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Abstract: Herein, we demonstrate a process for the synthesis of a highly crystalline bi-functional
manganese (Mn)-doped zinc silicate (Zn2SiO4) nanostructures using a low-cost sol–gel route followed
by solid state reaction method. Structural and morphological characterizations of Mn-doped Zn2SiO4

with variable doping concentration of 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.0 wt% were investigated by
using X-ray diffraction and high-resolution transmission electron microscopy (HR-TEM) techniques.
HR-TEM-assisted elemental mapping of the as-grown sample was conducted to confirm the presence
of Mn in Zn2SiO4. Photoluminescence (PL) spectra indicated that the Mn-doped Zn2SiO4 nanos-
tructures exhibited strong green emission at 521 nm under 259 nm excitation wavelengths. It was
observed that PL intensity increased with the increase of Mn-doping concentration in Zn2SiO4 nanos-
tructures, with no change in emission peak position. Furthermore, magnetism in doped Zn2SiO4

nanostructures was probed by static DC magnetization measurement. The observed photolumi-
nescence and magnetic properties in Mn-doped Zn2SiO4 nanostructures are discussed in terms of
structural defect/lattice strain caused by Mn doping and the Jahn–Teller effect. These bi-functional
properties of as-synthesized Zn2SiO4 nanostructures provide a new platform for their potential
applications towards magneto-optical and spintronic and devices areas.

Keywords: Zn2SiO4; nanoparticles; transmission electron microscope; sol–gel; photoluminescence;
lattice strain; nanomagnetism

1. Introduction

Multifunctional nanomaterials play an important role in different fields of applied
sciences including semiconductor electronics, solar energy, memory devices, and optoelec-
tronics devices for development of efficient nanosensors and nanosystems [1–6]. There-
fore, tailoring of these nanomaterials for their desired properties is extremely important,
especially for applications in advanced portable devices [7–12]. There are several nanoma-
terials which show tunability with size, shape, and properties with variation of doping
concentration [9,13–16]. Zinc silicate especially (Zn2SiO4) is a promising candidate for ap-
plications in flat panel optical displays, UV detectors, gas sensors, adsorption of toxic ions
from water, and thin film electro-luminescence devices applications [17–19]. Furthermore,
Zn2SiO4 structures have received significant attention due to their unique wide range of
multiple color luminescent properties, wide band gap (5.5 eV), and excellent chemical
stability [20]. The willemite Zn2SiO4 host material is heavily used for applications in the
field of phosphors for light emitting devices [21].The Zn2SiO4 is a natural orthosilicate with
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a phenacite-like structure in which Zn–O tetrahedral and Si–O tetrahedral share corners
to form hollow ‘tubes’ parallel to [0001] planes; and it is a well-known host material for
potential applications in the area of phosphors for optoelectronics and blue, green, and red
color light emitting devices [1,3,20]. The incorporation of transition metal centers and rare
earth ions (luminescence centers) in a Zn2SiO4 host lattice results in a various interesting
luminescent property. Various methods such as vapor phase synthesis, high temperature
solid-state reaction, and ball milling have been previously reported for synthesis of the
Zn2SiO4 nanostructures. However, these reported methods require complicated procedure,
huge thermal energy, high reaction temperature and time, and the synthesized materials
exhibit irregular micro structure morphologies which is unsuitable for applications in
devices where precise control over shapes and properties is required.

Recently, several new methods have been reported for the synthesis of Zn2SiO4 in-
cluding sol–gel, polymer precursor, spray pyrolysis, and hydrothermal to get different
luminescence emissions for various potential application [21–24]. R. Krsmanovic et al.
prepared Sm- and Tb-doped Zn2SiO4 particle by sol–gel method to get reddish orange and
pseudo white emissions [25]. H. Wang et al. and R. Pozas et al. prepared the Zn2SiO4 with
Co dopant using hydrothermal method to obtain the blue pigments [26,27]. K Omri et al. re-
ported the yellow phosphor of Mn-doped Zn2SiO4 using sol–gel method [28]. G. Gao et al.
reported the Eu-doped Zn2SiO4 nanoparticles prepared by using solid state method to
get red color emission [29]. Moreover, K. Omri et al., M. Hafeez et al., and W. Zheng et al.
recently reported the diamagnetic and ferromagnetic properties from Mn-doped Zn2SiO4
nanostructures [30–32].

