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Abstract: Nanotechnologies based on magnetic materials have been successfully used as efficient
and reusable strategies to remove pharmaceutical residuals from water. This paper focuses on the
fabrication, characterization, and application of ferrite-based magnetic nanoparticles functionalized
with L-lysine as potential nanoadsorbents to remove acetylsalicylic acid (ASA) from water. The pro-
posed nanomaterials are composed of highly magnetic and chemically stable core–shell nanoparticles
covered with an adsorptive layer of L-lysine (CoFe2O4–γ-Fe2O3–Lys). The nanoadsorbents were
elaborated using the coprecipitation method in an alkaline medium, leading to nanoparticles with two
different mean sizes (13.5 nm and 8.5 nm). The samples were characterized by XRD, TEM, FTIR, XPS,
Zetametry, BET, and SQUID magnetometry. The influence of time, pH, and pollutant concentration
was evaluated from batch studies using 1.33 g/L of the nanoadsorbents. The Freundlich isotherm
best adjusted the adsorption data. The adsorption process exhibited a pseudo-second-order kinetic
behavior. The optimal pH for adsorption was around 4–6, with a maximum adsorption capacity of
16.4 mg/g after 150 min of contact time. Regeneration tests also showed that the proposed nanomate-
rials are reusable. The set of results proved that the nanoadsorbents can be potentially used to remove
ASA from water and provide relevant information for their application in large-scale designs.

Keywords: nanoadsorbents; magnetic nanocomposite; magnetic separation; surface coating;
pollutant removal; water remediation; pharmaceuticals

1. Introduction

Pharmaceutical waste from different sources, such as the incomplete metabolism of
human and animal medicines, incorrect disposal of expired drugs, animal farms, and
industrial and hospital effluents [1,2], is not totally removed from water using traditional
treatments and can affect not only the ecosystems but also human health [2,3].

Currently, several processes have been employed for the removal of hazardous materi-
als from water, such as oxidation, precipitation, adsorption, and ion exchange [4]. Among
these alternatives, the adsorption process has been the most used because it is a simple,
efficient, versatile, and cheap method [4,5]. The most common adsorbents used for water
treatment are activated carbon, zeolites, biomaterials, and polymers [4]. However, several
studies to develop more efficient adsorbents have been carried out, which is where nanos-
tructured adsorbents have been drawing the attention of the scientific community. These
so-called nanoadsorbents usually present greater adsorption capacity when compared to
conventional materials, mainly because of their larger surface area. Magnetic adsorbent
nanoparticles also have the advantage of being easier to separate from an aqueous medium
by using the magnetically assisted chemical separation (MACS) method. This method is
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simple and fast, does not generate byproducts, and allows the reuse of nanoadsorbents.
Therefore, it is a very promising alternative for water treatment and pollutant removal [6].

Magnetite-based nanoadsorbents are the magnetic nanomaterials most frequently
used as pollutant removal adsorbents in water environments because they present high
saturation magnetization (~80 emu/g), reactive surfaces, nontoxicity, hydrophilicity, and
a low cost [7,8]. Despite having important properties, synthetic magnetite nanoparticles
are easily oxidized when in contact with atmospheric air or with oxygen dissolved in
water [9], affecting their chemical stability and saturation magnetization, which decreases
the efficiency of magnetic separation and reusability.

Besides nanoadsorbents composed of magnetite, ones of maghemite, cobalt ferrite,
nickel ferrite, and manganese ferrite have also been used for the same purpose. Maghemite
has the highest adsorbent capacity and long-term chemical stability, but its main disadvan-
tage is low saturation magnetization in comparison to other ferrites [10]. Another relevant
issue is that conventional ferrites, such as cobalt, nickel, and manganese are susceptible to
dissolution (digestion) when dispersed in a strong acid medium [11,12] (pH ≤ 2), which
limits their application to treat pollutants found in acid waste.

Hybrid core–shell nanoparticles have been developed to make the combination of
properties from several different materials possible [13]. Using this strategy, bimagnetic
nanoadsorbents based on a cobalt ferrite core with a thin shell of maghemite (CoFe2O4–γ-
Fe2O3) have recently been proposed for the removal of chromium [14] and direct yellow
12 dye, used in this last application after functionalization with a bilayer of CTAB [10].
Cobalt ferrite nanoparticles have high saturation magnetization but are susceptible to
dissolution in a strong acid medium. To overcome this problem, the thin shell of maghemite
gives the nanoadsorbent long-term chemical stability and surface tunability [12,15].

