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Abstract: The emulsifying ability of the naturally occurring surfactant deoxycholic acid (DCA) was
improved by dynamic interaction with nanometric layered particles, layered double hydroxide (LDH).
As DCA molecules are rigid due to the facial configuration of hydrophobic–hydrophilic groups, they
tend to form molecular aggregation in an acidic condition or imbalanced water–lipid ratios. In this
study, the homogeneous hybrids of DCA and LDH were obtained by the in situ growth of LDH
at a DCA molecule. The DCA−LDH hybrid successfully prevented the molecular aggregation of
DCA at an acidic pH and imbalanced water–to–oil ratio. The dynamic light scattering showed
that the hydrodynamic radius of micelle in the emulsion made with DCA−LDH maintained its
small size (<500 nm), while upon pH change and dilution with water, that made with DCA only
uncontrollably increased up to ~3000 nm. The polydispersity index value of the DCA–LDH emulsion
remained constant (<0.3) after the pH change and dilution with water, indicating the high stability
of the formulation. Furthermore, time-dependent turbidity monitoring revealed that the DCA-
only formulation suffered from serious coalescence and creaming compared with the DCA–LDH
formulation. It is suggested that the dynamic interaction between LDH layers and DCA prevented
molecular aggregation under unfavorable conditions for the oil–in–water emulsion.

Keywords: emulsion formulation; emulsifying ability; emulsifier; deoxycholic acid; layered
double hydroxide

1. Introduction

Recent advances in nanotechnology have opened new eras in academic and industrial
fields. Scientists intentionally manipulate the atomic arrangement of particles and control
the lattice parameters of crystalline materials [1–3]. Another group of researchers fine-tune
the composition of nanoparticles to control the optoelectronic properties of nanomate-
rials [4,5]. Nanocomposites prepared in 2-dimensional substrates are often utilized as
high-performance biosensors [6,7] or electronic devices [8,9]. Among the various routes to
fabricate nanomaterials, the suspension technique is one of the approaches with the most
potential in industrial fields, as it can be directly applied to chemical engineering fields. In
order to get the homogeneous dispersion of nanoparticles in a solvent media, emulsion
technology can be exploited.

Emulsion, that is, colloidal dispersion of two or more immiscible chemical species,
has long attracted interest in various industrial fields, such as pharmaceutics, cosmet-
ics, textiles, and agrochemicals [10–15]. Specifically, in terms of chemistry, an emulsion
is defined as a biphasic system, in which a dispersed phase is homogeneously located
throughout a continuous phase. For example, an oil–in–water emulsion, the most widely
utilized formulation in cosmetics, has oil droplets as a dispersed phase and water as a
continuous phase. However, emulsions are not always thermodynamically stable and
tend to be destabilized via physical processes, such as creaming, flocculation, and coa-
lescence. In order to prevent the destabilization of the emulsion, emulsifiers are used
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to enhance the colloidal stability of the system. The emulsifying ability of emulsifiers
refers to the ability to resist a thermodynamically unstable system and enhance kinetic
stability [16]. Improvement of the emulsifying ability of emulsifiers is essential to inhibit
the destabilization of emulsion [17–19]. Surfactant is a representative emulsifier; it both
develops a resistant interfacial layer between the dispersed phase and continuous phase,
and generates strong repulsive forces among dispersed phases through micelle formation,
resulting in the restricted aggregation of droplets [20,21]. Various kinds of emulsifying
agents, such as natural (lecithin and Carnauba wax), semi-synthetic (methylcellulose and
sodium carboxymethyl cellulose), and synthetic (milk of magnesia, benzalkonium chloride,
glyceryl ester, and Tween and Span series) have been developed and utilized in diverse
industrial fields.

In addition to the above-mentioned artificial emulsifiers, naturally occurring am-
phiphilic molecules, such as deoxycholic acid (DCA), have recently attracted interest due to
their low toxicity and wide applicability. DCA is often found in bile acid and is known to be
involved in fat dissolution. DCA and bile acids have been researched in various biological
fields, such as cholesterol solubilization, dietary fat manufacturing, fat-soluble vitamin
absorption, removal of fatty acids from pancreatic hydrolysis, etc. [22–26]. Recently, DCA
has been utilized to reduce submental fat [27,28] and to treat obesity-associated fatty liver
disease; DCA is one of the most potent inhibitors of the liver-specific fatty acid transport
protein 5 [29].