In the present investigations, we synthesized Mn-doped Zn2SiO4 nanostructures phos-
phors with various doping concentration using the cost effective and facile sol–gel method.
Crystal structure, morphology, and photo luminescence properties of Mn-doped Zn2SiO4
nanostructures were studied. Effect of doping concentration of Mn in Zn2SiO4 on its
structural, morphological, luminescence, and magnetic properties was also studied. Based
on this, a correlation of lattice strain with observed magnetic properties and luminescence
behavior is presented.

2. Materials and Methods
2.1. Materials

Manganese acetate (Mn(CH3COO)2; 99.999%), zinc chloride (ZnCl2; 99.999%), tetraethyl
orthosilicate (Si(OC2H5)4; 99.999%), and ethanol (C2H5OH; 99.999%) were procured from
Sigma Aldrich Chemicals Pvt Ltd., Delhi, India. Deionized water (DI) was obtained from
a Direct-Q 3UV Millipore water purification system. Copper wires and silver paste were
used to make the connection and contact, respectively.

2.2. Synthesis of Zn2SiO4 Nanoparticles

A flow chart for the preparation of Mn-doped Zn2SiO4 nanoparticles is shown in
Figure 1. Mn-doped Zn2SiO4 nanoparticles were synthesized by sol–gel method under
ambient atmosphere followed by thermal annealing. In the first step, 2.0433 mg of ZnCl2
aqueous solution was prepared using 16 mL H2O and 64 mL EtOH. Then, “x” amount
(x = 0.03, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0 wt%) of Mn(CH3COO)2 was dissolved into main solution.
The prepared solution was mixed in a magnetic stirrer at 400 rpm at room temperature
for 1 hr. Further, 2 mL of TEOS was slowly added drop by drop using micropipette while
stirring after 1 h. Then, the solution was heated at 70 0C resulting, initially in the formation
of a white gel and then into a powder when the gel was left overnight. This white powder
was then calcined at 1000 ◦C in box furnace under natural atmospheric pressure for 6 h.
Finally, the resultant white Zn2SiO4 nanoparticles was washed with distilled water and
collected for characterization.
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Figure 1. Schematic diagram of sol–gel method for the synthesis of Mn-doped Zn2SiO4 green
phosphor nanoparticles. Red triangle corresponds to heating.

2.3. Measurement and Characterizations

The structural properties of the prepared samples were measured by X-ray diffraction
(XRD) technique using a Rigaku (ultima IV model, Japan) benchtop X-ray diffractometer
equipped with a monochromatic Cu-Kα radiation (λ = 1.541 Å) X-ray source. The mor-
phology of the samples was analyzed by high resolution transmission electron microscopy
(HR-TEM) JEM 2100F operating at 200 keV and the attached GATAN (Version: GMS 2.32)
digital-micrograph software. Elemental mapping was performed using Oxford attachment
in HRTEM. The room temperature photoluminescence (PL) investigation was performed
using a Perkin Elmer LS-55 fluorescence spectrophotometer with a Xenon (Xe) lamp as the
source of excitation. The magnetic properties at room temperature were examined by a
SQUID magnetometer (MPMS7 Tesla, Quantum Design, San Diego, CA, USA) in the field
range ± 2T with a step size of 400 Oe and a field scan rate of 100 Oe per minute.

3. Results and Discussion
3.1. Formation of α-Phase Zn2SiO4

The chemical reaction process and crystal growth mechanism for formation of α-phase
Zn2SiO4 nanostructures can be explained by the following chemical reaction steps:

ZnCl2 + H2O 70 ◦C−−−→ Zn(OH)Cl + HCl (1)

Zn(OH)Cl + C2H5OH 70 ◦C−−−→ H5C2O− Zn−OH + Cl2 ↑ (2)

H5C2O− Zn−OH + SiC8H20O4
70 ◦C−−−→ Zn4(OH)2Si2O7.H2O + CO2 ↑ (3)

Zn4(OH)2Si2O7.H2O 550 ◦C−−−→ Zn4(OH)2Si2O7 (4)

Zn4(OH)2Si2O7
750 ◦C−−−→ β− phase Zn2SiO4 (5)

β− phase Zn2SiO4
1000 ◦C−−−−→ α− phase Zn2SiO4 (6)

The reaction mechanism leading to the formation of zinc silicate can be summarized
in the following steps. In the first step, ZnCl2 reacts with H2O and C2H5OH at 70 ◦C and
is transformed into Zn (OH)Cl. Then, this Zn(OH)Cl reacts with TEOS, and hydrated
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hemimorphite leading to formation of Zn4(OH)2Si2O7.H2O powder. This powder, when
annealed at ~550 ◦C forms dehydrated hemimorphite Zn4(OH)2Si2O7. Dehydrated hemi-
morphite Zn4(OH)2Si2O7 is transformed into β-phase ZnSi2O7 by annealing at ~750 ◦C
and into α-phase Zn2SiO4 by annealing at 1000 ◦C.

