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Abstract: The interest in the field electron emission cathode nanomaterials is on the rise due to
the wide applications, such as electron sources, miniature X-ray devices, display materials, etc. In
particular, nanodiamond (ND) film is regarded as an ideal next-generation cathode emitter in the
field emission devices, due to the low or negative electron affinity, small grain size, high mechanical
hardness, low work function, and high reliability. Increasing efforts are conducted on the investigation
of the emission structures, manufacturing cost, and field emission properties improvement of the
ND films. This review aims to summarize the recent research, highlight the new findings, and
provide a roadmap for future developments in the area of ND film electron field emitter. Specially,
the optimizing methods of large-scale, high-quality, and cost-effective synthesis of ND films are
discussed to achieve more stable surface structure and optimal physical properties. Additionally, the
mainstream strategies applied to produce high field emission performance of ND films are analyzed
in detail, including regulating the grain size/boundary, hybrid phase carbon content, and doping
element/type of ND films; meanwhile, the problems existing in the related research and the outlook
in this area are also discussed.

Keywords: nanodiamond film; field emission properties; fabrication methods; grain size/phase
controlling; doping engineering

1. Introduction

Nanodiamond (ND) films are normally composed of a mixture of sp3 and sp2 hy-
bridized carbon, remains most of the excellent properties of the bulk diamond, especially
including the high mechanical hardness [1], increased wear resistance [2], chemical stabil-
ity [3], low coefficient of thermal expansion [4], wide optical transparency [5], and good
biocompatibility [6]. Furthermore, the ND films possess unique physical and chemical
properties, especially the higher volume density of grain boundaries, the low surface rough-
ness, the more sp2 hybridized carbon concentration, and the low work function value [7–9].
These properties make them possible as an electron emission cathode material for the
vacuum microelectronic devices and field emission devices [10–12]. However, the wide
band gap energy (∼5.5 eV), and the compact crystal structure of the bulk diamond affect
the complement transfer of electrons, and the formation of the depletion region in diamond,
thus hindering the industrial application in electronic and optoelectronic devices [13,14].

During the last decades, many efforts, such as the N/B element doping [15–17], the
surface morphology [18,19], the micropatterned structures [20,21], and the introduction
of the high content sp2 hybridized carbon [22,23], were conducted to obtain a low surface
potential barrier and a low work function of the ND films, then substantially improves
the field emission properties. For example, Hao T. et al. reported that the ND cones
synthesized by the gray-scale patterns with a focused-ion-beam (FIB) system could obtain a
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high emission current up to 54 µA at an applied voltage of 10 V [21]. Guo X. et al. proposed
a N-doped ND film by heating the solid thin layer of urea in a resistance-heating furnace,
exhibiting a low turn-on electric field strength of 3.6 V µm−1 defined at the current density
of 0.01 mA cm−2 [15]. Moreover, the field emission properties are largely determined
by the quality and microstructure of synthesized ND films. Many production methods
are proposed, such as chemical vapor deposition with various source, laser irradiation,
and assembling detonated ND particles with various solutions [24,25]. Recently, Hong
S.P. reported a unit combination of three plasma sources to synthesize even distributed
diamond grains with a diameter of 0.1–1 µm, which was benefit for achieving a large-scaled
diamond film with high crystallinity [26]. However, there still exists many discordant
sounds that it is difficult to simultaneously obtain large-scaled, high quality, smooth ND
films using current production methods. More advanced and cost-effective method of the
ND films needs to be explored.

In this paper, recent progresses of the ND films (excluding ultra-ND films) in the
controllable fabrications and the field emission properties are reviewed, as shown in
Figure 1. The preparation methods of ND film are summarized including the chemical
vapor deposition, assembling ND particles into continuous film, and laser irradiation, and
the growth factors and nucleation process of various methods ND films are analyzed. In
addition, the improvement methods of field emission property, such as adjusting the grain
size/boundary, the concentration of sp2 phase, and doping type are especially introduced.
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Figure 1. Fabrication and field emission properties improvement methods of the nanodiamond
(ND) films.

