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Abstract: A sputtered FePt(BN, Re, C) film, here boron nitride (BN), was compared to a refer-
ence sample FePt(BN, Ag, C). Intrinsically, these films illustrate a high anisotropy field (Hk) and
perpendicular magnetocrystalline anisotropy (Ku),although the reference sample shows a higher
value (Hk = 69.5 kOe, Ku = 1.74 × 107 erg/cm3) than the FePt(BN, Re, C) film (Hk = 66.9 kOe,
Ku = 1.46 × 107 erg/cm3). However, the small difference in the anisotropy constant (K2/K1) ratio
presents a close tendency in the angular dependence of the switching field. Extrinsically, the out-of-
plane coercivity for the reference sample is 32 kOe, which is also higher than the FePt(BN, Re, C) film
(Hc = 27 kOe), and both films present lower remanence (Mr(parallel)/Mr(perpendicular) = 0.08~0.12), that
is, the index for perpendicular magnetic anisotropy. The higher perpendicular magnetization for
both films was due to highly (001) textured FePt films, which was also evidenced by the tight rocking
width of 4.1◦/3.0◦ for (001)/(002) X-ray diffraction peaks, respectively, and high-enough ordering
degree. The reference sample was measured to have a higher ordering degree (S = 0.84) than FePt(BN,
Re, C) (S = 0.63). As a result, the Ag segregant shows stronger ability to promote the ordering of
the FePt film; however, the FePt(BN, Re, C) film still has comparable magnetic properties without
Ag doping. From the surface and elemental composition analysis, the metallic Re atoms found in
the FePt lattice result in a strong spin–orbital coupling between transition metal Fe (3d electron)
and heavy metals (Re, Pt) (5d electron) and we conducted high magnetocrystalline anisotropy (Ku).
Above is the explanation that the lower-ordered FePt(BN, Re, C) film still has high-enough Ku and
out-of-plane Hc. Regarding the microstructure, both the reference sample and FePt(BN, Re, C) show
granular structure and columnar grains, and the respective average grain size and distributions are
6.60 nm (12.5%) and 11.2 nm (15.9%). The average widths of the grain boundaries and the aspect
ratio of the columnar grain height are 2.05 nm, 1.00 nm, 2.35 nm, and 1.70 nm, respectively.

Keywords: out-of-plane coercivity; perpendicular magnetocrystalline anisotropy; spin–orbital
coupling; columnar grains; granular structure

1. Introduction

Energy-assisted magnetic recording is an alternative way to overcome the trilemma
effect (superparamagnetic effect of CoCrPt oxides) in conventional perpendicular magnetic
recording (PMR) and heat-assisted magnetic recording (HAMR) with L10 FePt media is
the mainstream technology to target the hard disk area density beyond 4 Tb/in2 in the
near future. The L10 FePt film, which has higher magnetocrystalline anisotropy (Ku), is the
optimal media in the HAMR system [1–4] and the hard disk drive (HDD) based on FePt
media is currently being tested on data center customers [5–8].

To apply FePt media to HAMR, many works have discussed this extensively for
decades. For HAMR media, perpendicular magnetic anisotropy (PMA) of the FePt film
was a key requirement to extend the area density to ultrahigh and increase the capacity
in HDD [1–4]. After annealing the disordered face-centered cubic FePt alloy with nearly
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equal atomic compositional range, the ordered L10 phase with face-centered tetragonal
(fct) structure, which has high Ku [1–4], was formed. As a result, magnetron sputtering
and high-temperature deposition became the main technologies to prepare ordered L10
FePt films with high Ku. Many elements, for example, silver (Ag), copper (Cu), etc., have
been doped to lower the L10 FePt ordering temperature and Curie temperature, which
influenced the process deposition temperature and the laser writing (heat) power during
thin-film engineering [9–11]. In addition, the structure requirement for perpendicular
magnetic anisotropy tuned the surface energy and lattice misfit strain between the FePt and
MgO-based underlayer [12–16] and CrRu seed layers [14,17,18], and sputtered the FePt film
with (00L) orientation. In addition, to obtain a uniform granular structure and columnar
grains to avoid noise and increase the signal-to-noise ratio, multiple segregants are required
and Ag, carbon (C), and boron nitride (BN) are typical grain boundary materials for
perpendicular FePt media [5,6,19]. The C has strong phase separation and diffusive ability
to separate FePt grains and will initiate lateral growth and interrupt the columnar grains
when the C concentration is much higher than the solubility. The amorphous BN was hard
enough to support the FePt grains’ growth upward in the columnar morphology. The Ag
was used to enhance the FePt ordering via diffusion of Ag, which induces atom replacement
through vacancies [5,6,9,19,20]. To study the FePt-X composite films, interface chemistry
in heterostructures [21] and other functional alloy, oxide and composite films prepared in
sputtering [22,23] and other thin-film formation technologies [24,25] was also addressed.