3.2. Structural Analysis

The X-ray diffraction (XRD) pattern of the annealed Zn2SiO4 nanostructures collected
at room temperature is shown in Figure 2. All diffraction peaks in the pattern can be indexed
to the crystalline willemite (α-Zn2SiO4, JCPDS card 37-1485) structure of rhombohedral
system with lattice parameters a = b = 13.938 Å and c = 9.31 Å, α = β = 90◦, γ = 120◦

revealing the crystallinity of the samples [33].
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The average crystallite size of the as grown samples was calculated using the Williamson
and Hall method which is a combination of the Scherrer’s equation for size broadening
and the Stokes and Wilson expression for strain broadening [34–37].

β cos θB =
kλ

D
+ 4η sin θB (7)

where β is the full width at half maximum of diffraction peak, η is the strain in the
crystallites, and D is the crystallites size [38–40]. The constant k is typically close to unity
and ranges from 0.8 to 1.39. To calculate the strain and crystallite size, a graph was plotted
in between β cos θB and sin θB. The strain (η) was then extracted from the slope and the
crystallite size was determined from the y-intercept. The average crystallite size of the
undoped Zn2SiO4 nanostructures was found to be 28 nm.

The XRD patterns of Zn2SiO4 samples doped with various doping concentration of Mn
are shown in Figure 3a. The result shows that the diffraction peaks of nanostructures shifted
towards lower angle with an increase in Mn concentration. This shift in the diffraction
peak can be attributed to lattice expansion as a result of induced strain from Mn doping.
The likely position of Mn substitution in Zn2SiO4 lattice is shown in the Figure 3b and it is
proposed that Mn2+ occupies the Zn2+ position. Furthermore, a close view of unit cell can
be easily seen from right inset (top and bottom) of Figure 3b.

The different doping concentration of Mn substitution in Zn2SiO4 lattice and lattice
expansion can be easily understood by strain effect as shown in Figure S1. N. Tripathi et al.,
D.H. Hwang et al., and M.S. Kwon et al. observed the same trend where strain induced
effect of Mn in the Zn2SiO4 nanocrystals enhances the green emission efficiency with short
decay time [41–43]. The result clearly indicates that the different doping concentration
significantly affects the packing of unit cell such as dislocation of host Zn site. Further,
the dislocation is confirmed by a Williamson and Hall in the form of strain developed
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in the lattice which results in slight angle shifts in XRD spectra as shown in Figure 3a.
Moreover, depending on different θ positions, the separation of size and strain broadening
analysis is done using Williamson and Hall method. Crystal imperfections and distortion
of strain-induced peak broadening can be related by the well-known Williamson and Hall
method shown in Figure S1.
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Figure 3. (a) XRD patterns of Zn2SiO4 with different Mn doping concentrations ranging from 0.03 wt%
to 2 wt%. (b) Unit cell of Zn2SiO4 and in case of Mn doping, Mn goes to Zn site (Zn2+: Red; Si4+:
Blue; O2−:Orange).

Figure 4 shows the calculated strain and crystalline size of Zn2SiO4 as a function of %
of Mn doping. It is clearly observed that the strain increases with an increase in Mn doping
in the host lattice. The obtained results also indicate that crystallite size increases due to
differences in ionic radius between Mn2+ and Zn2+. (The ionic radii of Zn and Mn are 0.083
and 0.091 nm, respectively).
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3.3. Morphology Analysis