2. Fabrication Method and Nucleation Process of Nanodiamond Film

These ND films are commonly synthesized via chemical vapor deposition (CVD) and
diamond seeding process, assembling NDs into continuous films, laser irradiation, and
other methods. As the most important method, CVD and diamond seeding process has
unparalleled advantage in controlling the grain sizes, defect structures and concentrations,
and mechanical strength, and electrical conductivity properties of ND film. However,
due to the high growth temperature (~700 ◦C), and the high requirement of vacuum
environment, the growth substrates and the equipment of CVD method are severely
restricted the large-scale production. Assembling ND particles into continuous film is
another valuable preparation method, in which the size and purity of ND particles in
film can be well controlled. Other methods include confined laser irradiation [27,28], bias-
enhanced growth [29], and electrophoretic deposition (EPD) combined with annealing
process [30], etc.
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2.1. Chemical Composition and Structure of Nanodiamonds

ND films consist of ND grains of the order of 10–100 nm in size, surrounded by a
carbon film with complex composition. The film composition and the linked bonding are
dependent on the fabrication methods. Additionally, the chemical and physical properties
of ND film is mainly determined by the chemical composition and inherent structure of
NDs, including the average grain size and distribution of NDs, the sp2/sp3 hybridized
carbon ratio, etc. [31]. The shape of NDs is normally regarded as spherical. However, more
experimental high-resolution transmission electron microscopy images revealed that the
NDs is randomly different shape clusters with different sizes [32]. Recent nuclear magnetic
resonance reports suggested that each ND particle was consisted of a sp3 bonded carbon
diamond core with a diameter of 2–3 nm, an ultra-thinly nonhomogeneous translational
intermediate fullerene-like sp2 carbon shell, and a surface graphitic carbon layer [33–36].
The diamond core is the primary structural feature of NDs that distinguishes NDs from
other carbonaceous materials, which is responsible for the high refractive index of NDs
(~2.4) and strong light scattering. More specially, the properties of NDs can be adjusted
further by introducing particular defects (i.e., dopants/impurities) into diamond lattice,
and changing the host nanocrystal size [37–39]. The surface graphitic carbon layer is
always bounded with hydrogen, oxygen, or functional groups for stabilization of the
structure. Particularly, the σ dangling bonds on the surface carbon layer of NDs are
unstable, strongly influences the electronic structure due to the dominant role of surface on
nanoscale. Thus, the surface of NDs is easily modified or reconstructed, then leading to an
extreme diversity of electronic properties. For example, after hydrogenation modification
of the detonation NDs, the presence of surface states (σs

1σp
2π1) without overlapping of

π levels were conducted by Belobrov P.I. et al. [40]. Kaciulis S. et al. also verified that the
valence band of diamond is significantly modified by the hydrogenation modification [41].

2.2. Chemical Vapor Deposition (CVD)
2.2.1. Diamond Seeding Process

Before synthesizing the ND films by CVD, a diamond seeding process is a critical
step to essentially enhance the nucleation quality and smoothness of ND film in non-
carbide forming substrates [42–44]. Many seeding procedures are employed for the ND
film growth, including mechanical abrasion method with a diamond grit, spin-off coating
method on the substrate with a diamond-containing particles, printing method of seeds by
a stamp brought in contact with the substrate, ultrasonic treatment method in a suspension
of diamond powder, and bias-enhanced nucleation (BEN) deposition of diamond on a
substrate [45–52]. The quality of ND film is directly dependent on the seeding parameter,
such as the density and size distribution of ND particles. Normally, the ND particles as a
seeding layer are availably synthesized by intense ultraviolet (UV) laser irradiation [27],
pulsed laser annealing (PLA) [50], detonation techniques [51], ball milling process of high
pressure and high temperature (HPHT) diamond microcrystals [53], and CVD with hot
filament, microwave, and plasma-assisted energy sources [54–56]. The majority of used
commercially approaches rely on laser deposition, detonation, and ball milling technique,
as shown in Figure 2a–d.
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2.2.2. CVD with Different Energy Sources

