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Abstract: Despite the significant improvement in the survival rate of cancer patients, the total cure of
bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less
than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells.
For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy
(PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors,
and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been
reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified
with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called
bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone
defects. This review summarizes the recent application progress of various bifunctional scaffolds and
puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor
therapy and bone regeneration: two hawks with one arrow.
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1. Introduction

The total cure of bone cancer is still a knotty clinical challenge, though the survival rate
of cancer patients has improved significantly with the progress of modern technology [1].
Bone cancer usually refers to malignant tumors of bone that are classified into primary
and metastatic bone tumors according to the origin of the tumor. Primary bone tumors,
especially osteosarcoma, are common in adolescents and young adults [2]. Early clinical
signs of primary bone tumors are inconspicuous; therefore, the tumor has often grown
sufficiently before the patient seeks medical attention [3]. Because of the suitable living
environment in the bone marrow, the skeleton is conducive to tumor metastasis, which
occurs in approximately 80% of breast or prostate cancers. Metastatic bone tumors are
more common in middle-aged and older patients, which used to be considered advanced
tumors and incurable [4]. Both bone tumors lead to unbearable pain associated with serious
skeletal lesions, causing great distress to patients [5,6].

It is urgently required to develop noninvasive and efficient novel clinical treatments
since conventional surgical resectioning of bone tumors is usually characteristic of inevitable
residual tumor cells and large area bone defects [7]. Photothermal therapy (PTT) was
developed by using photothermal therapeutic agents (PTAs), and generates the precisely
controlled hyperthermia generated under near-infrared (NIR) light irradiation, which
can efficiently ablate malignant tumors, thus providing a new minimally-invasive local
therapy [8]. To date, diverse PTAs have been designed for PTT, including Au-based
nanomaterials, carbon-based nanocomposites, metal chalcogenide nanomaterials, organic
small molecules, and so on [9–16]. The therapeutic effects of both PTT and the combined
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therapies have been well validated by in vitro and vivo experiments. Such approaches
could lend effective protection to bones from destruction by tumor cells; however, they
have thus far failed to regenerate bones that were already damaged.

Bone is essentially a mineralized conjunctival tissue, chiefly made up of inorganic and
organic components. The inorganic mineral in bones mainly consists of nanohydroxyapatite
(nHA, Ca10(OH)2(PO4)6) and some trace elements [17,18]. Collagen (mainly type I) with
osteoconductivity is the main organic component of the bone and has been considered
a good template for mineralization [19]. To the present, utilizing bone grafts is the main
careful method of repairing bone defects, including autograft, homograft, and heterograft;
however, it usually comes with insufficient donors and high surgical risks [20]. The use of
bioactive scaffolds is taken into account as a workable alternative to bone grafting because
it perfectly avoids the above problems and has attracted worldwide attention in bone
tissue engineering (BTE) in the past decade [21]. When implanting scaffolds into the bone
defect sites, the cells, such as bone mesenchymal stem cells (BMSCs), or the nutrients
and molecules required by the cells, are transported to the inner part of the scaffolds to
promote cell growth, vascularization, and ultimately promote new bone formation [22].
Appropriate pore size and porosity are required for scaffolds which may affect ossification
and angiogenesis, as well as mechanical and degradation properties that are necessary
for osteogenesis [23]. These scaffolds are mainly divided into inorganic bioceramics and
organic polymers, bringing demonstrated possibilities for accomplishing ideal osteogenesis.

More recently, a new type of biomaterial was reported to be able to present dual func-
tions of significant tumor ablation and osteogenesis simultaneously via integrating PTAs
into scaffolds [24,25], known as the strategy of “two hawks with one arrow” (Scheme 1).
Given the excellent performance of bifunctional scaffolds, this review focuses on the
progress of various bifunctional scaffolds in the treatment of bone tumors and provides
some practical constraints and future perspectives.
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Scheme 1. The progress of various bifunctional scaffolds in the treatment of bone tumors, the strategy
of “two hawks with one arrow.”

2. Bioceramic Scaffolds

Bioceramics refers to a class of ceramic materials used for specific biological or physio-
logical functions, which means that ceramic materials are directly used in the human body
or related to the human body in biological, medical, biochemical, etc. applications [26].
Calcium phosphate and bioactive glass (BG) are the two common types of bioceramics in
BTE. Because of their bioactivity, ions can be continuously released as the materials degrade
to promote osteoblast proliferation and differentiation, eventually leading to the formation
of new bone tissue.
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2.1. Calcium Phosphate Scaffolds

The use of phosphates to repair and rebuild the damaged parts of bone has a long
history in healthcare, dating back to the 1770s [27]. The most widely studied calcium
phosphate bioceramics include nHA and tricalcium phosphate (TCP).

2.1.1. nHA

As the main inorganic component in human bones, nHA has inherent biocompatibility
and osteoconductivity; however, the poor mechanical strength and slow degradation hin-
dered its wide application [28]. These problems are usually solved by compounding nHA
with organic polymers such as chitosan (CS) and gelatin (Gel) [29]. Lu et al. succeeded
in doping carbon dots (CD) into CS/nHA composite scaffold by facile physical mixing,
which not only endowed the scaffold with excellent photothermal and antibacterial prop-
erties but also enhanced the osteogenic capacity (Figure 1) [30]. The scaffolds showed a
porous structure conducive to the adhesion of rat BMSCs. The doping of CDs not only up-
regulated the expression of osteogenic genes, but also significantly promoted the formation
of vascularized bone tissue to further promote bone formation. After being implanted into
the tumor in osteosarcoma-bearing mice, the scaffolds effectively inhibited tumor growth
in vivo under NIR irradiation of 808 nm (1 W/cm2). In addition, NIR radiation further
enhanced the antibacterial activity of the scaffolds, and significantly killed the clinical
bacteria Staphylococcus aureus and Escherichia coli.
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2.1.2. TCP

