an approximately six orders
of magnitude higher current than the Si1−xGex NWs. This high conductivity indicates
that the main part of the current is flowing through the Au shell of the Si1−xGex/Au
NWs rather than the much more resistive Si1−xGex core. Further, Figure 4b shows the
investigation of the charge carrier modulation capability by the back-gate on both NWs.
Applying a bias voltage of VD = 250 mV, a constant transfer characteristic was observed for
the NWs with an Au shell, which screens the electric field of the back-gate, resulting in no
gate tunability. On the other hand, the NWs without an Au shell showed typical charge
carrier modulation capabilities, i.e., a slightly ambipolar characteristic with dominant hole
conduction, as expected for an intrinsic Si1−xGex semiconductor with Al contacts [15,69].
To further map the gate-tunable transport through the proposed NWs, Figure 4c,d show
color plots of the recorded current density depending on the applied bias- and gate-voltage.
The Si1−xGex/Au NWs reveal a highly symmetric and gate-independent characteristic.
In contrast, the Si1−xGex NWs show a typical slightly asymmetric I/V characteristic and
charge carrier modulation capability by the back-gate voltage [70].
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Importantly, the conducted electrical measurements confirm the results from the
structural analysis and illustrate that the presented growth grants access to intrinsic
Si1−xGex NWs, which are of high interest for numerous applications in nano- and quantum-
electronics [15,23].

4. Conclusions

The Au-assisted synthesis of Si1−xGex NWs was achieved for the first time using a
single molecular source as a precursor. In contrast to amorphous layer deposition using
(H3Si)2Ge(nBu)2 with retention of the 2:1 Si/Ge ratio, the Au-supported growth leads to
Si loss and, typically, a Si/Ge ratio of ~1.5–1.3:1. At higher deposition temperatures, an
amorphous layer deposition is observed with the previously reported composition and the
overall formation of tapered NWs. Generally, the as-grown NWs are Si1−xGex/Au core–
shell structures and formed by Au surface diffusion from the substrate. The Au shell was
successfully removed by an oxidation/etching procedure. The electrical properties reveal
typical metallic transfer characteristics for Si1−xGex/Au NWs, while the Si1−xGex NWs
behave like an intrinsic semiconductor material, as expected. This report demonstrates that
highly crystalline Si1−xGex material with typical semiconductor properties can be prepared
by the single-source precursor approach.
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