The morphology and microstructure of the as-synthesized Zn2SiO4 nanostructure
was analyzed by high-resolution transmission electron microscope (HR-TEM). Figure 5a
shows the nanorod-like morphology of 0.2 wt% Mn-doped Zn2SiO4. The estimation of
the dimension of individual nanorods is presented in the inset of Figure 5a. Figure 5b
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shows the magnified view of nanorod-like morphology of the individual rod with 620 nm
length and 300 nm width. Its selected area electron diffraction (SAED) pattern recorded
without sample tilting is shown in the inset of Figure 5b. The SAED result reveals that the
nanorod is crystalline in nature. The HR-TEM image of the nanorod in Figure 5c shows
regular lattice fringes with d-spacing of 0.26 nm, which is in agreement with the inter
planar spacing of (300) plane in XRD pattern. Figure 5d shows the magnified view of
nanoflake-like morphology of individual rod with length of 970 nm and width of 370 nm.
The inset in Figure 5d shows the clear lattice fringe of nanorods which corresponds to
113 plane.
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Figure 5. (a) Nanorod-like morphology of a 0.2 wt% Mn-doped Zn2SiO4. (b) Magnified view of
nanorod-like morphology of individual rod with length 620 nm and width 300 nm. Inset shows the
SAED result. (c) The HR-TEM image of nanorod. (d) HRTEM image of nanoflake-like morphology
of individual rod of length 970 nm and width 370 nm. Inset shows the lattice fringe of nanorods
corresponding to 113 plane.

The elemental mapping of the as-synthesized 0.2 wt% Mn-doped Zn2SiO4 samples
was done by energy dispersive spectroscopy (EDS) added to the HR-TEM instrument. The
spectra obtained from the EDS mapping are shown in Figure 6 which confirms the Mn
doping in Zn2SiO4 lattice. The elements present in two different regions of the sample
(Figure 6a) are shown in the Figure 6b–e for first region and 6f–i for the second region
highlighting the elemental homogeneity of the grown samples. The elemental maps
micrographs of Mn, Zn, Si, and O show a uniform distribution over the entire morphology
of Mn-doped Zn2SiO4 nanostructure in both the regions. A quantitative analysis carried
out to estimate the weight and atomic percentage of samples is shown in the Figure 6j. The
observed spectra show that peak detected at 1.740 eV, 0.525 eV, 8.639 eV corresponds to the
Kα1 of Si, Kα1 of O, and Kα1 of Zn, respectively. Further, the peaks detected at 9.572 eV
and 1.012 eV correspond to the Kβ1 of Zn, and Kα1, kβ2 of Zn, respectively. The peak
observed at 5.899 eV correspond to the Kα1 of Mn and peak, 6.491 eV, 0.636 eV corresponds
to the Kβ1 of Mn and Lα1 and Lα2 of Mn, respectively [30,44].
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(8) 

Figure 6. (b–i) show the spectra obtained from the EDS mapping of (a) which confirmed the Mn
doping in Zn2SiO4 lattice. (j) shows the quantitative analysis was also carried out to estimate the
weight and atomic percentage of samples and EDS spectra.

3.4. Photoluminescence Analysis

Figure 7a shows the photoluminescence (PL) spectra of Mn-doped Zn2SiO4 measured
with an excitation wavelength of 259 nm at room temperature (Figure 7b). The emission
spectra of the samples show broad green emission centered at 521 nm which arises due to
Mn2+ ion transitions. The green emission from the sample can be understood in terms of
various transition states of Mn element. The green PL emission results transition from the
4T1(4G) excited state to the 6A1 (6S) ground state in 3D orbital electrons of the Mn2+ ion [45].
The variation in the PL intensity is due to the size variation and defect level introduced from
the doping. It is noted that the nanostructure has large surface area, which significantly
impairs the PL intensity by introducing a correspondingly large number of defects. The
transition of free electrons in the conduction band by the charge transfer transition of Mn is
as described below

Mn2+(3d5)→ Mn3+ + (3d4) + EgCB (8)

These excited free electrons further relax from the conduction band to the 4T1(4G)
lowest excitation energy level of the Mn2+ ion via non-radiative transitions, followed by
a radiative transition from the 4T1(4G) level to the 6A1(6S) ground state or valance state
which results in the green PL emission peak centered at 521 nm. A schematic image of
the corresponding transition is shown in the Figure 7b. Changing the doping % of Mn2+

