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Abstract: In order to develop a deep method for removing trace acetic acid from industrial solvents,
a type of quaternary ammonium-salt-modified magnetic microspheres was developed as a potential
nanoadsorbent for low-concentration acetic-acid-enhanced removal from DMAC aqueous solution.
The ion-exchange magnetic microspheres (Fe3O4@SiO2@N(CH3)3

+) have been prepared by a two-step
sol-gel method with N-trimethoxysilylpropyl-N, N, N-trimethylammonium chloride as functional
monomer, tetraethyl orthosilicate as a cross-linking agent, Fe3O4@SiO2 as a matrix. The nanocompos-
ite is characterized by SEM, FI-IR, XRD, VSM, and XPS. Moreover, the optimization of adsorption
experiments shows that the maximum adsorption capacity of nanoadsorbent is 7.25 mg/g at a con-
centration = 30 mg/L, adsorbent dosage = 10 mg, V = 10 mL, and room temperature. Furthermore,
the saturated Fe3O4@SiO2@N(CH3)3

+ achieved an efficient regeneration using a simple desorption
method and demonstrated a good regeneration performance after five adsorption/desorption cycles.
In addition, Fe3O4@SiO2@N(CH3)3

+ was used to remove acetic acid in DMAC waste liquid; the
adsorption effect is consistent with that of a nanoadsorbent of acetic acid in an aqueous solution.
These results indicate that Fe3O4@SiO2@N(CH3)3

+ can efficiently treat acetic acid that is difficult to
remove from DMAC waste liquid.

Keywords: DMAC waste liquid; acetic acid; advanced removal; ion-exchange magnetic microspheres

1. Introduction

N, N-dimethylacetamide (DMAC) is an essential solvent for synthetic fibers, and it
is usually recycled via extraction and distillation in practical production [1]. DMAC will
decompose to a certain extent and produce acetic acid during high-temperature distillation.
However, the generated acetic acid and DMAC form azeotrope, and thus a distillation
method cannot be used to realize the deep separation of acetic acid and DMAC. Importantly,
residual acetic acid will further accelerate the decomposition of DMAC in the next DMAC
recovery process. Therefore, the deep removal of acetic acid plays a crucial role in inhibiting
the hydrolysis of DMAC. In recent years, few studies have focused on the separation of low-
concentration acetic acid from DMAC aqueous solutions. Generally, acetic acid is removed
by two main methods. In the first method in Liu’s lab, DMAC waste was diluted with
water to 60~80% of the water content, and then sodium hydroxide was added to neutralize
the acetic acid in the solution [2]. Next, DMAC was recovered through extraction and
distillation from the neutralized aqueous solution. However, it is prone to producing large
amounts of salt scales that can corrode easily equipment and cause device blockages [2]. In
the second method, Li’s research team adsorbed and removed acetic acid using column
chromatography [3]. However, the efficiency of column chromatography technology is
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low, and thus it has not yet been applied and popularized in industry. In recent years,
some studies have been published on the adsorption of acetic acid. Guo and Chen’s
research group reported a method of using MOF material UiO-66 to adsorb acetic acid in an
aqueous solution [4–6]. Yang et al. prepared an alkaline site-modified MgO for the selective
adsorption of the CH3COOH/C6H6 binary mixture, and their results show the highest
selectivity [7]. Chelazzi et al. synthesized ZnO/castor oil-derived polyurethanes materials,
which can be useful in other fields where the efficient capture of acetic acid is necessary [8].
Baglioni et al. prepared zinc oxide-castor oil polyurethane hybrids (ZnO/COPs), which
can be used as acetic acid removers in the preventive conservation of cultural heritage [9].
Although they are not used for the removal of acetic acid in a DMAC solvent system, they
can be used as a reference for this removal.

Magnetic solid phase extraction technique (MSPE) is a modern separation and purifica-
tion technology [10,11]. It uses magnetic or magnetic-modified materials as adsorbents and
can be directly separated from the matrix via an external magnetic field. Therefore, MSPE
is simple to operate, efficient has no centrifugal filtration, and can be widely applied for the
extraction and separation of trace pollutants [12–14]. The proposed magnetic ion exchange
technique is a combination of magnetic solid-phase extraction and ion exchange. It has
the dual characteristics of fast exchange speed and fast separation, as well as being inex-
pensive and convenient to operate. Importantly, it can replace traditional chromatography
technology and is widely used to separate contaminants [15–17].