This paper addresses the synthesis, characterization, and study of the potential of
hybrid core–shell-based magnetic nanoadsorbents for pharmaceutical pollutant removal,
having as a target, acetylsalicylic acid (ASA), known commonly as Aspirin®. ASA is cur-
rently one of the most used drugs worldwide [16] and many studies show the presence
of this substance and its metabolites in various countries’ water [17,18], showing signs of
a widespread environmental issue. In this context, we propose a surface modification of
CoFe2O4–γ-Fe2O3 nanoparticles with L-lysine, a low-cost, sustainable amino acid capa-
ble of charging the material positively in a wide range of pH through the introduction
of −NH3

+ surface groups, which enhances the electrostatic interaction with the target
pollutant’s anions [19]. In this advanced architecture, the core of CoFe2O4 provides easy
magnetic separation, the γ-Fe2O3 shell allows long-term chemical stability and surface
tunability, while the lysine moieties enhance the adsorption capacity for anionic and nonpo-
lar adsorbates. Nanoparticle samples of CoFe2O4–γ-Fe2O3–Lys with two mean diameters
were synthesized and characterized compositionally, structurally, morphologically, and
magnetically to confirm their structure and magnetic response. Batch adsorption experi-
ments investigated the influence of pH, contact time, and the initial concentration of ASA
on the adsorption capacity of the magnetic nanoadsorbents. Lastly, their recovery and
reusability were also examined.

2. Materials and Methods
2.1. The Reagents and Equipment

The chemicals utilized in this survey were either analytical or guaranteed reagent
grade (Sigma-Aldrich or Merck) and were used without further purification. Standard solu-
tions of ASA were prepared in deionized water Type I (Millipore Milli-Q Gradient quality).
Solutions of nitric acid (HNO3—0.1 mol/L) and sodium hydroxide (NaOH—0.1 mol/L)
were used in pH adjustments. The solution pH was monitored by using a pH meter
(Metrohm, model 713) with a pH glass double-junction electrode. The batch adsorption
experiments were conducted in an orbital shaker (Gehaka, model AO-370) at a constant
speed and room temperature. The equilibrium concentrations of ASA were determined
by ultraviolet–visible spectrophotometry (IL-593 spectrophotometer) at 220–230 nm wave-
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length with external calibration. The correlation coefficient (R2) of linear regression of the
calibration curve and the figures of merit for the instrument, namely the linear dynamic
range (LDR), the limit of detection (LOD), and the limit of quantification (LOQ) were deter-
mined for each pH condition. The obtained values listed as (pH, R2, LDR, LOD, and LOQ)
correspond to (2, 0.999, 1.04–18 mg/L, 0.31 mg/L, and 1.04 mg/L), (4, 0.999, 0.70–18 mg/L,
0.21 mg/L, and 0.70 mg/L); (6, 0.999, 0.66–18 mg/L, 0.20 mg/L, and 0.66 mg/L), and
(8, 0.999, 0.98–18 mg/L, 0.29 mg/L, and 0.98 mg/L). The experiments were performed
in triplicate.

2.2. Synthesis of the Magnetic Nanoadsorbents

The magnetic nanoadsorbent samples were synthesized in two main steps: copre-
cipitation of solid ferrite cobalt nanoparticles followed by a superficial treatment with
maghemite, and functionalization with L-lysine. In the initial step, the precursor magnetic
nanoparticles were elaborated by using the procedures described elsewhere [12,15]. First,
CoFe2O4 nanoparticles were synthesized using a hydrothermal coprecipitation of aqueous
0.5 mol/L Co(NO3)2·6H2O and 0.5 mol/L FeCl3·9H2O solutions in an alkaline medium
at the boiling temperature. At this stage, the mean size of the nanoparticles can be con-
trolled by regulating the pH of the synthesis medium. As a general trend, the stronger
the base, the larger the nanoparticles [20]. Sodium hydroxide (NaOH) and methylamine
(CH3NH2) were used to obtain samples of CoFe2O4 nanoparticles of larger and smaller
mean sizes, respectively. Next, the nanoparticles of each sample were thoroughly washed
with deionized water followed by hydrothermal treatment with a 0.5 mol/L Fe(NO3)3
solution for 15 min at the boiling temperature. This process results in a surface coating of
the CoFe2O4 nanoparticles with a thin layer of maghemite (
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and PACoM (smaller size). The shell of maghemite gives the nanoparticles long-term
stability preventing their dissolution in acidic medium. The structure and composition of
these core–shell-type nanoparticles have been investigated in the literature [21,22].