The chemical composition of TCP is similar to that of nHA. According to different
lattices, TCP is divided into α-TCP and β-TCP, and the latter is more used in BTE because
of the appropriate degradation rate [31]. The initially reported bifunctional scaffolds were
graphene oxide (GO)-modified β-TCP scaffolds [24]. GO with high photothermal conver-
sion efficiency (PCE) and satisfactory cytocompatibility could accelerate cell proliferation
and differentiation [32]. However, its therapeutic efficacy was limited by potential toxicity
and long-term safety [33]. Carbon aerogel (CA) exhibiting multiple unique properties
such as large surface area, ultra-low density, and excellent thermal stability might be a
substitute for other C-based PTAs. Dong et al. coated CA on β-TCP scaffolds for the
treatment of osteosarcoma [34]. Under the NIR irradiation of an 808-nm laser (1 W/cm2),
the scaffolds generated enough heat to ablate osteosarcoma cells, with a cancer inhibition
rate of up to 81.85%. Scaffolds could enhance the attachment of bone marrow stromal cells
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and regulate subsequent cell behavior without irradiation. Due to the extra roughness
and higher specific surface area provided by the CA coating surface, protein recruitment
capacity was promoted, which accelerated the adhesion and osteogenic differentiation of
BMSCs, thereby stimulating new bone formation.

Compared with nHA, β-TCP is more easily absorbed and replaced by new bone; how-
ever, it faces the problem of weak mechanical strength as well [35]. Dang et al. utilized the
method of surface modification to enhance the mechanical strength of β-TCP scaffolds [36].
After coating with LaB6 and poly(d,l-lactide) (PDLLA), the average value of compressive
strength of scaffolds was doubled and increased with the coating time. As well as releasing
bioactive Ca2+ and PO4

3−, the scaffolds could also release La3+ and BO3
3−, which have

been proven to induce the expression of osteogenesis-related genes [37,38]. Meanwhile,
in vitro experiments show that tumor cells could be effectively eliminated under the irradi-
ation of a NIR light (808 nm, 0.7 W/cm2) due to the unique photothermal properties and
effects of LaB6. In addition, coated with PDLLA as a medium, scaffolds could be loaded
with the antitumor drug doxorubicin (DOX) and TiN microparticles (Figure 2) or hemin
particles (Figure 3) as PTAs to achieve the synergistic effect of chemotherapy and PTT on
osteosarcoma [39,40].
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Figure 2. Schematic illustration of the fabrication and application of TCP–TN–DOX scaffolds for
therapy of osteosarcoma. F127 and TCP were mixed to obtain homogeneous printing glue for printing
scaffolds using a 3D printing machine. The scaffolds were then sintered to obtain TCP scaffolds,
which were immersed into solutions containing TiN and PDLLA, and solutions containing DOX
and PDLLA to obtain TCP–TN–DOX scaffolds. The TCP–TN–DOX scaffolds were implanted into
mice bearing osteosarcoma to achieve synergetic effects of photothermal therapy and chemotherapy
(reproduced with permission from Reference [38], Copyright 2021, American Chemical Society).
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Figure 3. Schematic illustration of the process for preparing BGC-HM-DOX scaffold and its applica-
tion for the combined photothermal therapy and chemotherapy of osteosarcoma. Hemin particles and
DOX are integrated onto 3D-printed BGC scaffolds by using the polymer PDLLA as the medium. The
BGC bulk scaffold can offer mechanical support for bone tissue after implantation into bone defects
derived from surgical removal of osteosarcoma (reproduced with permission from Reference [39],
Copyright 2021, Elsevier).

Metal-organic frameworks (MOFs) are promising candidates for biomedical materials
due to their excellent surface properties, biocompatibility, and multiple tunability [41]. In
recent years, MOFs as PTAs have been designed for tumor therapy [42]. Dang et al. coated
Cu-coordinated tetrakis (4-carboxyphenyl) porphyrin on the surface of β-TCP to fabricate
scaffolds with photothermal and osteogenic properties [43]. Specifically, 90% of tumor cells
could be killed after being irradiated for 10 min by a NIR light of 808 nm with a power
density of 1.0 W/cm2. It is worth noting that Cu2+ could promote angiogenesis, which
is a necessary factor to promote new bone formation [44]. After implantation into the
rabbit bone defect, the scaffolds showed good bone formation biological activity and slow
degradation, and the formation of new bone-related tissues could be observed, indicating
that the scaffolds promoted the formation of new bone.
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Ma et al. developed bifunctional scaffolds by coating 5% Cu-containing- mesoporous
silica nanosphere (MSN) on the surface of β-TCP by spin coating [45]. The scaffolds effec-
tively obliterated tumor cells and favored osteogenic differentiation in vitro. Unfortunately,
the in vivo tumor ablation and bone regeneration capabilities of the scaffolds have yet to
be validated. Furthermore, the drug-carrying capacity of MSN failed to be exploited for
adjuvant cancer therapy.

In order to simultaneously eradicate tumors and repair tumor-related bone defects,
Lin et al. constructed FeMg-NPs/TCP / Poly (lactic-co-glycolic acid) (PLGA) scaffolds
based on PDA nanoparticles containing Fe3+ and Mg2+. The chemodynamic therapy (CDT)
produced by Fe3+ works synergistically with PDA-induced PTT, resulting in a large number
of tumor cell death and severe necrosis of tumor tissue [46]. The addition of Mg2+ enhanced
the differentiation of osteoblasts and effectively repaired bone defects in vivo.