The ND film was first synthesized by CVD technology and was named as ‘nanocrys-
talline diamond’ at the Workshop on the Science and Technology of Diamond Thin Films in
1990 [57]. It is reported that the CVD ND films normally consist of ND grains with colum-
nar internal structure [24]. Specifically, the CVD growth process of ND films begins with
high-density nucleation to forms nanodiamond domains, and then grows in a columnar
manner. The film morphology and internal structure are usually determined by the growth
conditions and the CVD energy sources. There are many CVD methods with different
energy sources used for facilitating the synthesis of ND films, such as pulsed microwave
plasma [57,58], direct current (DC) glow discharge plasma [59,60], inductively coupled
radio frequency (RF) plasma [61,62], and hot filament [63,64]. Among them, the plasma en-
hanced CVD methods using various plasma energy sources to generate plasma are effective
for reducing the growth temperature and expanding the selection range of substrates.

Moreover, the microwave plasma (MW) CVD is widely used to synthesize ND films
on various chemically dissimilar surface substrates owing to the relatively low growth
temperature, which utilizes the microwave energy to heat and decompose the gas molecules
in the cavity into reactive groups, then finally obtain a high-quality ND film [65–70]. For
example, Cheng C.Y. et al. prepared the ND films and microdiamond films via a MW
plasmas method in Figure 3a. Additionally, it was suggested that the growth quality of ND
film was restricted by the substrate surface pretreatment condition (scratching and seeding)
rather than gas-phase condition [69]. Das D. et al. successfully synthesized the ND films
and even microdiamond films on glass substrates at the temperature of ∼300 ◦C using
CO2/CH4/H2 and provided a specific shadow-mask assembly to promote the nucleation
of the diamond species and the diffusion growth of the nano-/micro diamond network
on the untreated glass substrates, as shown in Figure 3b [70]. The CO2 was introduced as
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the supplementary gas to eliminate the amorphous carbon component in the synthesized
nano-microdiamond. A three-dimensional patterned nitrogen-incorporated ovoid-shaped
nanodiamond (NOND) was manufactured by Chang C. et al. to further improve the sensing
properties. Additionally, the growth process of NOND film was investigated, including
the initial stages of the diffusion of nitrogen atoms into the Si3N4/plasma interface, and
the subsequent deposition of the NOND film, as shown in Figure 3c [71]. Giussani A. et al.
synthesized the ND films using the diamond seeding process and MWCVD technology
in Figure 3d, and the chamber pressure and the substrate temperature were critical to the
induction time and the growth rate of ND films [72].
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mond film and ND films, and the corresponding variation of the samples as functions of substrate
temperature and gas composition [69]. (b) Schematic diagram of the active plasma zone and the
growth process of the low-temperature nano-/microcrystalline diamond growth [70]. (c) The forma-
tion evolution process and the CV scans of the ND film [71]. (d) The relationship curves between the
average substrate temperature and the plenum pressure Ppl, and the SEM images of the corresponding
samples [72].

In the contrast, the hot-filament (HF) CVD method is considered as the most convenient
and simple method to synthesize nanodiamond films under relatively high-temperature,
which uses the high temperature produced by the hot filament to pyrolyze the carbon-
containing gas into active groups [73]. For example, Su Q. et al. synthesized the ND films
via HFCVD and analyzed the effects of carbon concentration on the ND structure film [63].
As the carbon concentration ratio in the total gas increased, the ND grain size, the film
roughness and the inter sp3 carbon phase concentration decreased while the sp2 carbon
phase increased in nano-diamond films in Figure 4a. Additionally, a heavily boron (B)-
doped ND thin films was also fabricated by the HFCVD, which can be converted from a
superconductor to an insulation by the pressure driven as shown in the SEM/cross section
STEM image and the characteristic EELS spectra recorded from the intragrain and intergrain
regions of the heavily boron-doped nanodiamond films (Figure 4b), which was attributed
to the suppression of the Josephson intergrain coupling between the superconducting
nanodiamond grains [74]. So far, the HFCVD technology is still a popular approach to
fabricate the ND films due to the relatively low equipment cost and simple process. In 2022,
a nanocrystalline diamond multilayer system including two conductive nanocrystalline
diamond layers and one non-conductive nanocrystalline diamond produced via HFCVD
coating process with CH4/H2 mixture gas was applied in a wear sensor prototype as
exhibited in Figure 4c [75].
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(b’), STEM-EELS image of boron (in green) and carbon (in red) distributions in the white dashed
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diamond multilayer system including two conductive nanocrystal-line diamond layers and one
non-conductive nanocrystalline diamond [75].