Despite its performance in biological systems, DCA, as an emulsifying agent, could
emulsify immiscible liquids; however, the stability of the emulsion was inferior due to
the aggregation of DCA. DCA tends to aggregate, and then it cannot be adsorbed to
the interface. Therefore, DCA has limited emulsifying ability under certain chemical
conditions. For example, it forms supramolecular aggregates at a low pH, improper
temperature, and imbalanced water–to–oil ratio. This can be attributed to the structural
limitations of DCA. DCA, as one of the bile salts, is different from a classical surfactant
that has a relatively small polar head and a flexible hydrophobic tail. DCA has a facial
structure with a hydrophilic (hydroxyl and carboxylate) and a hydrophobic side (steroid
ring) (Figure 1a). It has an almost flat shape, with weakly separated hydrophobic and
hydrophilic faces. Due to the rigidity in the steroid group, the separation between the
hydrophilic and hydrophobic domains is incomplete, and the strong interaction between
the hydrophobic parts often results in a formation of aggregates [30–33]. To the best of our
knowledge, no prior report has been made on enhancing the emulsifying ability of DCA
under various chemical conditions. One possible way to improve a thermodynamically
unstable surfactant-based emulsion was proposed by Nesterenko et al. They conjugated
a thermodynamically unstable non-ionic surfactant with hydrophobic silica particles to
obtain an increase in critical micellar concentrations and to prevent aggregation at a high
concentration [34]. It could be explained that solid particles efficiently stabilized the
droplets by forming a network at the interface between two immiscible liquids that acted as
a steric barrier against coalescence in the emulsion [35,36]. Nesterenko’s report suggested
that the interaction between solid particles and molecular emulsifiers complements the
downsides of conventional molecular surfactants.

Inspired by this approach, we suggest a combination of DCA with nanometric layered
particles via electrostatic force. Under aqueous conditions, the DCA molecules adsorb
on the nanolayer and detach from the layer very quickly, forming a so-called dynamic
equilibrium. Due to the adsorption of the nanometric layered particles, the DCA molecules
acquire steric hindrance of the large plate and finally avoid molecular aggregation. We
chose layered double hydroxide (LDH), which is a biocompatible anionic clay [37], as
the layered nanoparticles (Figure 1b). Since DCA has a carboxylic group as an anionic
center, an electrostatic interaction is feasible between DCA and positively charged LDH
layers (Figure 1c). In a dispersion, DCA can be adsorbed on the LDH under a dynamic
equilibrium. When DCA molecules only are presented in the oil–in–emulsion, they tend to
aggregate; however, the existence of a LDH nanolayer, which strongly interacts with DCA,
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hinders the molecular aggregation and preserves the stable emulsion status (Scheme 1).
In order to demonstrate the process in Scheme 1, we designed a relevant hypothesis and
experimental sets. The major hypothesis is that the coalescence process can be restrained in
the presence of LDH, since LDH particles form a layer surrounding the emulsion droplets.
To observe the stability of the emulsion with the assistance of LDH particles, emulsions
with either DCA only and DCA with LDH were prepared. Furthermore, the performance
of LDH in different conditions was prepared by adding co-emulsifiers, such as polysorbate
60 and hydrogenated lecithin. The emulsions were then treated to unfavorable conditions,
such as acid treatment or dilution with water, to show the resistance of LDH toward
DCA aggregation. Two main characterizations of dynamic light scattering (DLS) and
time-dependent turbidity profiles were carried out to monitor the colloidal behavior of the
DCA formulation with and without LDH.
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Scheme 1. Schematic of the dispersion systems consisting of DCA only or DCA with LDH, before
and after stimulation.

2. Materials and Methods
2.1. Materials

Sodium deoxycholate (DCA), magnesium nitrate hexahydrate, and aluminum ni-
trate nonahydrate were purchased from Sigma–Aldrich Co., LLC. (St. Louis, MO, USA).
Sodium hydroxide and sodium nitrate were purchased from Daejung Chemicals & Metals
Co., Ltd. (Siheung, Gyeonggido, Republic of Korea). Caprylic/capric triglyceride (CCT,
PALMESTER3575) was purchased from Palm-Oleo Sdn, Bhd. (Petaling Jaya, Malaysia).
Hydrogenated lecithin (HL, Lecinol S10) was obtained from Nikkol Chemicals Co., Ltd.
(Tokyo, Japan) and polysorbate 60 (PS 60, Polyoxyethylene(20) sorbitan monostearate,
RHEODOL TW-S120V) was obtained from Kao Co. (Tokyo, Japan) All chemicals were of
reagent grade and were used without further treatment.
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2.2. Synthesis of DCA−LDH