2.2. Silicate Scaffolds
2.2.1. CaSiO3

Calcium silicate (CaSiO3) is the simplest silicate bioceramic. Fe-CaSiO3 composite scaf-
folds capable of synergistic therapy were fabricated via 3D printing (3DP) technology [47].
On the one hand, PTT could be provided by localized surface plasmon resonance of Fe.
On the other hand, the Fenton reaction could be activated by the release of Fe2+, which
promoted the decomposition of H2O2 to generate reactive oxygen species (ROS) to kill
tumor cells (Figure 4). The synergistic effect of PTT and ROS increased the mortality rate
of tumor cells to 91.4% in vitro. Moreover, the scaffolds exhibited a compressive strength
of 126 MPa, which is within the compressive strength range of dense human bones, pro-
viding adequate mechanical support for cortical bone defects. In addition, when testing
the osteogenic ability of the scaffolds in vivo, rabbits were irradiated by the NIR light of
808 nm at 0.8 W/cm2 for 10 min, and no adverse effect was found of the short-term PTT on
long-term bone regeneration.
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Fu et al. combined the 3DP and polymer-derived ceramics (PDCs) strategies to simply
and efficiently fabricate free carbon-embedding larnite (β-CaSiO3) scaffolds [48]. The
obtained scaffolds showed excellent photothermal and bone regeneration ability. After
being irradiated with NIR light (808 nm, 1.25 W/cm2), the cellular activity of osteosarcoma
cultured on larnite/C-3 scaffolds (MNNG/HOS) was only about 5%. It is worth noting
that the introduction of free C could enhance the bone regeneration ability of larnite
scaffolds. Specifically, the new bone mineral density (BMD) and bone volume/tissue
volume ratio (BV/TV) of composite scaffolds (0.41 g/cm3, 40%) were higher than those of
larnite scaffolds (0.3 g/cm3, 35%).
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2.2.2. Bioactive Glass (BG)

BG is generally a multi-component system with silicate as the main component,
and some BGs based on borate or borosilicate components have also been applied in
BTE [49]. The earliest BG was developed by Professor Hench in the early 1970s based on
the SiO2-P2O5-CaO-Na2O quaternary system. In recent years, researchers have made BGs
multifunctional to meet human metabolic needs by adding bioactive elements [50].

Cu-based chalcogenides, as a new class of efficient PTAs, have the advantages of
convenient synthesis, strong absorption in the NIR region, and high PCE [9]. Dang et al.
combined the photothermal properties of semiconducting CuFeSe2 with the osteogenic
activity of BG to prepare bifunctional scaffolds [51]. PCE up to 82% allowed the scaffolds
to heat up rapidly under 808-nm NIR laser irradiation at a power density of 0.5 W/cm2 to
induce 96% of tumor cell apoptosis in vivo. The ions of Si, P, Ca, Cu, Fe, and Se that are re-
leased during scaffold degradation could work together to promote osteogenesis (Figure 5).
Because Cu can induce Fenton reaction, Cu-based chalcogenides such as CuS have been
developed for multimodal tumor therapy [52–54]. Unfortunately, at present, few of them
have been combined with scaffolds for synergistic tumor therapy and bone regeneration.
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BG scaffolds doped with Cu, Fe, Mn, and Co elements were prepared by 3DP tech-
nology, and the photothermal properties and osteogenic activities of these scaffolds were
systematically investigated [55]. In addition to inhibiting tumor growth in vivo, Fe- or
Mn-doped scaffolds also promoted the adhesion of rabbit bone mesenchymal stem cells
(BMSCs), and the released Fe3+ or Mn2+ significantly stimulated the osteogenic differenti-
ation of osteoblast. Cu-doped scaffolds, although owning the most excellent anti-tumor
ability, were potentially cytotoxic. Most inorganic PTAs are plagued by this problem during
the application and the preparation cost is relatively high because their constituent elements
are mostly heavy metals and rare metals [56].

2D black phosphorus (BP) nanosheets with excellent photothermal properties are eas-
ily oxidized and degraded in aqueous media to become phosphate and phosphonate [57].
Based on this feature, Yang et al. prepared BP-reinforced 3D-Printed Scaffolds, and the



Nanomaterials 2023, 13, 551 8 of 23

PO4
3− generated by the degradation of BP could extract Ca2+ from the ambient physio-

logical microenvironment for osteogenesis [58]. Quantitative analysis based on confocal
fluorescence images showed that the introduction of BP enhanced the osteogenesis rate by
3.7-fold. When the scaffolds were implanted into the tumor center for PTT, the tumor tissue
temperature rose sharply from 30 ◦C to 55 ◦C within 1 min and 58 ◦C within 5 min (808 nm,
1 W/cm2), and tumors in mice were eradicated and no longer reoccurred within 14 days.

Tremendous attention has been paid to organic PTAs due to their superior biodegrad-
ability, low toxicity, and structural diversity [59]. PDA with simple preparation and good
biocompatibility has been widely studied in the fields of drug delivery and imaging as well
as tumor therapy or diagnostic methods. Strong adhesion to almost all substrates makes
PDA easy to combine with nanomaterials, greatly expanding their applications [12,60,61].
For the first time, Ma et al. applied organic PDA as PTAs into bifunctional scaffolds [25].
Saos2 cells and MDA-MB-231 cells were effectively killed even with NIR laser irradiation
at an ultra-low laser power density (808 nm, 0.3 W/cm2). The absence of significant cell
death in the control group demonstrated the excellent cytocompatibility of the scaffolds
(Figure 6).
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Figure 6. Relative viability of osteosarcoma cells and breast cancer cells on the slices (a) and in
scaffolds (b) with and without irradiation (** p < 0.01, *** p < 0.001). Both osteosarcoma and breast
cancer cells on the slices and in DOPA-BC scaffolds with irradiation were effectively killed due to
the photothermal effect of DOPA-BC scaffolds (reproduced with permission from Reference [24],
Copyright 2016, Elsevier).