In the second step, the coating of the surface of the nanoparticles with L-lysine was
carried out by adapting the method proposed by Krishna et al. [23]. In short, 250 mg
of PACo and PACoM samples were dispersed in 15 mL of glacial acetic acid at room
temperature, and the system was magnetically stirred for 30 min at 1200 rpm. Then, 10 mL
of L-lysine 0.16 mol/L was added to the dispersion and the pH was adjusted to 11.5 with
0.1 mol/L NaOH solution. The mixture was agitated for 45 min at room temperature. The
nanopowder samples with the surface-coated nanoparticles (CoFe2O4–
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-Fe2O3–Lys) were
separated from the medium by magnetic assistance, successively washed with water and
ethanol, and finally dried under vacuum for 8 h at 60 ◦C. The nanoadsorbent samples
composed of nanoparticles with larger and smaller diameters were labeled PACo–Lys and
PACoM–Lys, respectively. The general scheme of the synthesis procedure is depicted in
Figure 1.
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2.3. Physicochemical Characterization

The crystalline structure and the mean size of the nanoparticles were obtained by X-ray
diffraction (XRD) measurements performed in a Bruker D8 Focus using Cu-Kα radiation
(λ = 0.15406 nm) in a range of 2θ from 20◦ to 80◦ with a step of 0.05◦. The experimental
results were compared with data from the International Centre for Diffraction Data (ICDD).

The morphology and size distribution of the samples were investigated using Trans-
mission Electron Microscopy (TEM). The pictures were obtained with a JEOL JEM-2100
electron microscope. The size distribution was determined by measuring the diameter of
the nanoparticles in the TEM micrographs. The results were adjusted with a log-normal
probability distribution function.

The surface chemical composition of the nanoparticles was investigated using the X-ray
photoelectron spectroscopy (XPS) technique. The XPS measurements were performed using
an ESCALAB MkII spectrometer (VG Scientific Ltd., East Grinstead, UK). The spectrometer
is equipped with a nonmonochromatic Al Kα X-ray source, a hemispherical analyzer, and
a five-channeltron detection system. The powder samples were mounted on an adhesive
carbon disk and they were introduced in the main chamber and measured at a base
pressure of 1 × 10−10 mbar. The binding energy (BE) scale was calibrated, positioning the
adventitious contribution in the C1s signal at BE = 285.0 eV. The spectra were acquired
operating at constant pass energy of 20 eV, while the accuracy of the BE was ±0.1 eV. All
spectra were acquired and processed by Avantage v.5 software (Thermo Fisher Scientific
Ltd., East Grinstead, UK).

The magnetic properties were investigated in pressed powder samples using a commer-
cial quantum design superconducting quantum interference device (SQUID) magnetometer
(model MPMS3) with a maximum field of 7 T at 300 K.

Fourier-transform infrared spectroscopy (FTIR) was performed to obtain additional
structural information about the prepared nanoadsorbents. The FTIR spectra (Perkin Elmer
spectrophotometer, model Frontier) were registered from 4000 to 400 cm−1 (transmittance
mode) using eight scans at 4 cm−1 resolution. The measurements were carried out with
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sample KBr pellets prepared by mixing sample and potassium bromide and pressing at
10 tons in a hydraulic press (Auto-CrushIR, Pike Technologies).

The type of surface charge of the nanoadsorbents was examined from electrophoretic
light scattering measurements at pH = 2, 4, 6, and 8. The ionic strength was kept constant
at 0.01 mol/L by adding NaNO3 as a background electrolyte. The experiments were
conducted in a ZetaSizer (Malvern, model NanoZS 90) with a disposable cuvette (DTS
1070). The Henry equation [24] was used to convert the obtained electrophoretic mobilities
into zeta potential (ζ) values.

The specific surface area of the nanoadsorbents was determined with a BET
(Brunauer–Emmett–Teller) analyzer (Micromeritics ASAP 2020) at the temperature of
liquid nitrogen using conventional gas adsorption apparatus. The specific surface areas
(SBET) were evaluated with the BET equation.

2.4. Batch Adsorption and Desorption Experiments

The batch adsorption tests were carried out by mixing 20 mg of each sample with
15 mL of ASA solutions (1.33 mg/L) of varying concentrations (8–50 mg/L) under orbital
shaking. The standard conditions for the experiments were previously determined as
pH = 4.0, a shaking rate of 400 rpm, a contact time of 180 min, and 25 ◦C. After reaching
equilibrium, the system nanoadsorbent–ASA molecules were magnetically separated from
the liquid phase using a hand-held permanent magnet (Nd–Fe–B) for 10 min. Then, the
concentration of ASA in the supernatant was determined by UV–VIS. The pH dependence
on the adsorption process was evaluated through batch experiments of 10 mg/L ASA
solutions at different pH conditions (pH = 2, 4, 6, and 8). The tests were carried out with
15 mL of each solution with 20 mg of the nanoadsorbents (1.33 mg/L), under 400 rpm for
180 min. The kinetics of the adsorption process were studied from bath tests for 10 mg/L
ASA solutions at pH = 4, with different contact times in the range of 0 to 300 min.