Sodium deoxycholate (6.2182 g, 0.015 mol) was added to 100 mL of decarbonated wa-
ter under continuous stirring for 30 min for dissolution at room temperature (RT), under N2
flow; meanwhile, the mixed metal solution was prepared by adding both Mg(NO3)2·6H2O
(20.1900 g, 0.07875 mol) and Al(NO3)3·9H2O (9.8450 g, 0.02625 mol) into 100 mL of decar-
bonated water under continuous stirring for 30 min at RT, under N2 flow. Solution (200 mL)
was obtained via the mixing of 100 mL of sodium deoxycholate solution and 100 mL of the
mixed metal solution at RT, under N2 flow. Furthermore, an alkaline solution of 1 mol/L
of NaOH was prepared by adding NaOH (9.9992 g, 0.25 mol) to 250 mL of decarbonated
water. The suspension was prepared by co-precipitation with increasing pH via adding
NaOH at a rate of 50 mL/h. The resulting dispersion was stirred vigorously at RT for 24 h.
The precipitates were filtered, washed three times with water, collected by centrifugation at
12,000 rpm (relative centrifugal force, RCF = 6451 g) for 5 min at RT, and then lyophilized
for 24 h.

2.3. Preparation of the Lipid-Core Capsule Formulations

To prepare the emulsion, caprylic/capric triglyceride (CCT) of a lipid molecule, as a
dispersed phase, was selected (Figure 1d). Two kinds of surfactants, polysorbate 60 (PS
60, also known as Tween 60, Figure 1e) and hydrogenated lecithin (HL in Figure 1f), with
different hydrophilic–lipophilic balances (14.9 for PS 60, and 9.7 for HL), were chosen as
co-emulsifiers to adjust the stability of the emulsions.

All six formulations were prepared by adding raw materials into one reactor and
mixing them with a homogenizer. The speed of the homogenizer was slowly increased to
10,000 rpm, and the mixture was thoroughly mixed for 10 min. Table 1 summarizes the
weight content of each raw material for the six formulations.

Table 1. Content (in % wt/wt) of DCA or DCA−LDH; CCT; and co-emulsifier in each formulation.

Formulation DCA CCT Co-
Emulsifier Water Formulation DCA−LDH CCT Co-

Emulsifier Water

F1 1% 2% - 97% F1′ 2% 2% - 96%
F2 1% 2% PS 60 2% 95% F2′ 2% 2% PS 60 2% 94%
F3 1% 2% HL 2% 95% F3′ 2% 2% HL 2% 94%
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Figure 1. Chemical structures of the materials used in this experimental work: (a) sodium deoxy-
cholic acid (DCA), (b) layered double hydroxide (LDH), (c) DCA adsorbed on LDH (DCA-LDH),
(d) Caprylic/capric triglyceride (CCT), (e) polysorbate 60 (PS 60), (f) hydrogenated lecithin (HL).
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2.4. Characterization

Structural characterizations for DCA only and DCA−LDH were carried out with
X-ray diffraction (XRD) and Fourier-transform infrared (FT−IR) spectroscopy. The XRD
patterns were obtained with Ultima IV (Rigaku, Tokyo, Japan) by utilizing Ni-filtered
Cu–Kα radiation (λ = 1.5409 Å, 40 kV, 30 mA) as an X-ray source. The X-ray diffraction
patterns were collected in the 2θ range (5−80◦), with time-step increments of 0.02◦ and 0.5 s
per step. The FT−IR spectra were recorded using an FT/IR-4600 spectrometer (JASCO,
Tokyo, Japan) in the range (2000−600) cm−1, with 4 cm−1 resolution, to detect transmission
at RT. The spectrometer was equipped with an attenuated total reflectance (ATR) accessory
and Ge crystal. The powders of DCA and DCA−LDH were placed on the crystal and
directly measured via ATR.