To date, a great deal of effort has been devoted to exploring organic PTAs such as
cyanine dyes, porphyrin derivatives, and D-A type conjugated polymers [62,63]. Unlike
inorganic PTAs, the lengthy synthetic steps of organic compounds are a familiar problem
in the design of organic PTAs [64,65]. Inspired by the undemanding and economical
manufacturing methods and prominent characteristics of organic cocrystals, Xiang et al.
prepared NIR-absorbing organic cocrystalmodified BG scaffolds for NIR-activated photonic
osteosarcoma hyperthermia and enhanced bone regeneration [66]. Based on a precise
simulation of the band gap between the electron donor and acceptor of organic cocrystals,
the scaffold showed outstanding PCE. The temperature of tumor sites administrated
with scaffolds raised drastically from 32 to 53 ◦C within 2 min after exposure to the NIR
laser (808 nm, 1 w/cm2) illumination. The tumors of mice were completely eradicated
without further recurrence after PTT. More importantly, bifunctional scaffolds demonstrated
enhanced abilities to stimulate osteogenic differentiation and angiogenesis, ultimately
promoting the formation of new bone.

MXenes mainly include transition metal carbides and nitrides, in which “M” denotes
transition metal atoms, “X” is C or N, and “ene” represents an ultrathin 2D structure. With
fascinating physicochemical properties, MXenes have been explored in PTT as a new class
of 2D materials [67]. Moreover, MXenes have been proven to show good biocompatibility
and bone regeneration activity in vitro and vivo [68]. Employing the direct solution-soaking
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method, Pan et al. rationally integrated 2D Ti3C2 MXenes with BG for the first time to
construct bifunctional scaffolds for bone cancer treatment (Figure 7) [69].
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Figure 7. Schematic illustration of the fabrication of TBGS, ablation of bone cancer, and regeneration
of bone tissue. (I) Fabrication procedure of TBGS, including 3D printing of pure BGS, integration
of Ti3C2 MXene, and degradation of Ti3C2 MXene on BGS. (II,III) TBGS used for osteosarcoma cell
elimination by photothermal ablation both in vitro (II) and in vivo (III). (IV) Bone-tissue reconstruc-
tion and the therapeutic results after the implantation of BGS and TBGS (reproduced with permission
from Reference [65], Copyright 2019, John Wiley and Sons).

Most of the PTAs introduced before only absorbed the first near-infrared (NIR-I,
750–1000 nm) light with low maximum permissible exposure (MPE, 0.33 W cm−2 for
808 nm) and weak tissue penetration ability, which is unfavorable for practical clinical
applications [70,71]. In contrast, the second near-infrared (NIR-II, 1000–1700 nm) light
penetrates deeper into biological tissue and shows larger MPE (1.0 W cm−2 for 1064 nm),
which is more suitable for PTT [15,72]. Yang et al. prepared 2D Nb2C MXenedoped
BG scaffolds for PTT in the NIR-II biowindow [73]. Nb element in the PTA Nb2C could
promote the formation of new blood vessels and accelerate the repair of large-scale bone
defects [74]. In addition, S-nitrosothiol was also introduced into the composite scaffolds
and, by controlling the release of NO from S-nitrosothiol, the anti-tumor ability and bone
regeneration effect of the scaffolds were enhanced. Under NIR-II laser irradiation, NO was
rapidly released to reach a high concentration, eradicating tumors effectively by inducing
DNA damage and inhibiting DNA repair. The tumor was eliminated without recurrence
after two weeks of the combined treatment with PTT (1064 nm, 1 w/cm2) and gas therapy.
In the later stage of treatment, low concentrations of NO contributed to angiogenesis and
bone regeneration.

In addition to containing the common elements Si, P, and Ca, other elements such as
B, Na, Mg, etc. were also added into BG to improve osteogenic ability [75,76]. Wang et al.
first compounded MoS2 and PLGA into a thin film and then coated it on the surface of
borosilicate BG to prepare integrated treatment scaffolds [77]. The effective control of Mo4+

release or retention by PLGA film prolonged and guaranteed the photothermal performance
of the scaffolds, as well as reducing the toxicity caused by excess nanomaterials. Due to
NIR-triggered photothermal ablation (808 nm, 2 w/cm2), the survival rate of tumor cells
in vitro was significantly reduced to 15%, compared to 95% in the blank control group.
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2.3. Other Bioceramic Scaffolds

Akermanite (AKT, Ca2MgSi2O7) is considered a kind of bioceramic with great potential
due to its ability to stimulate angiogenesis, good mechanical properties, and controllable
degradation rate [78]. The bone regeneration ability of AKT scaffolds could be enhanced
after the introduction of coating with 2D borocarbonitrides (BCN), which is mainly due
to the following factors [79]: (1) The large specific surface area of BCN improved the
adsorption capacity of the scaffolds to bovine serum albumin (BSA) protein; (2) -OH on BCN
significantly upregulated the expression of fibronectin (FN); (3) in situ biomineralization
properties displayed by BCN; (4) B element in BCN promoted mineralization and osteogenic
differentiation. In addition, the strong light absorption of BCN endowed the scaffold with
excellent photothermal properties to ablate tumor cells.

Wang et al. realized in situ growth of MoS2 nanosheets on the strut surface of AKT
scaffolds via a controllable hydrothermal process [80]. Hyperthermia induced by PTT
(808 nm, 0.5 w/cm2) of scaffolds made 89% of tumor cells necrosis in vivo. Notably,
compared to the AKT scaffolds, the composite scaffolds showed a higher ability to enhance
the expression of bone-related genes such as osteopontin (OPN), osteocalcin (OCN), and
runt-related transcription factor 2 (Runx2) (Figure 8).
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Figure 8. (a) osteogenic gene expression (Runx2, OPN, and OCN) (b–d) of rBMSCs in the MS-AKT
and AKT scaffolds at day 7 (* p < 0.05, ** p < 0.01). Cells spread well and were closely attached on
both MS-AKT and AKT scaffolds. The proliferation of rabbit bone mesenchymal stem cells (rBMSCs)
cultured with MS-AKT and AKT scaffolds had no significant difference at each time point (one, three,
and seven days), indicating the good cytocompatibility of MS-AKT scaffolds. MS-AKT scaffolds
could stimulate bone-related gene expression of rBMSCs, including Runx2 and OPN (reproduced
with permission from Reference [76], Copyright 2017, Springer Nature).