Multiple segregants are required in heat-assisted perpendicular magnetic recording
media and BN, Ag, and C are necessary materials to co-sputter with the FePt layer and
form a typical microstructure, which shows granular structure and columnar grains. In
this work, the Ag segregant was replaced by the 5d element rhenium (Re). According
to the reference report, 5d elements have large spin–orbital coupling that will influence
the magnetocrystalline anisotropy of 3d metals; for example, in the order/disorder FePt
alloy, the 5d element significantly enhanced the magnetocrystalline anisotropy through
spin–orbital coupling and 3d–5d hybridization [26,27]. Based on this argument, different
Re 5d elements were doped in the FePt system to form an FePt(Re) alloy film, and the grain
boundary materials were parts of BN and C. Originally, the Ag was added to improve the
FePt ordering degree, which is proportional to the magnetic anisotropy, and we then tried
to break this relationship by preparing FePt(BN, Re, C), which has a lower ordering degree
but comparable Ku. The achievement of this work is adding Re to replace the Ag segregant
in the reference sample and that the FePt(BN, Re, C) film presents comparative magnetic
properties and microstructures.

Furthermore, the magnetic media noise was reduced by reducing the intrinsic- and
extrinsic parts of the switching field distribution (SFD) [2,3,27,28] and the SFD of two
samples was measured. The major and minor magnetic hysteresis loops were measured
to define and understand the magnetic characteristics, for example, dispersed magnetic
Hk, misaligned c-axis, non-uniform grain size in extrinsic parts [26,27], and the grains’
long-term dipole and short-term exchange coupling from extrinsic contribution [2,3].

2. Materials and Methods

The FePt(BN, Ag, C) and FePt(BN, Re, C) films were deposited by direct current
magnetron sputtering on MgO (100) single-crystal substrate. The sputtering deposition
equipment was designed to have main and pre-chambers and the substrate was moved
via the load-lock feedthrough to the substrate holder, which has a heating system formed
of a halogen lamp (OSRAM, 1000W) and cathodes (AJA, A320, North Scituate, MA, USA)
set up in the main chamber. The two-inch-diameter composite targets FePt(BN, Ag, C)
and FePt(BN, Re, C) were used. In order to compare the elemental Ag and Re doping
effects precisely, the MgO (100) single crystal was used to provide the optimal baseline
for the epitaxial growth of (001) textured FePt film. The MgO (100) substrate (HF-Kejing,
10 mm × 10 mm × 0.5 mm) was heated at 470 ◦C (the substrate surface temperature) for
dry cleaning and then the magnetic layers with thickness of 15 nm were sputtered under an
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Argon working pressure of 10 mTorr at 470 oC by the composite targets. The deposition rate
of FePt(BN, Ag, C) (15 nm) and FePt(BN, Re, C) (15 nm) was 0.0372 nm/s and 0.0421 nm/s,
respectively. In this study, the FePt(BN, Ag, C) was named as the reference sample because
of the typical segregants (BN, Ag, C) used in HAMR media.

The crystal structure was measured using standard X-ray diffraction (XRD) (BRUKER,
D8 Discover). The magnetization curves with in-plane and out-of-plane measured hystere-
sis loops were performed with a superconducting quantum interference device (SQUID)
magnetometer (MPMS-XL). The sample microstructure was observed using transmission
electron microscopy (TEM, JEOL JEM-2010). The surface analysis was measured using
X-ray photoelectron spectroscopy (XPS, ULVAC-PHI 5000).