resulted in only a very small shift in peak position. However, the PL intensity shows
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nonlinear trend with doping concentration. For better understanding, the PL peak intensity
as a function of x at 521 nm was also plotted along with the FWHM as a function of
x and is shown in Figure S2. It is clearly observed that the PL intensity first increases
with doping concentration with a maxima at 0.2 wt% and then decreases with a further
increase in doping. As Mn concentration increases from 0.03 wt % to 0.2 wt%, stress in
the crystal lattice also increases as discussed in the XRD section and also shown in Table
S1. The decrease of intensity with higher concentration of Mn doping is due to activator
concentration quenching and the decrease in the inter-ionic distance between two adjacent
Mn2+ ion pairs. This reduction of inter-ionic distance between the Mn2+ ion pairs leads to
exchange of excited free electron migration from one Mn2+ ion to another, which causes
non-radiative transitions and reduces the emission efficiency and the demonstration at
0.4 wt% Mn doped Zn2SiO4 is shown in Video V1 [46].
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Figure 7. (a) shows the broad PL emission band centered at 521 nm of Zn2SiO4 doped at different
concentrations of Mn at an excitation wavelength of 259 nm at room temperature. (b) shows a
schematic image of shows the green PL emission peak centered at 521 nm transition from the 4T1n(4G)
excited state to the 6A1 (6S) ground state.

3.5. Magnetic Analysis

The M-H plot of Mn-doped Zn2SiO4 nanorods at room temperature is shown in
Figure 8a. It is observed that the value of magnetization increased with increase in the
Mn doping concentration, which may be due to the increased amount of impurity in the
host lattice of Zn2SiO4 [47,48]. It was observed in the present study that pristine Zn2SiO4
exhibits only diamagnetic behavior at room temperature. Further, observed remanence
and coercivity for higher Mn content indicates nucleation of ferromagnetic characteristic,
whereas diamagnetic behavior was found to be still prevailing for lower Mn2+ content. The
M-H loops of all the samples were plotted after substituting the diamagnetic contribution
of each of the sample [36,37,49]. Magnetization of Zn2SiO4 with increased Mn doping can
be explained in terms of the Jahn–Teller effect which relates the suppressing the spiral spin
structure of Zn2SiO4 by the incorporation of Mn at Zinc sites [30,31]. It is also proposed that
Mn cations presented in the Zn2SiO4 are in mixed valence states of 2+, 3+, and 4+ which
could support ferromagnetic coupling through Zener double exchange interaction. In low
concentration, the Jahn–Teller effect would be expected to cause a reduction in the tendency
toward ferromagnetism since it leads to a splitting of the states. The splitting will reduce
the interactions between Mn pairs since hopping requires an extra energy [9,14,34,35,50].
On the other hand, the interaction between Mn–Mn pairs at realistic distances is sufficiently
large that it dominates over the Jahn–Teller effect. The interactions between Mn atoms is not
greatly affected by lattice relaxations and there is always a clear tendency for ferromagnetic
alignment of Mn pairs as evidenced in the present study for higher Mn concentrations.
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Figure 8b shows value of magnetization with increase in Mn doping wt% concentration
into Zn2SiO4 host lattice.
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Figure 8. (a) M-H plot of Mn-doped Zn2SiO4 nanoparticles at room temperature. (b) Saturation
magnetization as a function of Mn wt% in Zn2SiO4 host lattice.

4. Conclusions

We successfully synthesized highly crystalline bi-functional Mn-doped Zn2SiO4 nanos-
tructures with various doping concentration using a low-cost sol–gel process. The X-ray
diffraction results confirmed the rhombohedral phase of Mn-doped Zn2SiO4 nanostruc-
ture. The HR-TEM results confirm the nanorod-like morphology. The PL results show the
strong green emission peak centered at 521 nm under 259 nm excitation wavelength. The
optimization for highest photoluminescence intensity was achieved by varying different
concentrations of Mn-doping in Zn2SiO4 lattice. We observed that 0.2 wt% Mn doping
in Zn2SiO4 nanostructure showed the highest PL intensity. Magnetic studies confirmed
the magnetic nature of Mn-doped Zn2SiO4 nanostructures and magnetization increased
with increase of Mn concentration. Thus, the bi-functional behavior of Mn-doped Zn2SiO4
nanostructures offers a new avenue to further exploit its potential application in magneto-
optical devices.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/nano13030538/s1, Figure S1: (a–g) shows the graphs between β cos θB and
sin θB; Figure S2: Comparative strain and crystallite size of Zn2SiO4 as a function of Mn doping
in Zn2SiO4 host lattice; Table S1: Effect of Mn doping on the FWHM, strain and crystallites size of
Zn2SiO4 nanostructure; Video S1: The demonstration at 0.4 wt% Mn doped Zn2SiO4 is shown in
Video V1.
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