Zhuang et al. fabricated Fe-doped, 3D-printed AKT scaffolds for combined photo/mag
netothermal therapy and bone regeneration [81]. The combination of magnetothermal
therapy (MTT) and PTT (808 nm, 0.75 w/cm2) produced higher temperatures with cell
viability after photo/magnetothermal treatment was significantly lower than that of PTT
or MTT alone in vitro (Figure 9). In addition, Fe-doped AKT scaffolds significantly pro-
moted the proliferation and osteogenic differentiation of rabbit BMSCs compared with
AKT scaffolds.



Nanomaterials 2023, 13, 551 11 of 23

Nanomaterials 2023, 13, x FOR PEER REVIEW 11 of 24 
 

 

Zhuang et al. fabricated Fe-doped, 3D-printed AKT scaffolds for combined 
photo/magnetothermal therapy and bone regeneration [81]. The combination of magne-
tothermal therapy (MTT) and PTT (808 nm, 0.75 w/cm2) produced higher temperatures 
with cell viability after photo/magnetothermal treatment  was significantly lower than 
that of PTT or MTT alone in vitro (Figure 9). In addition, Fe-doped AKT scaffolds signifi-
cantly promoted the proliferation and osteogenic differentiation of rabbit BMSCs com-
pared with AKT scaffolds. 

  
Figure 9. In vitro photo/magnetothermal behavior of 2Fe-AKT-doped scaffolds and its effect on the 
viability of tumor cells. (a) Temperature changes in scaffolds under an 808-nm laser at the power 
density of 0.75 W cm−2, at an alternating magnetic field of 640.6 A m−1, or both the laser beam and 
magnetic field. (b) Relative cell viability of bone tumor (LM-8) cells on 2Fe-AKT scaffolds after pho-
tothermal, magnetothermal, or photo/magnetothermal treatment (*** p < 0.001). (c–f) Corresponding 
confocal images of live/dead tumor cells after thermal treatment. The photo/magnetothermal treat-
ment could efficiently kill tumor cells in vitro [81]. 

3. Polymeric Scaffolds 
Polymeric scaffolds are divided into two categories: natural polymers and synthetic 

polymers, which possess the advantages of biosafety, histocompatibility, and non-toxic 
degradation products [82]. However, pure polymeric scaffolds are not suitable for use as 
a matrix material for bone defect repair alone, since the mechanical properties are far from 
natural bones. In BTE, it is a common and feasible method to fabricate composite scaffolds 
composed of polymers and bioceramics [83]. The composite scaffolds effectively enhanced 
tissue cell adhesion, proliferation, and differentiation, and induced bone vascularization 
to promote bone remodeling [84,85]. 

3.1. Chitosan (CS) 
In the past three decades, CS, a natural polymer obtained from chitin, has played an 

important role in BTE [86]. CS possesses excellent biological activity but no osteoconduc-
tivity, and can not meet the requirements of a bone repair material when applied alone 
[87]. BG/CS composite scaffolds have been shown to support the adhesion, spreading, and 
proliferation of human BMSCs and promote bone regeneration in vivo [88,89]. Introduc-
ing SrFe12O19 magnetic nanoparticles endowed the scaffolds with excellent antitumor 

Figure 9. In vitro photo/magnetothermal behavior of 2Fe-AKT-doped scaffolds and its effect on the
viability of tumor cells. (a) Temperature changes in scaffolds under an 808-nm laser at the power
density of 0.75 W cm−2, at an alternating magnetic field of 640.6 A m−1, or both the laser beam
and magnetic field. (b) Relative cell viability of bone tumor (LM-8) cells on 2Fe-AKT scaffolds after
photothermal, magnetothermal, or photo/magnetothermal treatment (*** p < 0.001). (c–f) Correspond-
ing confocal images of live/dead tumor cells after thermal treatment. The photo/magnetothermal
treatment could efficiently kill tumor cells in vitro [81].

3. Polymeric Scaffolds

Polymeric scaffolds are divided into two categories: natural polymers and synthetic
polymers, which possess the advantages of biosafety, histocompatibility, and non-toxic
degradation products [82]. However, pure polymeric scaffolds are not suitable for use as a
matrix material for bone defect repair alone, since the mechanical properties are far from
natural bones. In BTE, it is a common and feasible method to fabricate composite scaffolds
composed of polymers and bioceramics [83]. The composite scaffolds effectively enhanced
tissue cell adhesion, proliferation, and differentiation, and induced bone vascularization to
promote bone remodeling [84,85].

3.1. Chitosan (CS)

In the past three decades, CS, a natural polymer obtained from chitin, has played an
important role in BTE [86]. CS possesses excellent biological activity but no osteoconduc-
tivity, and can not meet the requirements of a bone repair material when applied alone [87].
BG/CS composite scaffolds have been shown to support the adhesion, spreading, and
proliferation of human BMSCs and promote bone regeneration in vivo [88,89]. Introducing
SrFe12O19 magnetic nanoparticles endowed the scaffolds with excellent antitumor effects.
Besides, the magnetic field generated by SrFe12O19 significantly promoted the osteogenic
differentiation of stem cells and bone regeneration by activating the bone morphogenetic
protein-2 (BMP-2)/Smad/Runx2 pathway. Ma et al. coated nHA/GO composite parti-
cles on CS scaffolds to prepare composite scaffolds with triple functions of PTT, bone
regeneration, and hemostasis [90]. The temperature of osteosarcoma tissue increased to
49.9 ◦C after 150 s of the 808-nm NIR laser irradiation (0.6 w/cm2). However, when the
tumor was kept at 48 ◦C, the temperature of the surrounding tissue was much lower (mean
38.5 ± 0.6 ◦C), which reduced the damage to healthy tissue caused by the high temperature.
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Intriguingly, NIR significantly promoted the proliferation of cells on scaffolds, suggesting
that the appropriate temperature may favor osteogenic differentiation (Figure 10).
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Figure 10. Relative proliferation rates and osteogenic differentiation of hBMSC. Relative prolif-
eration rates of hBMSC co-controlled using GO or 30% nHA/GO particles at a concentration of
50 µg/mL with or without NIR irradiation, examined by (a) flow cytometry. Expression of osteogenic
differentiation-specific genes in hBMSC after incubation with GO or 30% nHA/GO in osteogenic
induction medium at a concentration of 50 µg/mL with or without NIR irradiation after seven days:
(b) ALP, (c) Runx2, (d) COL1, and (e) OCN (** p < 0.01, comparison between control group and other
groups. # p < 0.05, comparison between GO + group and 30% nHA/GO + group) (reproduced with
permission from Reference [86], Copyright 2020, Elsevier).