3. Results and Discussion

Figure 1 shows XRD patterns of (a) FePt(BN, Ag, C) (reference sample) and (b) FePt(BN,
Re, C) films. Based on the crystal structure, the strong (001) and weak (003) superlattice
peaks were present because of the ordered L10 FePt phase (JCPDS 43-1359) and the (002)
fundamental reflection peak was also indexed (fcc FePt, JCPDS card no. 00-029-0718).
The lattice constant “c” was calculated using the (001) diffraction peaks and the values
are 0.3728 nm and 0.3743 nm, respectively. In addition, the (110) diffraction peak was
measured using grazing incident diffraction (GID) that is similar to the in-plane XRD
and the lattice constant “a” that was estimated with values of 0.3889 nm and 0.3857. The
reference sample presents a smaller c/a ratio (0.959), which means higher ordering (more
tensile stress on axis “a” and compressive force on axis “c”) as compared to the FePt(BN,
Re, C) film with c/a= 0.970. Another way to estimate the FePt ordering degree is by using
B. E. Warren’s equation [29,30]; the ordering degree is (I(001)/I(002))1/2/(I*(002)/I*(001))1/2

and the values are 0.84 and 0.63, respectively. The (I*(002)/I*(001))1/2 value was calculated
using film thickness and the width of half intensity in rocking curve, in theory [29,30],
and I(001)I(002) is the peak’s integrated intensity ratio for textured (001) FePt films and the
respective values are 2.04 and 1.15 in (a) and (b). In Figure 1b, there is the fct/fcc structured
FePt (200) tiny peak, indexed at 47.0◦, which contributes to the c-axis misalignment and
lowers the ordering degree of the FePt(BN, Re, C) film. The c-axis misalignment mentioned
above can be measured using the rocking curves and width at a half intensity of FePt
(001)/(002); the peaks are 4.09◦/3.03◦ and 4.09◦/3.07◦ in Figure 1c,d. The (002) rocking
curve was asymmetric due to the overlap of (200) and (002) peaks and a little wider inthe
FePt(BN, Re, C) sample. In summary, the reference sample and FePt(BN, Re, C) film were
hetero-epitaxially grown on MgO(100) and have a strong (001) texture.
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Figure 1. XRD patterns of (a) reference sample, FePt(BN, Ag, C), and (b) FePt(BN, Re, C) film. In the
inset picture, the MgO (100) single-crystal peak was trimmed from top to observe the ordered L10 FePt
(00L) diffraction peaks. FePt(001)/(002) rocking curves of (c) FePt(BN, Ag, C) and (d) FePt(BN, Re, C)
films (the fcc FePt (JCPDS card no. 00-029-0718), the tetragonal (ordered L10 FePt [JCPDS 43-1359])).

The perpendicular Hk magnetic anisotropy of the reference sample and FePt(BN, Re,
C) film was proved by the in-plane and out-of-plane magnetic hysteresis loop measure-
ments. The easy magnetization curve (out-of-plane) shows full and huge hysteresis and the
hard direction is a linear-like curve with small loop areas in Figure 2. The out-of-plane coer-
civity (Hc) is 32 kOe, 27 kOe, and the (Mr(in-plane))/Mr(out-of-plane) ratio, which qualifies the
perpendicular anisotropy as 0.12, 0.08, and the negative nucleation field, which is defined
at 0.95 Ms, is −2.5 kOe and −1.8 kOe, respectively. In Table 1, the reference sample illus-
trates a higher magnetic anisotropic field (Hk), which equals to 2Ku/Ms (Hk = 69.5 kOe),
magneto-crystalline anisotropy (Ku= 1.74 × 107 erg/cm3) and saturation of magnetization
(Ms = 502 kG), than the FePt(BN, Re, C) film intrinsically. The magnetic anisotropy field
Hk was defined as the intersection point of easy- and hard-axes magnetic hysteresis loops.
The reference sample FePt(BN, Ag, C) film shows a higher ordering degree (S) and also has
higher magnetic anisotropy (Ku than the FePt(BN, Re, C) film. Only 63% of the FePt(BN,
Re, C) grains are ordered but this film still has high-enough Ku and Hc. For reference,
the 5% concentration Co-Re shows higher Ku than Co-Pt [26]. It is suggested that Fe-Re
also contributes to extra Ku magnetic anisotropy due to the higher spin-orbital coupling
of heavy metal Re and hybridization with 3d Fe electrons. As a result, the high magnetic
anisotropy (Ku and out-of-plane Hc were proved in the relative lower ordered (S = 0.63)
FePt(BN, Re, C) film without Ag segregant.
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Table 1. Magnetic properties of reference FePt(BN, Ag, C) sample and FePt(BN, Re, C) films.

