Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hono, K.; Takahashi, Y.K. L10 FePt Granular Films for Heat-Assisted Magnetic Recording Media. In Ultrahigh Density Magnetic Recording; Varvaro, G., Casoli, F., Eds.; Pan Stanford Publishing: Singapore, 2016; pp. 246–277. [Google Scholar]
- Weller, D.; Parker, G.; Mosendz, O.; Lyberatos, A.; Mitin, D.; Safonova, N.Y.; Albrecht, M. Review Article: FePt heat-assisted magnetic recording media. J. Vac. Sci. Technol. B 2016, 34, 060801. [Google Scholar] [CrossRef] [Green Version]
- Weller, D.; Mosendz, O.; Parker, G.; Pisana, S.; Santos, T.S. L10 FePtX–Y media for heat-assisted magnetic recording. Phys. Status Solidi A 2013, 210, 1245–1260. [Google Scholar] [CrossRef]
- Futamoto, M.; Ohtake, M. Development of Media Nanostructure for Perpendicular Magnetic Recording. J. Magn. Soc. Jpn. 2017, 41, 108–126. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zhou, B.; Du, T.; Varaprasad, B.S.D.C.S.; Laughlin, D.E.; Zhu, J. Understanding the growth of high-aspect-ratio grains in granular L10-FePt thin-film magnetic media. APL Mater. 2022, 10, 051105. [Google Scholar] [CrossRef]
- Zhou, B.; Laughlin, D.E.; Zhu, J.G. The utilization of boron nitride (BN) for granular L10-FePt HAMR media fabrication. Appl. Phys. Letter. 2021, 118, 162403. [Google Scholar] [CrossRef]
- Ju, G.P.; Peng, Y.G.; Chang, E.K.C.; Ding, Y.; Wu, A.Q.; Zhu, X.; Kubota, Y.; Klemmer, T.J.; Amini, H.; Gao, L.; et al. High-Density Heat-Assisted Magnetic Recording Media and Advanced Characterization—Progress and Challenges. IEEE. Trans. Magn. 2015, 51, 3201709. [Google Scholar] [CrossRef]
- Chen, S.; Xie, Q.; Zhou, C.; Zhou, J.; Deng, J.; Guo, R.; Peng, Y.G.; Ju, G.; Chen, J.S. Structure, magnetic and thermal properties of FePt-C-BN granular films for heat assisted magnetic recording. J. Phys. D 2020, 53, 135002. [Google Scholar] [CrossRef]
- Platt, C.L.; Wierman, K.W.; Svedberg, E.B.; Van de Veerdonk, R.; Howard, J.K.; Roy, A.G.; Laughlin, D.E. L–1 0 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive. J. Appl. Phys. 2002, 92, 6104–6109. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, D.A.; Wang, L.W.; Klemmer, T.J.; Thiele, J.U.; Lai, C.H.; Liu, K. Tuning magnetic anisotropy in (001) oriented L10 (Fe12xCux)55Pt45 films. Appl. Phys. Lett. 2013, 102, 132406. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Takahashi, Y.K.; Perumal, A.; Hono, K. L10-orderedhighcoercivity(FePt)Ag–C granular thin films for perpendicular recording. J. Magn. Magn. Mater. 2010, 322, 2658–2664. [Google Scholar] [CrossRef]
- Deng, J.Y.; Dong, K.F.; Peng, Y.G.; Ju, G.P.; Hu, J.F.; Chow, G.M.; Chen, J.S. Effect of TiON-MgO intermediate layer on microstructure and magnetic properties of L10 FePt-C-SiO2 films. J. Magn. Magn. Mater. 2016, 417, 203–207. [Google Scholar] [CrossRef]
- Tsai, J.L.; Li, H.K.; Pan, Z.Y.; Chang, Y.S.; Chen, Y.R.; Pi, C.; Wu, Y.T.; Chang, C.W. Magnetic Properties and Microstructure of FePt Films with MgTiON Intermediate Layer. IEEE Trans. Magn. 2017, 53, 8108404. [Google Scholar] [CrossRef]
- Tsai, J.L.; Tzeng, J.L.; Hu, K.C.; Li, H.K.; Pan, Z.Y.; Chang, Y.S.; Liao, C.C. Microstructure and magnetic properties of FePt film with combined MoC/(Mg–X)O (X = Cu, Ni, Co) intermediate layers. J. Magn. Magn. Mater. 2017, 422, 262–270. [Google Scholar] [CrossRef]
- Sepehri-Amin, H.; Nagano, M.; Seki, T.; Ho, H.; Tripathy, D.; Pirzada, S.; Srinivasan, K.; Yuan, H.; Dorsey, P.; Ajan, A.; et al. Microstructure and magnetic properties of FePt-(C, SiO2) granular films deposited on MgO, MgTiO, and MgTiON underlayers. Scr. Mater. 2018, 157, 1–5. [Google Scholar] [CrossRef]