The regeneration of the nanoadsorbents for reuse was studied from desorption and
readsorption tests in four consecutive cycles. In each cycle, ASA-loaded nanoadsorbents
were washed with 0.1 mol/L NaOH solution for 30 min. After magnetic separation, the
nanoparticles were dried in an oven at 60 ◦C overnight. Then, the recovered nanopowder
was tested for readsorption under the specified standard conditions. The zeta potential of
the regenerated nanoadsorbents was determined at pH = 4.

2.5. Equilibrium and Kinetic Modeling

The amount of ASA adsorbed at equilibrium (qe, mg/g) was calculated as:

qe =
(C0 − Ce)

m
V (1)

and the removal efficiency (%) was determined by:

Removal(%) =
(C0 − Ce)

C0
× 100 (2)

where C0 (mg/L) and Ce (mg/L) are the initial and equilibrium ASA concentration, respec-
tively, m (g) is the nanomaterial weight, and V (L) is the volume.

The equilibrium adsorption data were fitted with Langmuir and Freundlich isotherms
according to, respectively:

qe =
KLqmaxCe

1 + KLCe
(3)

qe = KFC1/n
e (4)

where qmax (mg/g) is the maximum adsorption capacity, KL (L/mg) is the Langmuir con-
stant, which is related to the energy of adsorption, KF (mg1−1/n g−1 L1/n) is the Freundlich
constant associated with the adsorption capacity; 1/n is a heterogeneity factor, which
accounts for adsorption intensity [25,26].



Nanomaterials 2023, 13, 514 6 of 17

The kinetic of adsorption was studied using the linear form of the pseudo-second-order
model (PSO), according to:

t
qt

=
1

k2q2
e
+

1
qe

t (5)

where qt (mg/L) is the amount of ASA adsorbed at a contact time t (min) and k2 (g
mg−1 min−1) is the PSO rate constant [27–29]. In the framework of this model, the initial
adsorption rate and the half-life of adsorption were, respectively, calculated as:

h = k2q2
e (6)

and
t1/2 =

1
k2qe

(7)

The quality of the fittings was checked by using the coefficient of determination R2

and the mean absolute percentage error (MAPE), as:

MAPE(%) =
∑N

i=1

∣∣∣ qexp−qcalc
qexp

∣∣∣
N

× 100, (8)

where qcal (mg/g) is the calculated adsorption capacity at equilibrium, qexp (mg/g) is the
experimental adsorption capacity at equilibrium, and N is the number of replicates.

3. Results and Discussion
3.1. Characterization of the Nanoadsorbents

The structural and morphological characteristics of the precursor nanoparticles (PACo
and PACoM) and nanoadsorbents (PACo–Lys and PACoM–Lys) were investigated using
XRD and TEM techniques, respectively. The results are presented in Figure 2. X-ray
diffractograms are shown in the upper panel for the precursor nanoparticles and the
nanoadsorbents. The precursor nanoparticles crystallize in a spinel cubic structure (Fd3m
space group) with no other phases existing in the samples. As expected, X-ray diffrac-
tograms of nanoadsorbents present the same spinel phase. The most intense lines [220],
[311], [400], [422], [440], [511], and Bragg’s law, allow us to determine the average lat-
tice parameter. The nanocrystal sizes were calculated using Scherrer’s formula applied
to the most intense [311] line. Table 1 summarizes the lattice parameter values, which
agree well with the International Centre for Diffraction Data (ICCD) patterns for spinel
ferrites. Table 1 also lists the mean diameters obtained for all samples. Moreover, it can
be observed that the structural characteristics determined by XRD are not affected by the
functionalizing process.

Table 1. Parameters of samples characterization: mean characteristic sizes (dXR, d0), cell parameter
(<a>) polydispersity index (s), BET specific surface area (SBET), and magnetic properties (MS, HC, χ0).