The growth parameters using CVD with different energy source are summarized
in Table 1. It can be concluded that the obtained ND films from various CVD method
are normally grown in a H2-rich, carbon-containing gas-lean mixture atmosphere under
growth substrate temperature from 250 ◦C to 1200 ◦C [59,62,64,69–75]. Presumably the
higher ratio of CH4 in H2, the more non-diamond carbon incorporation quantity, and the
smaller grain size of ND particle in ND film.



Nanomaterials 2023, 13, 577 7 of 18

Table 1. Summary of the key growth parameters for the ND films by CVD with different energy source.

Gas Mixture CVD
Growth

Temperature
(◦C)

Growth Duration Substrate
Pretreatment References

91%H2–9%CH4 DCCVD 800–950 30 min
Bias-enhanced

nucleation
(BEN)

[59]

90~98%H2
–

2~10%CH4
RFCVD 726.85–826.85 6–17 h Scratched and

seeding [62]

98%~97%H2–
2%~3%
C3H6O

HFCVD Filament: 2100;
Substrate: 600–700 - BEN [64]

69%Ar–30%N2–
1%CH4

MWCVD 400–1200 120 min Scratched and
seeding [69]

7.5sccmH2–
0~8sccmCO2–
7.5sccmCH4

MWCVD 300 - none [70]

98.5%H2–0.5%O2–
1%CH4

MWCVD 769–884 0–30 h seeding [72]

98.5%H2–
1.5%CH4

HFCVD Filament: 2100;
Substrate: 800. 7 h

Bias-enhanced
nucleation

(BEN)
[73]

99.4%H2–
0.6%CH4

(B2H6/CH4 ratio
of 5%)

HFCVD Filament: 2200;
Substrate: 800. 40 min seeding [74]

93%,97%H2–
7%,3%CH4

HFCVD - -
Electrochemically

treated and
seeding

[75]

2.2.3. Assembling ND Particles into Continuous Films

Assembling ND particles into continuous film is an economically alternative solution
to synthesize ND films, which can be well controlled the quality and surface roughness
of ND film. In 2005, Liu Y. et al. first reported a mild wet chemistry coating process
at low temperature for growing the fluorinated ND films [76], which was illustrated in
the reaction steps of Figure 5a. ND clusters are linked with the glass surface through a
robust covalent bonding. However, only one layer of ND could be coated. Soon after,
Huang H. et al. found a facile process of synthesizing the ND thin films through drying
ND dispersion aqueous at a relatively low temperature (<70 ◦C) and/or a sufficiently low
pH (<4). The growth mechanism was ascribed that the hydrogen bonding interaction
between the ND particles and the substrate under the directional convection induced by
the water-evaporation flow [77]. Inspired by the above method and mechanism, Wang
H.D. et al. used a step-by-step (SBS) assembling technique to synthesize a thicker ND film
on glass side in 2012 [78]. Figure 5b shows the corresponding formation process and the
obtained surface morphologies of ND films from 3 and 15 steps using ND dispersions with
three pHs, where the hydrogen bonding is mainly accounted for the SbS assembly process.
In addition, it can be seen that the surface morphology can be easily controlled and changed
through adjusting the deposition steps. Compared with SbS films from 15 steps, the films
from 3 steps had a denser structure with relatively smaller size ND particles. Moreover, the
above reported thicker ND film are assembled relying on the weak van der Waal attractions
with the poor mechanical properties and chemical stability. In 2020, Patoary N.H. et al.
proposed a covalent assembly process of ND film on an amine-functionalized substrate
through the cyclic attachment of the carboxylated ND and diamine linker [79], as shown in
Figure 5c. The amide bonds formation and the diamine incorporation were contributed to
the synthesis of ND films with similar ND grain size. Additionally, the assembled ND films
exhibited a good mechanical integrity, a low inherent residual stress and a comparable
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thermal conductivity made by CVD. One years later (2021), the research group explored
the effect of the pH variation using a low-ionic strength MES / KCl buffer and the thermal
annealing process on the microstructure and thermal conductivity of the direct covalently
assembled continuous ND films [80]. These results suggested that the buffer pH can be
changed to adjust the surface morphology, film thickness, film apparent porosity, pore size
distribution, and the thermal conductivity. Additionally, the thermal annealing temperature
led to the aggregation of nanodiamond to segregated islands and increase the porosity of
ND film. Therefore, more efforts should be conducted and explored for this method to
reduce the ND aggregation and improve the smoothness of ND film.
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Figure 5. Typical production process and morphology images of ND films by assembling ND particles
into continuous film [76,78,79]. (a) Reaction steps for coating glass with fluoro-ND and the AFM
images of glass surface taken before and after coating [76]. (b) The formation process of ND films
by SbS assembly and the SEM images of SbS films with 3 and 15 steps using ND dispersions with
two different pHs [78]. (c) Reaction schematic process of directed covalent assembly of NDs, and the
morphology and composition characterization of ND-COOH films [79].