Sample Hc⊥ (kOe) Hc//
(kOe)

Ms
(T)

Mr///Mr⊥
(—) Ku (erg/cm3) Hk (kOe) HN

(kOe)

FePt(BN, Ag, C) 32 4.5 0.63 0.12 1.74 × 107 69.5 −2.5
FePt(BN, Re, C) 27 2.5 0.55 0.08 1.46 × 107 66.9 −1.8

From Table 1, the respective anisotropy fields (HK) of the reference FePt(BN, Ag, C)
and FePt(BN, Re, C) films are 69.5 and 66.9 kOe, and it is noteworthy that the values of
Ku were often estimated from the slopes on the magnetization curves measured using
a maximum applied field lower than the magnetic anisotropy Hk of L10-FePt, which
was likely to result in certain errors in the estimation of Ku and which might confuse
the discussion. Figure 3 illustrates the individual linear part in hard-axis curves for the
reference sample, and the FePt(BN, Re, C) film and the K1 and a high-order anisotropy
constant K2 were estimated using the following equation, respectively, [31,32]

H
m

=
2K′1

µ0M2
+

4K2

µ0Ms
m2 (1)

where m = M/Ms is the normalized magnetization and K′1 is the second-order anisotropy
constant (Sucksmith–Thompson method). From the H/m versus m2 plot, the K1 and K2
constants were conducted by the interception and the slope of the fitting curve [31,32]. The
K1 values are closer for the reference sample (K1 = 1.18 × 107 erg/cm3) and FePt(BN, Re, C)
(K1 = 1.16 × 107 erg/cm3) after fitting with the Sucksmith–Thompson method and the K2
values are 3.06 × 106 and 2.59 × 106 erg/cm3, respectively. The K2/K1 ratios of reference
and FePt(BN, Re, C) samples were 0.26 and 0.22 and the small change in the anisotropy
constant ratio means a close tendency in the angular dependence of the switching field.
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The (dynamic) ordering temperature, degree, and magnetic anisotropic Ku constant
were influenced by the FePt chemical composition, which was fixed to avoid any misleading.
The MgO (100) single-crystal substrate was used and it is suggested that the structure
variant of the FePt film was due to the slight dissolution of segregants at a high deposition
temperature. The quite different ordering degree in the reference sample (S = 0.84) and
FePt (Re, C, BN) film (S = 0.63) was because of the structure variant that also influenced
the magnetic anisotropy Ku. Based on the reference reports [31,32], the Ku1 and Ku2 are
proportional and independent to the ordering degree (S), respectively. In this study, the
values of the ordering degree and magnetic anisotropic constant were a direct response to
the Ag and Re segregants because the concentration of C and BN doping was the same in
both samples. Adding the Ag element truly promotes the ordering degree and has higher
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magnetic anisotropic constant (Ku). In the Sucksmith–Thompson method, the K1, which
determines the switching behavior, has close values for two samples (dK1 ~ 0.02) and the
K2, which dominates the thermal stability, has large differences (dK2 ~ 0.47). The K1 is
proportional to the ordering degree but the FePt(Re, C, BN) film presents extra spin–orbital
coupling between Fe and Pt(Re), which enhances the K1 value. As a result, the FePt(BN, Re,
C) film shows a lower K2/K1 value (0.22 < 0.26).

Figure 4 presents the major and minor (recoil in variant field) magnetization loops to
study the relationships between the magnetic switching behavior and grains’ morphology,
and the intrinsic and extrinsic switching field distribution was analyzed. When the loops
recoiled in the coercivity field, half of the grains (50%) were switched in the easy axial
direction and the parameters ∆Hint and ∆Hext were collected after comparison with the
major magnetic hysteresis curves. For reference FePt(BN, Ag, C) and FePt(BN, Re, C)
films, the intrinsic (∆Hint = 15.5 kOe, 9.30 kOe) and extrinsic (∆Hext = 3.54 kOe, 3.06 kOe)
switching field distributions were determined in Figure 4a,b, respectively.