The colloidal stability of the formulations was evaluated by measuring both the hy-
drodynamic radii and the zeta potentials of the micelles in the diluted conditions, utilizing
the zeta potential–particle size analyzer of ELSZ-1000 (Otsuka Electronics Co., Ltd., Osaka,
Japan). The intensity-based average diameter (Z-average diameter) and polydispersity
index (PDI), which were obtained using a correlation function provided by the TurbiSoft
software, were utilized to interpret the hydrodynamic behavior of the formulation.

The time-dependent turbidity of the formulation against the gravity direction was
monitored with Turbiscan Lab Expert equipment (Formulaction Co., Toulouse, France),
utilizing static multiple light scattering; the instrument emits a light beam at a wavelength
of 880 nm through a cylindrical glass cell containing the sample, and either the transmission
or backscattering of light were monitored. For the measurement, emulsion samples were
diluted with deionized water to obtain the appropriate turbidity and were placed in a
cylindrical glass cell (height = 50 mm). Two synchronous optical sensors could receive the
light transmitted through the sample (180◦ from the incident light), and the light backscat-
tered by the droplets in the sample (45◦ from the incident light). Both the transmission
and backscattering were scanned from the bottom to the top of the emulsion (height over
45 mm), which was repeated every 30 min. The transmission and backscattering were
monitored for 7 h at 25 ◦C.

3. Results and Discussion
3.1. Structural Analysis of DCA and DCA−LDH

To investigate the degree of interaction between DCA and LDH in the solid state, an
X-ray diffraction experiment was first carried out, as shown in Figure 2a. The DCA alone
revealed a halo pattern in the range 10◦ < 2θ < 30◦ (black line in Figure 2a), indicating
the existence of an amorphous arrangement of DCA due to the irregular intermolecular
interaction among the sterol moieties through the van der Waals interaction [38]. The XRD
pattern of DCA−LDH also showed a broad, amorphous pattern; however, the degree was
much less than in DCA alone (Figure 2a). It was noteworthy that we could observe the
development of peaks at 34.4◦ and 60.7◦, which can be indexed to the (012) and (110) crystal
planes, respectively, of LDH, according to the Joint Committee on Powder Diffraction
Standards (JCPDS) 22-0700 (red curve in Figure 2a) [39,40].

Different from the conventional LDH, (00l) patterns, the characteristics of 2-dimensional
materials, were not observed; this absence was attributed to the poor ordering of the layer
stacking along the c-axis. The existence of asymmetric lattice peaks for (012) strongly
indicated the formation of a turbostratic-structured LDH phase, corroborating the poor
ordering of the c-axis stacking. We could obtain two major points in the XRD pattern of
the DCA−LDH: (i) the intermolecular interaction in DCA was strongly inhibited, and
(ii) the crystallite size of the LDH particle was sufficiently small, and the layer stacking was
sufficiently disordered to facilitate interaction with the molecular DCA. In other words,
both the DCA and LDH moieties were homogeneously blended at the nanometer scale to
block assembly between the same species. Supposing that this interaction existed in the
dispersion, the molecular aggregation of DCA could be substantially prevented.
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Further information on the structure of DCA−LDH was examined with FT−IR spec-
tra, as shown in Figure 2b. Both spectra of DCA and DCA−LDH showed similar patterns,
displaying bands for the stretching vibration of the C−O bond (1042 cm−1) [41,42], and
antisymmetric and symmetric COO− stretching (at around 1550 and 1400 cm−1, respec-
tively). The results confirmed that the deoxycholate was well preserved after adsorption
onto the layered particle surface, which is attributed to the electrostatic interaction between
the carboxylate moiety of the DCA and the positive charge of the LDH layer [43]. Both
XRD and FT−IR analyses revealed that the DCA molecules could be bound to the LDH
layer in the solid state, and that the DCA would have affinitive interaction with LDH, even
in the suspension state. Although the adsorbed DCA can be detached from LDH under
aqueous formulation, we are confident that the overall DCA−LDH is maintained through
dynamic equilibrium.

3.2. Stability of DCA- and DCA−LDH-Containing Formulations in Acidic Condition

The stability of formulations at lowered pH (~5.5), depending on the type of emulsifier
(DCA or DCA−LDH), was monitored by photographs for 24 h (Figure 3). The critical
micellar concentration (CMC) of DCA is known to be ~0.1 wt% in water at 25 ◦C [44], and
it could form aggregated liquid crystal at an elevated concentration. As the concentration
of DCA in this study is 1%, we are fairly sure that the DCA would form micelle in the
formulation and that it would aggregate under an imbalanced condition. According to the
previous report, inorganic particles, which can adsorb surfactants, tended to reduce the
CMC of surfactants [45]. Therefore, we expected that the CMC of DCA could be modified
to a lower value and the critical concentration to form aggregates would be dropped down.
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Figure 3. Photos of the different formulations at lowered pH (~5.5) for 24 h.