2.3. Laser Irradiation

Laser irradiation is a novel method for synthesizing ND film with non-high tem-
perature and non-high pressure. To date, many materials including graphite carbon,
polytetrafluoroethylene (PTFE) was conducted to synthesize the ND films through the
excimer pulsed laser annealing technology [27,28,81,82]. In 2014, Nian Q. et al. explored
a confined pulsed laser deposition (CPLD) technique with the order of nanosecond to
produce the patterned ND films from a layer of graphite topped with a glass cover sheet at
room temperature and normal pressure [27]. As shown in Figure 6a, a dense ND film was
converted from graphite in a matter of a few tens of nanoseconds with an laser intensity of
about 5.8 GW/cm2, and 22% sp3-phase carbon elements were existed in the synthesized
ND film. Additionally, the corresponding physical process can be concluded in three stages:
(1) the graphite particles vapored into a dense plasma plume, (2) continuously heating
and compressing of the plasma into the single carbon atoms and ions, (3) laser-induced
high-temperature high-pressure plasma promotes the synthesis of ND films.
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images of laser patterned PTFE film (e’), irradiated nanodiamond region and the PTFE boundary
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Despite of the graphite carbon, PTFE, commercially known as the Teflon, are used
as the carbon source in the formation of ND films [28,81]. Gupta S. et al. reported a
direct argon fluoride excimer pulsed laser annealing (PLA) writing method for ND film
with shorter duration (~100 ns) via melting PTFE in ambient condition in 2020, where the
laser energy density is maintained at 1 J/cm2. Specially, the amorphous PTFE was firstly
formed into undercooled molten carbon, then the molten carbon converted into <110>
oriented diamond and ND film in the fast-quenching duration (~100 ns) in Figure 6b [81].
Subsequently, this group used the converted ND film resulted from the conversion of PTFE
as the seeding layer to synthesize dense microdiamond coating in 2021 [82]. However, the
smoothness of the synthesized ND films by laser irradiation method should be further
studied and promoted.

3. Field Emission Properties of ND Film

Miniaturized electron cold-cathodes using nanomaterials nowadays attracted many
attentions in the field emission devices, owing to the greatly improved field emission
properties. Owing to low or negative electron affinity, stable chemistry, and high con-
centration of sp2 phase carbon, ND film is regarded as one of the most suitable field
emission cold-cathode emitter nanomaterials to obtain low turn-on field (commonly at
an electron emission density of 10 µA/cm2), high emitted current density at relatively
lower applied field and long-term stability. Since Zhou D. et al. prepared a ND film by
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MWPECVD using CH4/N2 mixture gas, exhibiting an excellent performance with an onset
field of 3.2 V/µm at 4 µA/cm2. It was found that the electronic gap state provided by the
added N is beneficial to enhance the electron field emission at the surface of ND films [83].
Many attempts/changes were conducted for improving the field emission properties, such
as adjusting the grain size and boundary, the concentration of sp2 phase, and doping
type/level [84–93].