Sample dXR (nm) <a> (nm) d0 (nm) s SBET
(m2/g)

MS
(emu/g)

HC
(Oe) χ0

PACo 13.9 ± 1.4 0.836 11.1 0.18 88 63.4 150 ± 10 2.0
PACoM 7.9 ± 0.8 0.834 5.1 0.25 130 54.8 25 ± 10 2.3

PACo–Lys 13.5 ± 1.4 0.832 10.4 0.43 103 60.5 155 ± 10 1.6
PACoM–Lys 8.5 ± 0.9 0.833 6.1 0.28 154 31.7 10 ± 10 1.8

The morphostructural characteristics of the obtained precursor nanoparticles and
nanoadsorbents are investigated by TEM images. They are displayed in the lower panel
of Figure 2. The micrograph images indicate that the particles are mostly spherical. The
size distributions are well described by a log-normal function, allowing us to calculate the
median diameter (d0) and the polydispersity index (s), as listed in Table 1 for all obtained
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samples. When comparing the mean size diameter found from the two different techniques
(XRD and TEM), a slight difference between the precursors and the nanoadsorbents can be
observed. This fact can be attributed to the sampling process because the particles viewed
by TEM represent a minor fraction of those observed by XRD.
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The surface chemical composition of the precursor samples (PACo and PACoM) was
investigated using X-ray photoelectron spectroscopy. This technique is recognized to be a
surface-sensitive technique, able to detect the elemental composition of the first layers of the
solid-state materials (<10 nm) [30]. Figure 3 shows the comparison of the spectra acquired
from both samples. As it can be noted, the core–shell nanoparticles are characterized by the
presence of Fe, Co, and O. Moreover, very small amounts of C, Cl, and N were found as
residual contamination of the synthesis procedure, having a negligible role in the properties
of the nanoparticles, and, therefore, they are omitted from the discussion. The comparison
of the Fe2p, Co2p, and O1s does not appear to show great differences. The Fe2p signal is
characterized by Fe2p3/2-Fe2p1/2 doublet, and its satellites structures, typical for γ-Fe2O3,
as well as the peak position of Fe2p3/2 at BE = 711.5 eV [31,32]. Although, the Fe2p signal
from the PACoM sample appears to be slightly larger due to a higher contribution from
the underlying CoFe2O4 since the size of the nanoparticles is smaller. The Co2p signal is
partially covered by the FeLMM Auger peaks. However, it is possible to reconstruct this
signal, introducing a synthetic doublet, starting from the Co2p1/2 peak, whose distance and
the intensity are fixed (I(Co2p1/2)/I(Co2p3/2) = 0.5, ∆ (Co2p3/2-Co2p1/2) = 15.0 eV). The slight
difference in the composition of the samples is also confirmed by the XPS quantification
(Table 2), which is consistent with the presence of the maghemite shell on the nanoparticles.
For the PACo sample, the calculation of the Fe/O atomic ratio gives a value (Fe/O = 0.65)
near the stoichiometric value (Fe/OFe2O3 = 0.67), while for the PACoM sample, the ratio
decreases to 0.59, confirming a higher contribution from the CoFe2O4 core.
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Table 2. Binding energy (BE) value and XPS quantification (at. %) for the PACo and PaCoM samples.

Sample Co2p3/2 Fe2p3/2 O1s
Oxides Water

PACo
BE (eV) 781.2 711.5 530.8 533.2

at.% 1.2 34.9 53.3 10.5

PACoM
BE 781.2 711.5 530.8 533.1

at.% 2.1 30.6 52.2 15.1

The field dependence of magnetization measured at 300 K is presented in Figure 4.
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Figure 4a,b illustrates that the magnetization increases as the applied field increases
up to saturation magnetization (MS), the typical behavior for nanoparticles at room temper-
ature [15]. The lower panel shows the low-field area of the first magnetization curve for
all of the samples. A linear behavior can be observed, and from this curve, it is possible to
obtain the initial magnetic susceptibility χ0 from the slope of the curves. The fitted curves
are presented in the lower panel. Samples with larger diameters have a greater MS, as
expected. From the magnified insets, we were able to extract the coercive field HC of the
samples. These values are collected in Table 1.

The functionalization process can also impact the magnetic properties of the nanoad-
sorbents. A decrease in saturation magnetization was observed after the surface coating
process, being more pronounced for the sample with a smaller diameter in which the satu-
ration magnetization reduced by 58%. This behavior may be attributed to the incorporation
of nonmagnetic organic material onto the particle surface, which reduces the fraction of
magnetic material in the sample. With that, and considering that the magnetic part of the
nanoparticles maintains their magnetization, we used the difference in MS of the PACo and
PACo–Lys samples, and the PACoM and PACoM–Lys samples to calculate the average mass
of L-lysine per nanoadsorbent particle. Then, from the BET surface area, it was possible
to estimate the number of L-lysine molecules per surface area of the nanoadsorbent. It
corresponded to around 2 × 1018 L-lysine molecules/m2 (0.33 mmol/g) for the PACo–Lys
sample and 1 × 1019 L-lysine molecules/m2 (2.9 mmol/g) for the PACoM–Lys sample. The
value is higher for the PACoM–Lys sample due to its larger surface area.