It was clearly shown that F1 and F3 (DCA formulations) resulted in coalescence and
sedimentation, respectively, as identified by the red rectangles in the figure, suggesting that
at slightly acidic pH, oil droplets gathered rapidly due to the aggregation of DCA moiety.
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The stabilities of the corresponding DCA−LDH formulations (F1′ and F3′) were apparently
higher than those of the DCA ones. This indicated that when DCA interacted with LDH, the
intermolecular aggregation of DCA in micelles could be effectively inhibited. This may be
due to the steric hindrance of nanometer-sized particles to block the molecular aggregation
of DCA. In order to solve the aggregation of DCA, Zhang et al. recently combined DCA
with silica particles and achieved high stability of an octane–water emulsion, even at a
high concentration [46]. A similar approach to enhance emulsion stability with inorganic
particles was reported by Bhatia’s group [47]. They combined clay particles with surfactants
of sodium dodecyl sulfate, Pluronic F68, and dodecyltrimethylammonium bromide to
prepare an oil–in–water emulsion. They found that the zeta potential change initiated
by the clay particles altered the characteristics of the emulsions. Although it is not clear
whether the action of the silica or clay was similar to that of the current LDH, we are fairly
sure that the existence of inorganic particles influenced the aggregation of DCA molecules
in an unfavorable condition.

We could not observe clear differences of stability between F2 and F2′, possibly due
to the strong stabilizing effect of PS 60, which has a high hydrophilic–lipophilic balance
(HLB = 14.9). The detailed difference in the colloidal stability of the DCA formulation, with
and without LDH moiety, is quantitatively investigated below by dynamic light scattering
and time-dependent turbidity change.

3.3. Colloidal Behavior of DCA- and DCA−LDH-Containing Formulations

To investigate the colloidal stability of DCA in emulsions, its average hydrodynamic
radius (Z-average) and polydispersity (PDI) were monitored under an imbalanced water–
to–oil ratio by diluting it with 10-, 20-, and 50-times deionized water (Figure 4, and Table
S1 of the Supplementary Materials). Notably, the Z-averages of emulsions in the presence
of DCA−LDH (F1′, F2′, and F3′) did not change significantly upon dilution up to 50 times,
preserving the emulsion size at less than 500 nm (Figure 4A). The droplet size is important
for the stability of the emulsion. On the other hand, the emulsion with DCA only (F1, F2,
and F3) readily destabilized, showing a significantly higher Z-average than DCA−LDH
emulsions (F1′, F2′ and F3′). Apparently, when the water–to–oil ratio changed, the aggrega-
tion among DCA molecules was facilitated, while when LDH nanolayers co-existed with
DCA, molecular aggregation was strongly prohibited. This could be interpreted as the
DCA−LDH-containing emulsions being well dispersed in the highly diluted condition. The
difference in colloidal stability between the DCA emulsion and the DCA−LDH emulsion
was most clearly shown in the F1 and F1′ pair. The other two pairs (F2/F2′ and F3/F3′) did
not suffer severe aggregation, possibly due to the presence of a co-emulsifier, such as PS 60
or HL.

In addition to the Z-average values of emulsions, the PDI also gave meaningful
information on the stability of an emulsion. The PDI value is the ratio between the square
of the standard deviation and the average value; when the value is below 0.3, it indicates
monodispersity [48,49]. As shown in Figure 4B, the PDI values of the DCA−LDH emulsions
(F1′, F2′, and F3′) were below 0.3, while those of the DCA emulsions (F1, F2, and F3) were
higher than 0.3. It is worth noting here that F1, which contained DCA as the only emulsifier,
exhibited a serious increase in PDI value; the value was 0.34 at 10-times dilution, but it
increased to around 1.00 at 50-times dilution. It is well known that DCA, as a component of
bile salt, can emulsify large fat droplets into small ones [50,51]. However, we observed that
the increased amount of water could disturb the action of DCA as an emulsifier, resulting
in the growth of fat droplet size. From the dynamic light scattering study, we could suggest
that when LDH particles existed near the DCA molecules to interact with them dynamically,
the emulsifying ability of DCA could be preserved.
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3.4. Zeta Potential of DCA in Oil–in–Water Emulsions