3.1. Adjusting Grain Size/Boundary and Internal Carbon Phase

Reducing ND grain size and increasing grain boundaries and sp2 phase concentration
are considered as the common approach of enhancing the field emission properties. For
example, Wu K. et al. systematically investigated the effect of grain size on the field
emission characteristics of ND thin films, and explained the reason of the enhanced field
emission property based on the carbon structure of sp2 graphite/sp3 nanodiamond mixed
phase [85]. It was proposed that sp2 graphite phase carbon conducted the channel between
the substrate and film surface. Compared with the larger grain size of ND film, the smaller
grain size of ND film was beneficial to emit electron from the whole surface and increase
the emission site density. Wang S.G. et al. prepared an intrinsic ND film and a conventional
CVD diamond film by MWPECVD method using CH4/H2 mixture [86]. The threshold
electron field strength (E) of the as-synthesized intrinsic ND film emission was 4.0 V/µm
at electron emission current density (J) of 1µA/cm2 and the maximum J ranged up to
560 µA/cm2 at E of 7.2 V/µm, which was much higher than the corresponding field
emission properties of the conventional CVD diamond film It can be ascribed to the smaller
size grains of ND film (15–20 nm), larger grain boundary, more sp2 phase non-diamond
components, and defects incorporated into the films. Lee Y.C. et al. also found that the ND
grain size and boundary can be adjusted by the growth conditions including the CH4/H2
ratio and the bias voltage of the MWPECVD system, which was deeply influenced the field
emission characteristics [87]. Specially, A high emission J of 500 µA/cm2 and a low turn-on
E of 8.5 V/µm was obtained from the prepared ND films deposited at a high bias voltage
(–175 V) and a modest CH4/H2 ratio (5%:95%). Coincidentally, Long H. et al. studied the
influence of periodic magnetic field (PMF) on the ND grain size/boundaries and internal
content of sp2 phase as shown in Figure 7. It can be found from the SEM images that the
nucleation density was enhanced and the crystal size was diminished by increasing the
angular frequency ω of PMF. The fine grain size and continuously dense film can be easily
obtained at a relatively high angular frequency, which was helpful to obtain an outstanding
field emission performance with a turn-on field of 2.9 V/µm at 1µA/cm2, and a current
emission density of 32.7 µA/cm2 at 6.5 V/µm [88].
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3.2. Changing Doping Type/Level

Many researchers were attracted and joined into improving the field emission prop-
erties of ND films and further realizing the industrial field emission device application
through the different doping type or level. Among them, N doping performs a signifi-
cant role in enhancing the field emission performance due to the formation of the deep
donor bandgap/defect states in the bandgap of ND film. For instance, the field emission
properties of N-doped ND film prepared by Wang S.G. et al. exhibited a lower threshold
E of 2.2 V/µm and larger maximum J of 720 µA/cm2 (at E = 6.4 V/µm), compared to
the corresponding properties of intrinsic ND film. Additionally, it was attributed to the
inducing the formation of the deep donation level and reduced work function by the N
doping [86]. LeQuan X.C. et al. successfully incorporated N into ND film and reduced the
turn-on E to 3.5 V/µm at 1 µA/cm2 [89]. The related results estimated that the nitrogen
incorporation lowered the banding energy, increased the sp2 phase intensity and facilitated
the electron escape. Recently, Guo X. et al. also proved the role of N doping for improving
the properties. The turn-on E and the maximum J of the synthesized ND film with ~1.95
at.% N were, respectively, reduced to ~3.6 V/µm at 10 µA/cm2, and raise up to 1 mA/cm2

at 6 V/µm, and the excellent long-term emission stability can be achieved for the optimal
N-doped ND film [15]. Therefore, it can be concluded that the introduction of N not just
induces a n-type conductivity, but aggravates the formation of sp2 phase carbon, and thus
enhances the field emission properties of ND film.