The intrinsic switching field distribution comes from grain-size distribution (σvolume),
magnetic anisotropy field dispersion (σHk), and misalignment of the c-axis (σaxis), and
the extrinsic SFD comes from the grains’ dipolar and exchange coupling [2,3,27,28]. The
standard deviation (σint) of intrinsic SFD is estimated from the ∆Hint/1.35 [2,3,27,28], and
the (σint)2 can be written as the summary of (σvolume)2 + (σaxis)2 + (σHk)2, because of the
close values in rocking width (∆θ50) and average grain size in both samples; the grain-size
distribution (σvolume) and misalignment of the c-axis (σaxis) terms were dropped. As a
result, the SFD can be evaluated by the magnetic anisotropy field dispersion (σHk) and
the FePt (BN, Re, C) film illustrates smaller values. The small difference in extrinsic SFD
(∆Hext) means that the equal grain decoupling in granular structure for two samples and
the long-range magnetostatic coupling and inter-granular coupling were not considered in
this study.
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Figures 5 and 6 present the XPS of FePt(BN, Ag, C) and FePt(BN, Re, C) films. In 
Figure 5, in spite of metallic Fe, Pt, C, and Ag peaks, ferrite Fe3O4 and Fe satellite peak 
(Sat.) were also detected from the film surface after peak resolution. From the spectra line 
shape shown in Figures 5 and 6a, there are distinctive shoulders at the binding energy 
around 710 eV and 720 eV, and the Fe 2p3/2 and 2p1/2 core-level binding energy was 
considered and the Fe3O4 phase was observed both in FePt(BN, Ag, C) and FePt(BN, Re, 
C) films. The magnetite Fe3O4 (ferrimagnet) is a soft magnetic material and responds to
the slight kink illustrated in the out-of-plane magnetization curves at zero field in Figure
2a [33,34].

Figure 4. Major and minor loops of (a) reference FePt(BN, Ag, C) film and (b) FePt(BN, Re, C) film.
The minor loop is used to measure intrinsic and extrinsic switching field distribution (SFD).

Figures 5 and 6 present the XPS of FePt(BN, Ag, C) and FePt(BN, Re, C) films. In
Figure 5, in spite of metallic Fe, Pt, C, and Ag peaks, ferrite Fe3O4 and Fe satellite peak (Sat.)
were also detected from the film surface after peak resolution. From the spectra line shape
shown in Figures 5 and 6a, there are distinctive shoulders at the binding energy around
710 eV and 720 eV, and the Fe 2p3/2 and 2p1/2 core-level binding energy was considered
and the Fe3O4 phase was observed both in FePt(BN, Ag, C) and FePt(BN, Re, C) films. The
magnetite Fe3O4 (ferrimagnet) is a soft magnetic material and responds to the slight kink
illustrated in the out-of-plane magnetization curves at zero field in Figure 2a [33,34].
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The ferrite Fe3O4 was also observed in the XPS of the FePt(BN, Re, C) film in Figure 6a
and the kink in the magnetization curve was more clear in Figure 2b. For inverse spinel
ferrite Fe3O4, the Fe3+ ions are divided into tetrahedral (A) and octahedral (B) sites equally
and the Fe2+ ions are in B sites. In Figures 5 and 6, the Fe2+/Fe3+ ratio is higher in the
FePt(BN, Re, C) film, which means that larger soft-magnetic moments contributed to the
surface of the hard magnetic layer and a clear kink was observed in the hysteresis loops,
as evidenced in Figure 2b [35–37]. In addition, the metallic Re, and ReO2 appeared after
considering the Re 4f5/2 and 4f7/2 core-level binding energy in Figure 6c. According to
reference [38], the ReO2 is dark blue or black in color and the crystal structure is in the
monoclinic form below, 300 ◦C, and orthorhombic between 300 and 1500 ◦C. The FePt(BN,
Ag, C) and FePt(BN, Re, C) thin-film surface oxidations were both indexed in XPS and the
oxides were soft-magnetic Fe3O4 and ReO2, which may cause the lower ordering degree in
the FePt(BN, Re, C) film due to the deviation in near-equal atomic FePt. Actually, the soft
ferrite Fe3O4 causes the kink in magnetic hysteresis loops shown in Figure 2a,b and needs
to be avoided in practical applications.

From the plane-view TEM images, the FePt(BN, Ag, C) and FePt(BN, Re, C) films
show a typical uniform granular structure in which the FePt grains were separated by the
segregants (Figure 7). In Figure 8a,b, the FePt grains are mono-distributed with average
grain sizes <D> of 6.60 nm and 11.2 nm, and the grain-size distributions, defined by (σ:
standard deviation)/<D>, are 12.6% and 16.0% in the reference sample and FePt(BN, Re,
C) film, respectively. The reference sample shows smaller and more uniform grains than
the FePt(BN, Re, C) film and reflects the higher nucleation field (HN) that was defined at
the field of 0.95 Ms and out-of-plane coercivity (Hc), as presented in Table 1. However, the
grains’ density in the FePt(BN, Re, C) film was higher than in the reference sample because
of the smaller grain boundaries’ width (1.00 nm < 2.05 nm), which was estimated by the
subtraction of <Dc>(centre-to-centre average grain size) to <D> (average grain size).