The zeta potential, one of the parameters to estimate the stability of emulsion by
electrostatic repulsion, was monitored to determine the colloidal stability of the emulsions
(Figure 5, and Table S2 of the Supplementary Materials). The absolute values of zeta
potential for all emulsions were greater than 30 mV, indicating that all the emulsions had
sufficient repulsive force among particles to attain colloidal stability [52]. Even the absolute
value was higher for DCA emulsions (F1, F2, and F3) than for DCA−LDH emulsions
(F1′, F2′ and F3′). This conflicts with the hydrodynamic radius data in Figure 4A, which
showed more stabilized colloids for less charged emulsions. The less negative charge of
DCA−LDH can be interpreted as the charge neutralization of negative DCA by positive
LDH [53,54]. Due to the positive layer charge and high surface area, LDH has a high affinity
to anionic species through electrostatic interactions [55,56]; thus, various negatively charged
species can be adsorbed on the surface of LDH layers through electrostatic interactions.
As deoxycholate is an anion, it also adsorbs on the surface of LDH layers [57]. When the
DCA molecules (negative charge) are adsorbed on the LDH surface (positive charge), the
negative charge of DCA would be camouflaged by the LDH moiety; vice versa, the positive
charge of LDH would also be screened by the DCA moiety. In this way, both DCA and LDH
would lose their intrinsic negative and positive charge to make neutralization. Even with
less negative charge, the LDH particles interacting with DCA hindered the intermolecular
aggregation of DCA to reduce the overall hydrodynamic size. The DCA micelle did
not avoid fusion among the micelles under imbalanced water–to–oil ratio; this may be
due to the strong intermolecular aggregation under high water content, which exceeds
electrostatic repulsion. On the other hand, the DCA moieties in DCA−LDH micelles
are under dynamic equilibrium with LDH layers; thus, the molecular aggregation was
prevented, regardless of the water–to–oil ratio. These results suggest that LDH provided a
good solid platform to stabilize the emulsifying ability of DCA. Another point to be noted
in the zeta potential values of DCA micelles is the significant disparity with respect to
co-emulsifier. As clearly shown in Figure 5, the values of F1, F2, and F3 were −75, −35,
and −65 mV, respectively. This indicates that the DCA emulsion was highly dependent
on the action of co-emulsifiers [58,59] due to their intrinsic instability arising from the
intermolecular aggregation. However, the F1′, F2′, and F3′ emulsions did not show a
difference in zeta potential, regardless of co-emulsifier, which was attributed to the major
stabilizing effect of the LDH over other co-emulsifiers.
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3.5. Stability Monitoring by Time-Dependent Turbidity

In addition to the dynamic light scattering and zeta potential measurement, the sta-
bility of emulsions was investigated by multiple light scattering using TurbiscanLab®

equipment. Figure 6 shows the time-dependent change in transmission (∆T) and backscat-
tering (∆BS) at the various height positions of the vial (50 mm in height) that was monitored.
We could observe a slight increase in ∆T for both F1 (Figure 6a) and F1′ (Figure 6b), which
indicated that both emulsions underwent coalescence to some extent, giving rise to inter-
particle space for light transmission. However, note here that the degree of ∆T was higher
in F1 than in F1′ over 7 h, suggesting less tendency of coalescence in F1′ than in F1. In addi-
tion, F1 showed a sharp increase (>12%) in ∆T at an early time in the bottom part (0–5 mm
in height), which clearly indicated a decrease in particle concentration by coalescence or
Ostwald ripening [60–62]. As we could not observe these phenomena in F1′, we could
expect the higher stability of the DCA−LDH emulsion than of the DCA one.
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The backscattering signal of both emulsions showed almost zero in the vial height
range 0−45 mm (Figure 6c,d). Although zero ∆BS indicates negligible particle growth
or aggregation, we could not ascertain the stability of either emulsion due to the low
concentration of the tested samples. Therefore, we focused on the dramatic increase of ∆BS
in height >45 mm for F1 (Figure 6c). The increased ∆BS at the top side of tube could be
accounted for by the creaming phenomenon, which occurred in the gathering of creamed
emulsion at the top. Creaming is the instinctive tendency to form a concentrated cream
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layer at the top of an oil–in–water emulsion. If there is a segregation of oil and water, the oil
droplets will cream up due to the density difference [63]. The ∆BS results suggested that oil
droplets in DCA-only emulsions migrated to the top as the DCA lost its emulsifying ability,
resulting in the segregation of the oil and water phases. Although DCA only has been
reported to stabilize the oil phase by itself [46,64–66], the current finding indicates that the
emulsifying capacity of DCA was limited to a certain pH range and balanced water–to–oil
ratio. However, the emulsifying ability could be improved by interaction with LDH. The
dynamic interaction between DCA and LDH greatly suppressed the molecular aggregation
of DCA; thus, the formulation with DCA−LDH acquired stability against aggregation.