In what concerns the initial susceptibility (Figure 4c,d), as found for the saturation
magnetization, an inverse behavior was observed: the bigger nanoparticles have lower
χ0 values. This result may be ascribed to the more significant occurrence of blocked
nanoparticles in the samples with a larger diameter. When nanoparticles are in the blocked
state, they present hysteresis and need stronger fields to begin aligning. When comparing
the HC values collected in Table 1, it was possible to observe higher coercivity for the
nanoparticles with higher diameters. Besides the difference in diameter, it is also important
to note that sized distribution plays a major role in the magnetic properties, notably in the
coercivity, as we have shown in a recent study [31].

Figure 5 exhibits the FTIR spectra of pure commercial L-lysine monohydrochloride,
nanoadsorbent samples (PACo–Lys and PACoM–Lys), and precursor nanoparticles (PACo
and PACoM). The main bands associated with CoFe2O4–
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-Fe2O3–Lys can be observed,
confirming the surface coating. In the spectra from the precursor nanoparticles, the broad
bands at 3500–3200 cm−1 (A) and 1623 cm−1 (B) may be, respectively, attributed to the
O–H stretching and the H–O–H bending vibrations of water molecules adsorbed onto
nanoparticles. Additionally, the broad band at ~590 cm−1 (C) can also be assigned to
the metal–oxygen (Fe–O) stretching vibrations in the tetrahedral sites of the spinel struc-
ture [32]. The vibrations in the octahedral sites are also present at around 480 cm−1. These
characteristic bands can be also observed in the spectra of the nanoadsorbent samples. The
overlapping bands at 3400–2800 cm−1 (D) in the spectra of pure L-lysine and adsorbent
samples may be assigned to N–H (~3400 cm−1) and CH2 (~2900 cm−1) stretching vibra-
tions [33]. Moreover, the region of 1700–1400 cm−1 contains the main bands relating to the
amino acid functionalities. The bands at around 1630 cm−1 (E) and 1580 cm−1 (F) may be at-
tributed to the asymmetric vibrations and 1418 cm−1 (H) to the symmetric vibrations of the
COO− group [33]. The band at 1502 cm−1 (G) may be assigned to the symmetric bending
of the NH3

+ group. These bands are present in the spectra of the precursor nanoparticles.
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Figure 5. FTIR spectra of the pure commercial L-lysine monohydrochloride, nanoadsorbent samples 
(PACo–Lys and PACoM–Lys), and precursor nanoparticles (PACo and PACoM). 
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the charge regulation may be explained based on the balance of the deprotonation of car-
boxyl groups (pKa~2.2) and ammonium groups (pKa~9.1 and ~10.8) of the L-lysine layer. 
As can be seen, the nanoparticles coated with L-lysine have higher isoelectric point (IEP) 
values than the precursor nanoparticles. Indeed, these samples present more positive zeta 
potential values for pH < PIE and less negative ones for pH > PIE. At pH = 8, the precursor 
particles have a negative charge, as expected, while the PACoM–Lys nanoadsorbent still 
holds a positive charge, and the PACo–Lys presents a charge close to zero. This general 
behavior can be justified considering that the functionalized nanoparticles have ammo-
nium surface groups (−NH3+) in this pH region, whose amount decreases with increasing 
pH due to deprotonation. The results also suggest that the PACoM–Lys sample has a 

Figure 5. FTIR spectra of the pure commercial L-lysine monohydrochloride, nanoadsorbent samples
(PACo–Lys and PACoM–Lys), and precursor nanoparticles (PACo and PACoM).