- Hung, S.H.; McKenna, K. First-principles prediction of the morphology of L10 FePt nanoparticles supported on Mg(Ti)O for heat-assisted magnetic recording applications. Phys. Rev. Mater. 2017, 1, 024405. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Lim, B.C.; Ding, Y.F.; Chow, G.M. Low-temperature deposition of L10 FePt films for ultra-high density magnetic recording. J. Magn. Magn. Mater. 2006, 303, 309–317. [Google Scholar] [CrossRef]
- Li, H.H.; Hu, J.F.; Ju, G.; Chow, G.M.; Chen, J.S. Effects of CrRu–SiOx underlayer with MgO intermediate layer on the microstructure and magnetic properties of FePt–C thin film. J. Appl. Phys. 2011, 109, 07A736. [Google Scholar] [CrossRef]
- Tsai, J.L.; Weng, S.M.; Dai, C.; Chen, J.Y.; Huang, L.C.; Hsu, T.W. Surface modification of FePt(Ag, C) granular film by ultrathin B4C capping layer. Appl. Surf. Sci. 2020, 509, 145337. [Google Scholar] [CrossRef]
- Yu, D.; Zhou, X.; Zhang, T.; Zhong, H.; Fu, Y.; Cui, W.; Wang, Q. Effects of B4C Addition on the Microstructure and Magnetic Properties of FePt-C Granular Thin Films for Perpendicular Magnetic Recording. IEEE Trans. Magn. 2017, 53, 2300505. [Google Scholar] [CrossRef]
- Gbadamasi, S.; Mohiuddin, M.; Krishnamurthi, V.; Verma, R.; Khan, M.W.; Pathak, S.; Kalantar-Zadeh, K.; Mahmood, N. Interface chemistry of two-dimensional heterostructures–fundamentals to applications. Chem. Soc. Rev. 2021, 50, 4684. [Google Scholar] [CrossRef] [PubMed]
- Kadyrzhanov, K.K.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V. Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11729–11740. [Google Scholar] [CrossRef]
- Sharko, S.A.; Serokurova, A.I.; Novitskii, N.N.; Ketsko, V.A.; Smirnova, M.N.; Almuqrin, A.H.; Sayyed, M.I.; Trukhanov, S.V.; Trukhanov, A.V. A new approach to the formation of nanosized gold and beryllium films by ion-beam sputtering deposition. Nanomaterials 2022, 12, 470. [Google Scholar] [CrossRef] [PubMed]
- Kozlovskiy, A.L.; Zdorovets, M.V. Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni). J. Mater. Sci.: Mater. Electron. 2019, 30, 11819–11832. [Google Scholar] [CrossRef]
- Zubar, T.I.; Usovich, T.I.; Tishkevich, D.I.; Kanafyev, O.D.; Fedkin, V.A.; Kotelnikova, A.N.; Panasyuk, M.I.; Kurochka, A.S.; Nuriev, A.V.; Idris, A.M.; et al. Features of galvanostatic electrodeposition of NiFe films with composition gradient: Influence of substrate characteristics. Nanomaterials 2022, 12, 2926. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, N.; Kitakami, O.; Okamoto, S.; Shimada, Y.; Sakuma, A.; Otani, Y.; Fukamichi, K. Influence of 5d transition elements on the magnetocrystalline anisotropy of hcp-Co. J. Phys. Condens. Matter. 1999, 11, L485–L490. [Google Scholar] [CrossRef]
- Pisana, S.; Mosendz, O.; Parker, G.J.; Reiner, J.W.; Santos, T.S.; McCallum, A.T.; Richter, H.J.; Weller, D. Effects of grain microstructure on magnetic properties in FePtAg-C media for heat assisted magnetic recording. J. Appl. Phys. 2013, 113, 043910. [Google Scholar] [CrossRef]
- Nemoto, H.; Takekuma, I.; Nakagawa, H.; Ichihara, T.; Araki, R.; Hosoe, Y. Designing magnetics of capped perpendicular media with minor-loop analysis. J. Magn. Magn. Mater. 2008, 320, 3144. [Google Scholar] [CrossRef]
- Yang, E.; Laughlin, D.E.; Zhu, J.G. Correction of order parameter calculations for FePt perpendicular thin films. IEEE Trans. Magn. 2012, 48, 7–12. [Google Scholar] [CrossRef]