It can be generally expected that the low surface energy of the micelle increases the
stability of micelles by avoiding interarticular fusion. According to the previous report, the
interfacial tension increased after the addition of plate-like particles into the water–in–oil
emulsion. The adsorption of surfactants on the surface of the particle led to a decrease in
surfactant density, increasing interfacial tensions. In spite of the increased surface tension,
the paper revealed that the colloidal stability increased under the existence of plate-like
particles, possibly due to the network formed by the large particles [67]. Similarly, we
believe that the colloidal stability was not only governed by the interfacial tension, but
was also influenced by the physical interaction between additives and the micelle surface.
Similarly, the DCA–LDH formulation, which would apparently have higher surface tension
than the DCA-only formulation, could acquire higher colloidal stability.

The stability of emulsions in the presence of co-emulsifiers, i.e., PS 60 or HL, was also
monitored and is displayed in Figure S1 of the Supplementary Materials (∆T) and Figure 7
(∆BS). After 7 h, we could not observe any significant change in ∆T due to the excellent
stabilization ability of PS 60 and HL (Figure S1 of the Supplementary Materials). The
difference between DCA and DCA−LDH was found at the top of the tube (height > 40 mm)
in ∆BS. For example, ∆BS at the top of F2 was ca. 35%, indicating particle migration to the
top of the sample tube, i.e., creaming [61,68]. On the other hand, a slight ∆BS increase (~6%)
in F2′ indicated less tendency of particle movement, suggesting the good stabilization
system of the F2′ formulation. This is consistent with the DLS data, where the mean
particle sizes of the F2′ formulation were smaller than that of F2 (shown in Figure 4).
The situation was similar to the formulations with the HL co-emulsifier; it was clearly
observed that an increase of ∆BS at the top of the tube was much higher for F3 (25%) than
for F3′ (10%), representing that there was a larger tendency of creaming in the F3 than the
F3′ formulation [69,70]. The result corroborated the excellent property of DCA−LDH as
an emulsifier.
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4. Conclusions

In conclusion, the stability of DCA emulsions was improved with the assistance of
LDH, even at a low pH and imbalanced water/oil ratio. Dynamic light scattering clearly
showed that the hydrodynamic radius of the DCA-only emulsions increased dramatically
at a low pH and high water–to–oil ratio, while the formulations made with DCA−LDH
were not affected in terms of hydrodynamic size, even in an acidic condition and 50-times
dilution with water. The PDI value of the DCA–LDH emulsions remained fairly constant
under 0.3 after pH change and dilution with water. The sizes of oil droplets in DCA–LDH
emulsions (<500 nm) were relatively small compared to DCA-only emulsions (much larger
than 500 nm) with the same oil content. These results suggested that the presence of
LDH particles resists emulsion coalescence, possibly through surrounding the emulsion
droplets with LDH layers. The zeta potential of DCA−LDH micelles was less negative
than that of DCA ones, indicating that LDH particles closely attach to the droplet surfaces
by dynamic interaction toward DCA. The multiple light scattering, i.e., time-dependent
turbidity, presented that the change in transmission of emulsions stabilized by DCA−LDH
(∆T < 4%) was smaller than that of emulsions made with DCA (∆T > 12%), suggesting the
superior stability of the DCA−LDH-containing emulsion over the DCA-containing ones.
With the assistance of LDH, DCA acquired high dispersibility in emulsions and avoided
molecular aggregation. The emulsions with small droplet sizes have high applicability in
various biological fields, including drug delivery systems and nutraceutics.
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F3, and F3′; Table S2: Zeta potentials of emulsions diluted by 10 times for F1, F1′, F2, F2′, F3, and F3′.
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