Apart from the N element, B is usually incorporated into the nanomaterial lattice to
produce a p-type semiconductor. In 2005, Lee Y.C.’ group firstly conducted the production
of B doping ND film and studied the effect of B doping amount on the field emission char-
acteristics of ND films. The corresponding results showed that the field emission property
was greatly improved with a proper concentration of B source, which was preliminarily
attributed to the B induced aggregation of nanosized diamond and small diamond grain.
However, it was suggested that the large amount of B species was presumably incorporated
into the grain boundaries rather than into the lattice [17]. Koinkar P.M. et al. also developed
the effect of the B2O3 concentration on the surface morphology and the field emission prop-
erties of NCD films [90]. The SEM images shown the influence of B2O3 concentration on
the surface morphology. As the B2O3 concentration increased, the ‘crystal facets’ gradually
disappeared, and the diameter size of ND particle reduced. In contrast to the field emission
performance of Lee Y.C., the field emission properties of B-doped ND film monotonously
enhanced with the increase in B concentration as shown in Figure 8. A low threshold
field strength of 0.8 V/µm at ∼1 µA/cm2 for the samples prepared with 5000 ppm B2O3
concentration, and a stable long-term emission property at a preset value of ∼1 µA over
a duration of 2 h were achieved, which was ascribed to the synergistic effect of smaller
resistivity and nanodiamond size induced by the B addition. Additionally, the efficient
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electron emission sites is too few to be applied in the vacuum microelectronic devices and
field emission devices. Moreover, the doped ND film is used to construct some promising
field emission devices combining with the traditional field emission structure/materials
(nanotips, nanotubes). The undoped and B-doped ND films coated 6H-SiC field emitter
arrays (FEA) were synthesized by Ivanov O. A., and the B-doped ND film coated 6H-SiC
FEA lower turn-on electric field, higher emission current, and long-term current stability
than the undoped coated one and the original 6H-SiC FEA, because of the lower work
function, higher conductivity and chemical inertness of B-doped ND films [91].
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Additionally, metal is another comment doping material to improve the field emission
properties of ND film, which can not only effectively lower the residual stress and modify
the carbon films’ mechanical property, but also simultaneously improve the capability
of emitting electrons. Yang Y. et al. proposed a titanium (Ti)-doped ND coating using
electrophoresis and annealing (EPD @annealing) process, and studied the influence of Ti
doping amount on the morphology, structure, and the field emission properties [92]. As
exhibited in Figure 9a, as the amount of Ti powder increases, the irregular grain arrays are
formed and increased. Additionally, the field emission measurement results in Figure 9b,d
shown that the turn-on E decreased from 7.45 V/µm of intrinsic ND film to 5.95 V/µm of
10 mgTi-doped ND film, and the maximum J increased significantly from 35 µA/cm2 to
130 µA/cm2 at 13.8 V/µm, and the luminous point increased with a moderate increase in Ti
amount powder, except for the 10 mg Ti-doped samples. Although the 10 mg Ti-doped ND
film had the maximum emission current, a less luminous point and non-uniform brightness
were achieved, implying that the comparatively large emission current is not necessary
to obtain a good luminous effect. Additionally, the physical field emission enhancement
mechanism of Ti-doped ND film was ascribed to the formed complicated microstructure
(TiC buffer layer) greatly improved the electron transport capacity. Compared with the
traditional emission materials, such as carbon nanotubes or carbon nanowalls, the number
and uniformity of the luminous points are not satisfied and need to be further improved.
Yang Y.N. group also conducted a comparative study about the effect of the Hf-doped and
Ti-doped on the field emission properties of ND films, and found that the field emission
characteristics of metal doped ND on Ti substrate were greatly influenced by the nature
of metal Ti and Hf and the bonding reaction between nano-diamond and substrate Ti [93].
Recently, a moderate Ni-doped ND film was produced by Wang Y. et al. using EPD an-
nealing process, in which the electron-rich Ni nano-powder improved the conductivity
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of ND coating and effectively promotes the conversion of diamond phase into high con-
ductive graphite phase and thus resulting in an excellent EFE properties with turn on E of
1.38 V/µm and larger maximum J of 1323 µA/cm2 (at E = 2.94 V/µm) [30]. Importantly,
the above studies suggest that the negative electron affinity might not be a prerequisite
for emitting the electrons from the ND film surface. As discussed by Wu K. et al., the
introduced graphitic channels provided a crucial pathways for enhancing the electrons
emission [85]. Similarly, the density of grain boundaries, internal carbon phase, and the
doping element in the ND films are considered to be the main reason for improving the
field emission properties. The specific field emission mechanisms and the role of NEA at
ND film surface should be further investigated and analyzed by more different advanced
equipments (Table 2).
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Figure 9. SEM images (a), field emission curves (b), microstructure model (c) and luminous photos
(d) of the Ti-doped ND cathode film with different amounts of Ti powder, i.e., 0 mg, 2 mg, 5 mg, and
10 mg [92].
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Table 2. The field emission properties of intrinsic/doping ND films in recent reports.