Figure 6 shows the zeta potential as a function of pH for the PACo–Lys and PACo sam-
ples (Figure 6a), and the PACoM and PACoM–Lys samples (Figure 6b). The pH dependence
of the zeta potential of the precursor nanoparticles has been already explored [34,35], and
it is related to the number of ≡FeOH2

+ and ≡FeO− surface sites, which are predominant
in acidic and alkaline mediums, respectively. In the case of the nanoadsorbents, the charge
regulation may be explained based on the balance of the deprotonation of carboxyl groups
(pKa~2.2) and ammonium groups (pKa~9.1 and ~10.8) of the L-lysine layer. As can be
seen, the nanoparticles coated with L-lysine have higher isoelectric point (IEP) values than
the precursor nanoparticles. Indeed, these samples present more positive zeta potential
values for pH < PIE and less negative ones for pH > PIE. At pH = 8, the precursor particles
have a negative charge, as expected, while the PACoM–Lys nanoadsorbent still holds a
positive charge, and the PACo–Lys presents a charge close to zero. This general behavior
can be justified considering that the functionalized nanoparticles have ammonium surface
groups (−NH3

+) in this pH region, whose amount decreases with increasing pH due to
deprotonation. The results also suggest that the PACoM–Lys sample has a higher number
of positive groups, leading to more positive zeta potentials compared to PACo–Lys.
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Figure 6. Zeta potential of the nanoparticles as a function of pH for (a) PACo–Lys and PACo sam-
ples, and (b) PACoM and PACoM–Lys samples. 
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Figure 7 exhibits the N2 adsorption–desorption isotherm curves for the PACo–Lys
and PACo samples (Figure 7a), and the PACoM and PACoM–Lys samples (Figure 7b). The
calculated SBET values are collected in Table 1.
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Based on the IUPAC classification [36], the isotherms for samples PACo and PACo–Lys
may be classified as type IV, indicating that the structure of the nanoparticles presents
mesopores. In the case of the PACoM and PACoM–Lys samples, the isotherms present an
intermediate classification between type II and type IV. The type II isotherm is characteristic
of nonporous or macroporous adsorbents. It is important to note that the average diameter
of PACoM nanoparticles is around 8 nm, therefore the presence of macropores in these
particles is not possible. Indeed, the formation of pores between the nanoparticles in
all samples is probably due to aggregation in the sampling process. This fact also made
it impossible to verify the type/shape of pores found in the samples. Concerning the
SBET values, the surface coating with L-lysine increased around 15% of the surface area of
the nanoparticles, which suggests a certain symmetry in the surface effects arising from
the functionalization.

3.2. Influence of pH: Mechanism of Adsorption

As can be seen in Figure 8, the best removal efficiency was observed for pH = 4 and 6,
where sample PACo–Lys removed around 44% and 41%, and sample PACoM–Lys removed
36% and 23% of ASA, respectively, under the studied experimental conditions. This result
can be explained by analyzing the speciation of ASA in water (pKa = 3.5) and the pH
dependence of the zeta potential of the nanoadsorbents. The deprotonation of the ASA
carboxyl groups is favored for pH > 3.5, leading to the anionic form of ASA. In parallel, the
zeta potential is positive for pH = 4 and 6, thus favoring the electrostatic interaction between
ASA and nanoadsorbent sites. For pH = 2, even though the zeta potential is highly positive,
the ASA exists predominantly in its nonionic form, affecting the electrostatic interaction. In
the case of pH = 8, the zeta potential of the nanoadsorbents sharply decreases, reducing the
efficiency of ASA removal. The whole of these results suggests that the mechanism of ASA
adsorption onto the proposed nanoadsorbents is essentially electrostatic.
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3.3. Adsorption Kinetics Studies

Figure 9 depicts the kinetic data of ASA adsorption by the nanoadsorbents fitted with
the linear form of the pseudo-second-order model. The obtained fitting parameters are
collected in Table 3. This model has been satisfactorily used to study the adsorption of
pollutants in aqueous solutions [37] and indicates that the concentration of ASA species in
the solution is similar to the concentration of surface sites under the studied conditions [38].
The PACo–Lys sample presented an initial adsorption rate five times higher than the
PACoM–Lys sample, which suggests that the nanoadsorbent of the larger mean diameter
has more available sites to interact with the ASA species. Moreover, the PACo–Lys sample
has a considerably shorter half-life compared to the PACoM–Lys sample, leading to a
shorter equilibrium time. Indeed, the adsorption of ASA by PACoM–Lys takes twice as
long to reach equilibrium.
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Table 3. Kinetic parameters calculated from the PSO model for ASA adsorption.