Zhao et al. designed multifunctional GdPO4/CS/Fe3O4 scaffolds for breast cancer
bone metastases therapy [91]. The hydrated GdPO4·H2O nanorods were orderly arranged
within the CS matrix, which facilitated the formation of new bone. Gd3+ released from the
scaffolds promoted M2 polarization of macrophages, which significantly stimulated blood
vessel formation. In addition, Gd3+ also promoted new bone regeneration by activating the
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BMP-2/Smad/ Runx2 pathway. After two weeks of PTT with 808-nm laser (4.6 w/cm2),
the tumors of mice became significantly smaller than before.

The derivative product of CS, carboxymethyl chitosan (CMCS), also has good bio-
compatibility, biodegradability, and osteogenic ability. Compared with CS, it is more
water-soluble and therefore has greater application potential [92]. Yao et al. mixed PDA,
HA, and CMCS into a slurry to prepare composite scaffolds via 3DP technology [93]. They
found that the hyperthermia generated by the photothermal effect not only directly killed
bone tumors but also inhibited tumor cell proliferation by inducing apoptosis and inhibit-
ing angiogenesis. The tumor temperature could increase to 50 ◦C within 1 min under
NIR irradiation (808 nm, 1 w/cm2), which not only directly killed bone tumors but also
inhibited tumor cell proliferation by inducing apoptosis and inhibiting angiogenesis. In
addition, PDA was found to promote the osteogenic differentiation of composite scaffolds,
possibly because the introduction of PDA increased the surface potential of scaffolds and
thus effectively promoted cell diffusion during adhesion and enhanced cell differentiation
into osteogenic lineages.

3.2. Gelatin (Gel)

Gel is a natural polysaccharide that is partially hydrolyzed from collagen [94]. On
account of its cell-adhesive structure, high biocompatibility, and low immunogenicity, the
application of Gel has been appropriated from the food industry and cosmetics industry
to the biomedical field [95]. Lowering the extraction temperature could obtain Gel with
higher mechanical strength; however, it was still not up to the standard in BTE [23,96]. The
rapid degradation rate under normal physiological conditions also hinders the application
of Gel in BTE [97]. A novel magnetic nanocomposite Gel/AKT scaffold was fabricated
to remedy the above deficiencies [98]. The porosity, compressive strength, and elastic
modulus of the scaffolds were significantly enhanced after the introduction of PTAs Fe3O4
and MWNTs (Table 1). In addition to acting as PTAs to eliminate tumor cells, multi-walled
carbon nanotubes (MWNTs) could enhance the osteogenic properties of scaffolds due to
their excellent mechanical properties, large surface area, easy functionalization ability, and
promotion of cell proliferation [99,100].

Table 1. Average pore size, porosity, and the mechanical properties of the prepared scaffolds [98].

Sample Pore Size (µm) Porosity (%) Compressive
Strength (MPa)

Elastic
Modulus (GPa)

Gel/Akr 110 ± 4 57 ± 1 0.94 ± 0.2 0.12 ± 0.1
Gel/Akr/Fe3O4 95 ± 1 67 ± 4 2.15 ± 0.2 0.23 ± 0.1

Gel/Akr/Fe3O4/MWNT 73 ± 2 76 ± 3 3.82 ± 0.2 0.45 ± 0.1

Osteoinductive and osteoconductive graphene has been shown to improve osteoge-
nesis, in addition to tunable photothermal properties [101,102]. The composite scaffolds
prepared by mixing Gel, nHA, CS, and graphene could be rapidly heated to kill tumor cells
after NIR laser irradiation [103]. Furthermore, the composite scaffolds could accelerate the
proliferation of pre-osteoblastic MC3T3-E1 cells in a mild photothermal environment.

Pan et al. designed bifunctional scaffolds by loading novel MOFs zeolitic imidazolate
framework 8 (ZIF8) nanoparticle carriers onto Gel scaffolds [104]. The sintered ZIF8 ac-
quired controllable photothermal properties, which could effectively kill residual bone tu-
mors. After 14 days of PTT (808 nm, 1 w/cm2), the tumor volume was significantly reduced
compared to the control groups (Figure 11). The mesoporous structure enabled ZIF8 to
be loaded with a BMP2 activator phenamil (Phe), and NIR laser irradiation promoted the
release of Phe from the scaffolds to enhance BMP2-induced osteogenic differentiation.
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Figure 11. (a) NIR thermal images of tumor-bearing mice at tumor sites of GF and GF/2ZIF8 scaffolds
exposed to 808-nm laser for a different time; (b) time-dependent tumor-growth curves of correspond-
ing groups at different times after different treatments; (c) the photographs of nude mice under
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0 and day 14; (d) body weight curves of nude mice treated in different groups (Control, GF + NIR,
and GF/2ZIF8 + NIR) at different times. GF, gelatin nanofibrous; NIR, near-infrared; ZIF, imidazolate
framework (reproduced with permission from Reference [100], Copyright 2022, Elsevier).