- Granz, S.D.; Kryder, M.H. Granular L10 FePt (001) thin films for heat assisted magnetic recording. J. Magn. Magn. Mater. 2012, 324, 287–294. [Google Scholar] [CrossRef]
- Inoue, K.; Shima, H.; Fujita, A.; Ishida, K.; Oikawa, K.; Fukamichi, K. Temperature dependence of magnetocrystalline ani-sotropy constants in the single variant state of L10-type FePt bulk single crystal. Appl. Phys. Lett. 2006, 88, 102503. [Google Scholar] [CrossRef]
- Richter, H.J.; Hellwig, O.; Florez, S.; Brombacher, C.; Albrecht, M. Anisotropy measurements of FePt thin films. J. Appl. Phys. 2011, 109, 07B713. [Google Scholar] [CrossRef]
- Tsai, J.L.; Tseng, Y.T.; Li, C.R.; Fu, S.C. Magnetization reversal process in Fe/FePt films. Appl. Phys. Lett. 2010, 96, 032505. [Google Scholar] [CrossRef]
- Tsai, J.L.; Weng, S.M.; Dai, C.; Chen, J.Y.; Lu, X.C.; Hsu, T.W. Temperature Dependence and Microstructure Effects on Magnetic Properties of FePt(B, Ag, C) Film. Nanomaterials. 2021, 11, 419. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic state of the structural separated anion-deficient La0.70Sr0.30MnO2.85 manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Kozlovskiy, A.; Egizbek, K.; Zdorovets, M.V.; Ibragimova, M.; Shumskaya, A.; Rogachev, A.A.; Ignatovich, Z.V.; Kadyrzhanov, K. Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of FeCeOx nanocomposites doped with Nb2O5. Sensors 2020, 20, 4851. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hou, W.; Pan, R.; Zhou, M.; Zhang, S.; Zhang, Y. The interfacial electronic engineering in polyhedral MOF derived Co-doped NiSe2 composite for upgrading rate and longevity performance of aqueous energy storage. J. Alloys Compd. 2022, 897, 163187. [Google Scholar] [CrossRef]
- Krishna, M.G.; Bhattacharya, A.K. Growth of rhenium oxide thin films. Solid State Commun. 2000, 116, 637–641. [Google Scholar] [CrossRef]
- Ho, H.; Zhu, J.; Kulovits, A.; Laughlin, D.E.; Zhu, J.G. Quantitative transmission electron microscopy analysis of multi-variant grains in present L10-FePt based heat assisted magnetic recording media. J. Appl. Phys. 2014, 116, 193510. [Google Scholar] [CrossRef]
- Varaprasad, B.S.D.C.S.; Takahashi, Y.K.; Wang, J.; Ina, T.; Nakamura, T.; Ueno, W.; Nitta, K.; Uruga, T.; Hono, K. Mechanism of coercivity enhancement by Ag addition in FePt-C granular films for heat assisted magnetic recording media. Appl. Phys. Lett. 2014, 104, 222403. [Google Scholar] [CrossRef]
Sample | Hc⊥ (kOe) | Hc// (kOe) | Ms (T) | Mr///Mr⊥ (---) | Ku (erg/cm3) | Hk (kOe) | HN (kOe) |
---|---|---|---|---|---|---|---|
FePt(BN, Ag, C) | 32 | 4.5 | 0.63 | 0.12 | 1.74 × 107 | 69.5 | −2.5 |
FePt(BN, Re, C) | 27 | 2.5 | 0.55 | 0.08 | 1.46 × 107 | 66.9 | −1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, J.-L.; Sun, C.-Y.; Lin, J.-H.; Huang, Y.-Y.; Tsai, H.-T. Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films. Nanomaterials 2023, 13, 539. https://doi.org/10.3390/nano13030539
Tsai J-L, Sun C-Y, Lin J-H, Huang Y-Y, Tsai H-T. Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films. Nanomaterials. 2023; 13(3):539. https://doi.org/10.3390/nano13030539
Chicago/Turabian StyleTsai, Jai-Lin, Chun-Yu Sun, Jhih-Hong Lin, Yi-Yuan Huang, and He-Ting Tsai. 2023. "Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films" Nanomaterials 13, no. 3: 539. https://doi.org/10.3390/nano13030539
APA StyleTsai, J.-L., Sun, C.-Y., Lin, J.-H., Huang, Y.-Y., & Tsai, H.-T. (2023). Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films. Nanomaterials, 13(3), 539. https://doi.org/10.3390/nano13030539