In this study, an anion-exchange magnetic microsphere was synthesized using the
two-step sol-gel method, its adsorption behavior and regeneration were studied, and a
real sample analysis of acetic acid on a nanoadsorbent was conducted. For the first time,
a prepared Fe3O4@SiO2@N(CH3)3

+ was used to trace acetic acid removal from a DMAC
aqueous solution, providing a rapid and low-energy-consumption process for the deep
removal of acetic acid from industrial DMAC.

2. Materials and Methods
2.1. Reagents and Instruments

Fe3O4 magnetic microspheres (400 nm) were purchased from Jinzhuzhizao Biotech-
nology Co., Ltd (Jilin, China). Ethanol (AR, ≥99.5%). Acetic acid (AR, ≥99%), tetraethyl or-
thosilicate (AR, ≥99%), ammonia solution (28.0–30.0%), and methanol (AR, 99.5%) were ob-
tained from Tianjin Damao Chemicals Co., Ltd. (Tianjin, China). N-[3-(Trimethoxysilyl)propyl]-
N,N,N-trimethylammonium chloride (50% in methanol) and tetraethyl orthosilicate (TEOS)
were purchased from Alfa Aesar Chemical Co., Ltd. (Shanghai, China). Deionized water
was obtained from a Millipore Milli-Q apparatus.

Infrared (IR) spectra of the samples were characterized by Fourier-transform infrared
(FT-IR) spectrometry (Spectrum One, Perkin-Elmer, Philadelphia, PA, USA). X-ray diffrac-
tion (XRD) (D8 FOCUS, Bruker, Salbruken, Germany) with Cu Kα radiation (k = 1.5406 A◦)
was used to analyze the alteration in the crystallographic phases of magnetic species,
and the scanning range was in a 2θ range of 10–80◦. Field-emission scanning electron
microscopy (FESEM) (Zeiss Marilin, Marilin, Germany) with EDS was used to observe
surface morphology and element distribution. The intensity of magnetism was determined
by vibrating sample magnetometer (VSM) (703T, Lake Shore, USA). An HPLC analysis was
carried out on an LC-20AB system (Shimadzu, Japan). Chromatographic separation analy-
sis was performed on a VP-ODS C18 column (5 µm × 4.6 mm × 150 mm i.d.). The mobile
phase consisted of methanol (mobile phase A) and ultrapure water with 0.1% phosphoric
acid (mobile phase B), A:B = 5:95. The flow rate was 1.0 mL/min, detection wavelength
was monitored at 210 nm, and the injection volume was 20 µL for each input.

2.2. Preparation of Fe3O4@SiO2@N(CH3)3
+

2.2.1. Preparation of Fe3O4@SiO2 Magnetic Microspheres

First, 0.2 g Fe3O4, 80 mL anhydrous ethanol, and 20 mL distilled water were added to
a round-bottom flask under ultrasonication for 15 min, followed by the addition of 2 mL
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concentrated ammonia aqueous solution, and the mixture was stirred mechanically for
20 min. Then, 1 mL tetraethoxysilane(TEOS) was added to the above reactor drop-by-drop,
and the reaction was stirred for 5 h at room temperature. After complete reaction, the
product was washed with water and alcohol, the final product was diluted with water to a
concentration of 50 mg/mL [18].

2.2.2. Preparation of Ion-Exchange Magnetic Microspheres

In the next step, 5 mL Fe3O4@SiO2, 150 mL anhydrous ethanol, 25 mL distilled water,
1 mL N-[3-(Trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride, 2 mL TEOS
and 7.5 mL ammonium hydroxide solution were successively added to a 500 mL three-
neck round flask, and then the reaction mixture was mechanically stirred at 40 ◦C for
3 h. Afterward, the ion-exchange magnetic microspheres (Fe3O4@SiO2@N(CH3)3

+) were
collected by magnetic force, and the product was alternately washed 5 times with water
and ethanol to remove the excess reagents, before being dried in a drying oven [19,20].

2.3. Adsorption Experiments

The adsorption experiments were performed in triplicate, and the acetic acid solutions
used were prepared using standard acetic acid solutions. The adsorption capability and
removal efficiency of acetic acid on Fe3O4@SiO2@N(CH3)3

+ was calculated using the
following equations:

qe =
(C0 − Ce)× V

m
(1)

Re =
C0 − Ce

C0
× 100% (2)

where qe (mg/g) is the adsorption capacity of acetic acid and Re (%) is the removal efficiency,
representing the percentage of acetic acid reduced after adsorption. C0 and Ce (mg/L)
are the initial acetic acid initial and equilibrium concentrations, respectively. m (g) is the
weight of Fe3O4@SiO2@N(CH3)3