3.3. Silk Fibroin (SF)

SF is the inner layer of silk, which is mainly derived from Bombyx mori [105]. As
terrific mechanical properties, tunable biodegradation rate, and good biocompatibility have
been gradually discovered, SF nowadays shows great potential in BTE [106,107]. Miao et al.
fabricated PDA functionalized SF scaffolds that could enable the efficient, non-invasive PTT
of bone cancer [108]. Interestingly, optical fiber was employed to increase the penetration
depth of NIR light. Without using fiber optics, the temperature of the scaffolds was not
significantly increased, either when irradiated under pigskin (to simulate human skin)
or in mice. Conversely, the temperature after using the fiber optics to penetrate the skin
could reach above 40 ◦C to effectively kill tumor cells (808 nm, 1 w/cm2). Inspired by
cooking, Ling et al. fabricated hierarchically-porous SF/bacterial cellulose (BC)/Ti3C2
MXene composite scaffolds using a facile and feasible protein foaming method [109].
Benefiting from the excellent photothermal properties of Ti3C2 MXene, the composite
scaffolds showed an excellent photothermal treatment effect on osteosarcoma, and the
percentage of living cells decreased to 30% after the 10 min irradiation by the 808-nm laser
(1.5 w/cm2). Besides, as MXene’s osteogenic ability was proven, the composite scaffolds
produced faster osteogenesis and almost completed the repair of bone defects by new bone
tissue compared to controls (Figure 12).
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Figure 12. Schematic of the fabrication of physically cross-linked silk fibroin/bacterial cellulose/Ti3C2

(FSCM) scaffold with hierarchically porous structures and high photothermal performance, for
photothermal osteosarcoma therapy and accelerated bone regeneration (reproduced with permission
from Reference [105], Copyright 2022, Elsevier).

Curcumin (CM), a phenolic pigment extracted from turmeric, not only acted as a
chemotherapeutic drug to kill osteosarcoma cells but also enhanced the viability of os-
teoblasts at appropriate concentrations [110,111]. Meng et al. obtained a novel local
drug-delivery system with the abilities of chemo-photothermal synergistic osteosarcoma
treatment and bone regeneration by coating PDA on SF/CM scaffolds fabricated by su-
percritical carbon dioxide (SC-CO2) technology [112]. Under the NIR laser irradiation,
the release of CM was accelerated by combining it with PTT to synergistically enhance
osteosarcoma treatment. The activity of MG-63 cells decreased by only 20.4% after the
combined therapy, which was lower than that of chemotherapy (35%) and PTT (37.4%)
alone. With the increase in treatment time, the concentration of CM decreased, which could
further enhance the osteogenic effect of the scaffolds.

3.4. Synthetic Polymers

PCL is a kind of biocompatible aliphatic semi-crystalline polymer that has been ap-
proved by the Food and Drug Administration (FDA) [113,114]. The unique nature of slow
degradation favors the application of PCL in BTE [115]. Further, PCL is suitable for modifi-
cation to obtain properties that were not available previously, such as osteoconductivity and
osteoinductivity [116]. Wesselsite (SrCuSi4O10) is a sort of ancient pigment that exhibited
strong absorption of NIR-II light after being exfoliated into nanosheets, demonstrating
excellent potential in PTT [117]. Yang et al. developed Wesselsite nanosheetfunctionalized
PCL scaffolds for NIR-II PTT and enhanced vascularized bone regeneration [118]. The
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temperature of the tumor site in Saos-2 tumor-bearing mice was as high as 53.4 ◦C after
the NIR-II irradiation (1064 nm, 1 w/cm2), and the complete eradication of the tumor
could be observed after only four days of treatment. The sustained release of Cu, Si, and Sr
ions from composite scaffolds effectively promoted the expression of the osteogenic genes
OCN, BMP-2, and Runx2 of rat BMSCs and the angiogenic genes hypoxia-inducible factor-1
(HIF-1α), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor
(BFGF) of human umbilical vein endothelial cells (HUVECs) (Figure 13). Quantitative
analysis showed that BMD and BV/TV were improved by 1.39- and 1.82-fold, respectively,
compared with PCL stents alone.
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Figure 13. (a) Osteogenic gene (OCN, BMP2, RUN2) expression of rBMSCs cultured on 3D printed
PCL and 4-SC/PCL composite scaffolds for 7 days. (b) Angiogenic gene (VEGF, HIF-1α, BFGF)
expression of HUVECs cultured on 3D printed PCL and 4-SC/PCL composite scaffolds for 7 days
(* for 0.01 < p < 0.05, ** for 0.001 < p < 0.01, and *** for p < 0.001). (Reproduced with permission from
Reference [114], Copyright 2021, John Wiley and Sons).

Egyptian blue (EB, CaCuSi4O10) is also an ancient pigment with NIR absorption.
He et al. obtained EB nanosheets by a facile high-intensity sonication technique and then
modified them on the surface of CaCO3-PCL scaffolds to construct a multifunctional
osteosarcoma treatment platform [119]. EB nanosheets exhibited prominent absorption
in the NIR-II biowindow and high PCE, allowing the scaffolds to efficiently eliminate
more than 92% of osteosarcoma under 1064-nm laser irradiation (1.5 w/cm2) in vitro.
The Ca, Cu, and Si components from the scaffolds synergized with each other to jointly en-
hance bone tissue regeneration. Results from mRNA transcriptome analysis demonstrated
that scaffold-based therapy could modulate genes associated with cell death, proliferation,
and osteogenesis (Figure 14). PEEK is also an FDA-approved biomaterial with outstanding
mechanical properties (elastic modulus) similar to human bone [120]. Zhu et al. devel-
oped the first 3D-printed polyetheretherketone (PEEK)-based multi-functional scaffold
for challenging bone diseases such as osteosarcoma and osteomyelitis [121]. Along with
PTT, the presence of antibiotics and anti-cancer drugs allowed the scaffold to eradicate
drug-resistant bacteria and osteosarcoma cancer cells. PTT induced by an 808-nm laser
(0.3 w/cm2) reduced the tumor weight by 98.5% in vivo in conjunction with chemotherapy.
In addition, the combined therapy could mostly eradicate methicillin-resistant Staphylococ-
cus aureus and Escherichia coli. Coated with bioactive HA, scaffolds promoted serum protein
adsorption, cell adhesion, and proliferation, and accordingly resulted in faster healing of
bone defects.
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Exp and Ctrl groups (reproduced with permission from Reference [115], Copyright 2021, John
Wiley and Sons).