The coherence between FePt and MgO(100) was confirmed by the orientation and
periodicity of the bright-field Moire fringes caused by the interference of diffraction spot
patterns between FePt and MgO and the periodicity (λ) is given by Equation (2) [39]

λ =
1
|∆g| =

dFePtdMgO√
d2

FePt + d2
MgO − 2dFePtdMgO cos α

(2)

where α is the relative angle between FePt(001) and MgO(002), and dFePt and dMgO are
spacing between planes, ∆g vector is reciprocal vectors between gFePt and gMgO [39].
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Ag, C) sample and (b) FePt(BN, Re, C) films.

The mixed Moire fringe patterns can be observed in Figure 7c and the average pe-
riodicity is 2.33 nm (63.5◦); for example, the individual period pattern is 2.15 nm, as
measured in Figure 7d. When the epitaxial coherency is perfect, the alpha value is 0 but
the rotational angle between FePt(001) and MgO(002) in this work is around 63.5o, cal-
culated by Equation (1), which means non-perfect epitaxial growth in the FePt(BN, Re,
C)/MgO system.

For the light atoms, for example, B, C, and N elements we chose to detect them via
electron energy loss spectroscopy (EELS) with beam sizes smaller than 5 nm; the EELS
spectrum of FePt(BN, Re, C) is shown in Figure 9. The B element was observed both
in FePt lattice and grain boundaries and the C and N elements were segregated in the
grain boundaries. After overlapping, part of the BN and C was found clearly in the grain
boundaries. The unexpected O element, which may come from the natural oxidation during
high-temperature deposition, was also observed at the grain’s boundary and the surface
oxides, for example, ReOx and Fe3O4 were indexed in the XPS.
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Figure 9. EELS mapping of Fe, Pt, B, N, C, and O elements by HRTEM for FePt(BN, Re, C) film.

The columnar grain structure was observed both in the reference sample and FePt(BN,
Re, C) film in Figure 10a,b and the average aspect ratio of grains was defined from the
film thickness to grain width (t/w), where the values are 2.35 and 1.70, respectively. Some
columnar grains were interrupted and non-uniform due to the thicker FePt film (15 nm),
but the highest-aspect-ratio FePt grains were demonstrated in this study. The insets show
that the nanobeam diffraction patterns and the {0KL} planes were indexed.

To provide more evidence of the element distribution, energy-dispersive X-ray (EDX)
mapping was performed to analyze the composition in the reference sample and FePt(BN,
Re, C) film. The cross-sectional high-angle angular dark-field (HAADF) images are shown
in Figures 11 and 12. Both Fe and Pt elements are presented almost in the same position
and grain areas and most of the Ag element were distributed in the FePt columnar grains’
edges, as shown in Figure 11. Because the Ag atoms were rejected or diffused out at a high
deposition temperature and occupied the Fe sites that decreased the coordination number,
a Ag shell was formed [1,40]. The signal of B and C elements was not observed in EDX
mapping but proved in the EELS image. The N element was distributed thoroughly in FePt
grains and boundary areas in EDX mapping in Figures 11 and 12 but more segregated at the
grain boundaries in EELS mapping presented in Figure 9. In principle, the EELS mapping
data are more accurate for light element N. In Figure 12, the heavy metallic Re appeared in
the FePt grains and was accumulated at the FePt(BN, Re, C) and MgO interface, and the Re
was overlapped with O and formed ReO2 on the FePt grain surface. It is suggested that the
metallic Re will replace part of the Fe in the FePt lattice due to the formation of iron oxide
on the film surface and the composition was shifted a little to the Pt-rich FePt(Re) alloy.
Furthermore, the hybridization of 3d Fe and 5d Pt(Re) electrons presents high spin–orbital
coupling, which reflects high magnetocrystalline anisotropy (Ku).
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4. Conclusions

In conclusion, the Re segregant in the FePt film did not improve the ordering degree
like Ag but induced extra Fe-Pt(Re) spin–orbital coupling. As a result, the magnetic
anisotropic field Hk and Ku can still be high as compared to the reference sample FePt(BN,
Ag, C). It is suggested that 5d heavy transition metal segregants such as Re may compensate
for the disadvantage of lower ordering degree in the structure, and the lower ordering of
the FePt(BN, Re, C) film may be better understood from growth disorientation and defects
in between interfaces. Therefore, this study provides the segregant design result for HAMR
using FePt media with granular and columnar grains, showing that the 5d heavy transition
metal can be used to replace the Ag segregant.
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