Sample teq
(min)

k2
(g mg−1 min−1)

qe
(mg/g) R2 h

(min mg g−1)
t1/2

(min)

PACo–Lys 150 8.6 × 10−3 5.4 0.981 0.25 21.8
PACoM–Lys 300 1.1 × 10−2 1.8 0.997 0.05 48.1
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3.4. Adsorption Equilibrium Studies

Figure 10 exhibits the equilibrium adsorption data for the PACo–Lys (Figure 10a) and
PACoM–Lys samples (Figure 10b) fitted with the Langmuir and Freundlich models. Table 4
presents the parameters calculated for both isotherms. Based on both R2 and MAPE, the
Freundlich isotherm best fitted the adsorption data, suggesting that the adsorption process
occurs on a heterogeneous surface with the formation of multilayers of adsorbate molecules.
The PACo–Lys sample showed a KF value three times higher than the PACoM–Lys sample,
which indicates a higher adsorption capacity. The removal efficiency of the PACoM–Lys
sample was possibly affected by some nanoparticle aggregation, which decreases the
available surface area, and, therefore, the number of adsorption sites. Regarding the
heterogeneity factor, both nanoadsorbents presented values between 1 and 2, which is
characteristic of an adsorption process of moderate intensity [39].
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Table 4. Parameters of the Langmuir and Freundlich models for ASA adsorption.

Model PACo–Lys PACoM–Lys

Langmuir

qmax (mg/g) 16.4 8.5
KL (L/mg) 0.05 0.03

R2 0.984 0.992
MAPE (%) 3.52 1.18

Freundlich

KF (mg1−1/n g/L1/n) 1.6 0.5
1/n 1.9 1.7
R2 0.997 0.999

MAPE (%) 1.24 0.37

The maximum adsorption capacity of the PACo–Lys sample based on the Langmuir
model is compared to that of different adsorbents for the ASA removal from water (Table 5).
Even though the adsorption capacity of the proposed nanomaterial is not outstanding, its
overall performance is favored by the increased efficiency in pollutant removal through
magnetic assistance. Indeed, the separation of common adsorbents loaded with pollu-
tants is normally carried out through flotation, centrifugation, filtration, or sedimentation.
These classical techniques have disadvantages when compared to magnetically assisted
separation, such as the need for constant maintenance, runtime, and operational costs.
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Table 5. Comparison of some adsorbents for ASA removal in terms of maximum adsorption capacity.

Adsorbent qmax (mg/g) Reference

Industrial pretreated cork 174.4 [40]
Macroalgae-derived activated carbon/iron

oxide magnetic composites 140.3 [41]

Activated carbon 45.0 [42]
PACo–Lys 16.4 This study

Chitosan/waste coffee-grounds composite 10.4 [43]

3.5. Recovery and Reuse Studies

The recovery capacity corresponds to the fraction of the maximum adsorption capacity
that the nanoadsorbent can retain after consecutive cycles of desorption and readsorption
experiments. As shown in Figure 11a, the percentage of removal for the PACo–Lys sample
decreased to 29%, which indicates a recovery capacity of 66%. In the case of the PACoM–
Lys sample, the removal efficiency dropped to 26%, corresponding to a recovery capacity
of around 72%. The decrease in adsorption capacity after the recovery process may be
attributed to the possible detaching of part of the L-lysine ligands during the desorption
process and/or a small amount of non-desorbed ASA species. This is consistent with the
slight decrease in the zeta potential of the regenerated nanoadsorbents from 28.9 ± 0.9 mV
to 26.2 ± 0.9 mV (PACo–Lys sample) and from 29.1 ± 0.9 mV to 27.2 ± 0.8 mV (PACoM–Lys
sample) (Figure 11b). Despite this, the proposed nanoadsorbents preserved more than
60% of their original removal capacity, which indicates that the nanomaterials have good
recycling potential.
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4. Conclusions

The present study reported on the preparation, characterization, and potential ap-
plication of hybrid magnetic nanomaterials of core–shell architecture to adsorb ASA in
water media. The nanoadsorbents were elaborated in two main stages: the synthesis of
core–shell magnetic nanoparticles through coprecipitation in an alkaline medium, followed
by functionalization with L-lysine. The Freundlich model best fitted the equilibrium ad-
sorption data suggesting multilayer adsorption. The best removal efficiency was obtained
at pH = 4.0, at an orbital shaking rate of 400 rpm, and at an equilibrium time of 150 min.
The sample composed of larger nanoparticles presented the best maximum adsorption
capacity of around 16.4 mg/g. The kinetic data followed a pseudo-second-order behavior,
where the best half-life of adsorption was approximately 22 min. The nanomaterials can be
effectively applied in the pH range of 4–6, where the mechanism of ASA adsorption occurs
fundamentally through electrostatic interaction. Furthermore, the recovery capacity of the
nanoadsorbents was higher than 60%, which ensures their reusability. In conclusion, the
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present survey shows that the proposed hybrid core–shell nanoadsorbents are potentially
useful for the removal of ASA and its anionic derivatives from water by magnetic assistance,
and the obtained results are important for future applications.
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