4. Conclusions and Outlook

More and more studies have been reported recently on bifunctional scaffolds for
the treatment of bone tumors. Benefiting from the versatility of PTAs in scaffolds, the
functions of scaffolds are not limited to PTT and bone regeneration, but the ability of
combination therapy, such as PTT combined with chemotherapy [39,40,112,121], CDT [46],
photodynamic therapy (PDT) [47], gas therapy [73], or MTT [81]. Some scaffolds possessed
an antibacterial function that effectively prevented the occurrence of intraoperative and
postoperative infection [30]. Most of the PTAs introduced previously could release bioactive
ions during the degradation process, which enhanced the osteogenic ability of scaffolds by
promoting cell adhesion, proliferation, and differentiation, and promoting the formation of
new blood vessels. In addition, some studies have pointed out that mild heat stimulation
of normal tissue by PTT also promoted the formation of new bone [103,122].

The strategy of modifying osteogenic scaffolds with PTAs not only endowed the
scaffolds with antitumor ability but also enhanced osteogenesis. It seems to provide a
perfect solution for the treatment of bone tumors; however, there is no effective bone tumor
model to simultaneously evaluate the tumor treatment and bone regeneration properties of
these scaffolds at present. Bone tumor models cannot be established in rabbits or larger
animals due to immune rejection, and the tumor-bearing nude mouse model is currently
the most common tumor model. However, the bone size of nude mice is too small to be
used effectively in models of bone regeneration defects. The current evaluation of the PTT
and bone regeneration properties of bifunctional scaffolds was performed by establishing
two independent animal models (ectopic tumor-bearing nude mouse model and bone
defect rat/rabbit model). It can be expected that PTT may interact with the process of
bone regeneration if an orthotopic bone tumor model is established. Currently, researchers
have paid more attention to the promotion effect of NIR irradiation on bone regeneration
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without considering the influence of the scaffolds on the photothermal properties of PTT.
The embedment of the PTAs in the scaffolds usually hinders the heat transfer owing to
the presence of the scaffold materials, affecting the PCE. Moreover, to clear the tumor as
effectively as possible, the hyperthermia generated by PTT may cause damage to normal
cells and tissues near the tumor. Some studies have revealed that PTT and osteogenesis
are chronologically independent processes, where the PTT treatment time is shorter than
osteogenesis. Even if the short-term PTT kills some osteocytes, long-term bone regeneration
is unaffected, as the normal BMSCs in the bone will migrate into the scaffolds. Therefore,
the triggering of PTT still needs to be strictly controlled, including power density, time,
space, etc., to reduce the damage to the normal tissues. Since bifunctional scaffolds need
to exist for a long time in vivo, the toxicity and degradation properties of PTAs are not
negligible. There are studies developing a new generation of biomaterials that inherently
possess photothermal properties and bone regeneration properties, successfully avoiding
the above problems and which opened up a new research direction for the treatment of
postoperative bone tumors [123,124].

Currently, research on PTT is mainly focused on the design and development of
novel PTAs, such as materials that absorb NIR-II light, which has recently attracted much
attention; however, clinical trials of PTT are less reported. Although PTT combined with
other therapies can more effectively remove tumors, the necessity, economic benefits, safety,
and efficacy of these synergistic therapies need to be discussed in detail.

New bone formation is a complex process that requires the consideration of molecular,
biochemical, and cellular factors. In terms of osteogenesis, ideal scaffolds should possess the
characteristics of good biocompatibility, vascularization, mechanical properties, osteocon-
ductivity and osteoinductivity. Adjusting the porosity and pore size of scaffolds may affect
ossification, angiogenesis, and mechanical and degradation properties. The osteogenic per-
formance of scaffolds can also be improved by compounding bioceramics with polymers.
However, at present, the components of bifunctional scaffolds are mostly bioceramics,
especially BG, and there are few pieces of research on polymers or composite scaffolds.
Moreover, scaffolds can be loaded with bioactive substances to promote bone formation,
such as the growth factors BMP-2 and VEGF. Recent studies have shown that successful
bone regeneration is based on coordinated interaction between BMSCs and macrophages,
and fractures will not heal without the direct involvement of macrophages. However, little
attention has been currently paid to the effects of macrophages on bifunctional scaffolds.

At present, the implantation of bifunctional scaffolds into the bone defect site after
surgical resectioning of bone tumors provides a promising idea for the postoperative
treatment of bone tumors. Under NIR irradiation, the scaffolds heat up rapidly, eliminating
nearby tumor cells. The scaffolds slowly degrade over time, helping the bone defect
grow new bone. Short-cycle PTT requires PTAs to have high PCE to eradicate tumor cells
quickly. Due to a long time for bone repair to take place, PTAs on scaffolds exist in the
body for a long time, and it is necessary to reduce their bio-toxicity. PTAs that release
bioactive ions have been validated to help with new bone formation and reduce the time to
bone regeneration. In addition, it is necessary to develop novel bioscaffolds with stronger
osteogenic ability to accelerate the healing of bone defects. To put it succinctly, future
research on bifunctional scaffolds should not only focus on toxicity, photothermal effect,
and osteogenesis, but also realize accurate time control of short-term tumor elimination
and long-term bone repair. Undoubtedly, this requires researchers in the fields of biology,
chemistry, physics, medicine, engineering, and more to conduct extensive interdisciplinary
research to bring good news to patients as soon as possible.
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