Gas Mixture
(Method)

Sample Grain Size

Turn-On /Threshold
Electron Field Maximum Current Density

References
E J Jmax E

4%CH4/
96%N2
(CVD)

N-doped ND film 10–30
nm

3.2
V/µm

4
µA/cm2

400
µA/cm2

6
V/µm [83]

20%CH4/
80%H2
(CVD)

ND film 10
nm

2.5
V/µm

10
µA/cm2

150
µA/cm2

~3.75
V/µm [84]

1%CH4/
99%H2
(CVD)

ND film 15–20 nm 4.0 V/µm 1
µA/cm2

560
µA/cm2 7.2 V/µm [86]

1%CH4/
4%H2

/95%N2
(CVD)

N-doped ND film 15–20 nm 2.2 V/µm 1
µA/cm2

720
µA/cm2 6.4 V/µm [86]

5%CH4/
95%H2
(CVD)

ND film 20
nm 8.5 V/µm 10

µA/cm2
500

µA/cm2 20 V/µm [87]

1%CH4/
99%H2
(CVD)

ND film ~ 2.9
V/µm

1
µA/cm2

32.7
µA/cm2

6.5
V/µm [88]

9.1%CH4/
81.8% H2/9.1%N2

(CVD)
N-doped ND film 10–20 nm 3.5

V/µm 1 µA/cm2 - - [89]

5%CH4/
94.5%H2/0.5%B(OCH3)3

(CVD)
B-doped ND film 20

nm
18

V/µm
10

µA/cm2
700

µA/cm2 30 V/µm [17]

19.9%CH4/
79.6%H2/0.5%B2O3

(CVD)
B-doped ND film <30

nm
0.8

V/µm 1 µA/cm2 ~60
µA/cm2

~1
V/µm [91]

1.92%CH4/
98%H2/0.08%B(OCH3)3

(CVD)

B-doped ND film
coated 6H-SiC FEA - 9 V/µm 1 µA/cm2 ~50

µA/cm2 ~16.2 V/µm [92]

Glucose@urea solid
layer

(heating precursor)
N-doped ND film 20~100

nm
3.6

V/µm
10

µA/cm2
1000

µA/cm2
6.0

V/µm [15]

ND powder/Ti powder
(EPD @annealing) Ti-doped ND coating - 5.95 V/µm 1 µA/cm2 130 µA/cm2 13.8 V/µm [93]

ND powder/Ni nano
powder (EPD
@annealing)

Ni-doped ND film - 1.38
V/µm 1 µA/cm2 1323

µA/cm2
2.94

V/µm [30]
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4. Conclusions and Prospect

The presented review is the overview of synthesis and the field emission properties
of ND films. Fabricated methods are explained briefly, such as CVD technology, diamond
seeding process, assembling NDs into continuous films, and laser irradiation technology.
Additionally, the typical field emission properties of ND films are also reviewed, and the
property improvement method are introduced and analyzed. It is clearly that the field
emission properties are strongly promoted by adjusting the ND grain size/boundary, sp2

phase content and the doped type/level.
In greater potentials, there will be more novel technologies in the future to improve

the production and field emission performance of ND films. The problem that arises in the
fabrication technology is the film quality and the production cost of intrinsic and doped
ND films. On the one hand, although considerable researches on the synthesis of ND films
have been conducted, the deposition rate, crystallinity, and the grain size uniformity are
still required to seek more controllable and cost-effective ways. On the other hand, there is
a large gap between the field emission properties of ND films and those of cone-shaped,
fibrous or tubular nanomaterials, and the improvement methods of the number of thin
film emission points and emission uniformity are still lack. In the future, the adjustment
and optimization strategies of the morphology, work function, and conductivity of the
ND film need to be further understood and controlled in the theoretical growth/emission
mechanism research and experimental long-term emission test, so as to better guide the
experimental realization of high-performance field emission devices.
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