+, and V (L) is the volume of phosphate solution.
To optimize the adsorption experimental conditions, batch experiments were con-

ducted in a 25 mL three-mouth flask. The mixtures were shaken at 150 r/min, and the
temperature was maintained at 25 ± 1 ◦C. After reaching equilibrium and then magnetic
separation, the residual acetic acid concentration was determined by HPLC-DAD. The
effect of the ion-exchange magnetic microspheres dose on the acetic acid adsorption ca-
pacity was performed at dosages ranging from 5 mg to 25 mg. Regarding the influence of
temperature on adsorption capacity, the mixture was placed in a water bath and shaken at
25 ◦C, 35 ◦C, and 45 ◦C, respectively. Regarding the concentration effect, the experiments
employed initial concentrations of 10 mg/L, 20 mg/L, and 30 mg/L, and samples were
taken at required time intervals (0–60 min) for acetic acid analysis.

2.4. Regeneration Experiments

The exhausted Fe3O4@SiO2@N(CH3)3
+ was collected by magnetic separation after a

30 min adsorption period. Afterward, 0.1 M NaOH was mixed and stirred with adsorbents
to optimize the desorption solution. Then, the adsorbent was washed with deionized water
to neutrality and dried for the next reuse regeneration cycle.

2.5. Real Sample Measurement

Fe3O4@SiO2@N(CH3)3
+ (2 g and 3 g) was accurately weighed in a 100 mL three-

necked flask, added into 50 mL of acetic acid solution with a mass fraction of 0.006–0.06%
(60–600 mg/L) and DMAC mass fraction of 10%, and mechanically stirred at room temper-
ature for 20 min. Then, the adsorption capacity was calculated. For comparisons, acetic
acid in water was also tested in parallel following the same procedure.
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3. Results
3.1. Characterization of Fe3O4@SiO2@N(CH3)3

+

Fe3O4@SiO2@N(CH3)3
+ was synthesized and used the nanocomposite to remove

acetic acid from DMAC waste liquid via the processes illustrated in Scheme 1. Firstly,
super-paramagnetic Fe3O4 was coated with a silica layer using a sol-gel method, resulting
in excellent stability and easy surface modification of iron oxide due to the hydrophilic
properties of the silica shell. Secondly, TEOS was selected as the coupling agent, and
N-[3-(Trimethoxysilyl)propyl]-N,N,N-trimethylammonium chloride as a functional monomer,
a layer of quaternary ammonium (QA) was modified on the surface of Fe3O4@SiO2 through
a condensation hydrolysis reaction, to form the resulting Fe3O4@SiO2@N(CH3)3

+ [21].
Thirdly, the –N(CH3)3

+ groups of the nanocomposite were freely exposed to the surround-
ing solution and interacted with the specific targets, such as acetic acid or other ions in
solution, via ion exchange [22] (bottom of the figure).
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Scheme 1. Schematic illustration of the synthesis procedure of Fe3O4@SiO2@N(CH3)3
+.

The morphology of magnetic microspheres is identified by SEM. As shown in Figure 1a,
Fe3O4 nanoparticles exhibit spherical shapes with rough surfaces. After coating with SiO2
(Figure 1b), the spherical-shaped Fe3O4@SiO2 has a smooth surface, which makes it easier
to modify and enhances its dispersibility in water. Then, a layer of quaternary ammonium
(QA) was modified on the surface of Fe3O4@SiO2 to form Fe3O4@SiO2@N(CH3)3

+. In
Figure 1c, it is clearly shown that quaternary ammonium forms in situ around Fe3O4@SiO2
microspheres with irregular shapes.
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Figure 1. SEM images of Fe3O4 (a), Fe3O4@SiO2 (b) and Fe3O4@SiO2@N(CH3)3
+ (c).

Figure 2a shows the FT-IR spectra of Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@N(CH3)3
+,

respectively. For all the microspheres, a peak at 585 cm−1 corresponded to the Fe-O
stretching vibration [23]. The peaks located between 1000 and 1250 cm−1, as well as
those at 798 cm−1, assigned to the stretching mode of Si-OH and Si-O-Si in silica [24],
respectively, indicating that the silicon layers were successfully coated on the surface of
Fe3O4 by the sol-gel method. In addition, a new peak at 1479 cm−1 is assigned to the
asymmetric bending modes of the head N-(CH3)3 methyl group, which is caused by the
introduction of quaternary ammonium in the Fe3O4@SiO2@N(CH3)3

+ [20,25]. Meanwhile,
the declining peak intensity of Fe-O and Si-O-Si in Fe3O4@SiO2@N(CH3)3

+ demonstrates
the successful aggregations of quaternary ammonium onto the Fe3O4@SiO2. Furthermore,
from the XRD results (Figure 2b), the presence of crystal planes with cubic crystal structures
proves that all the microspheres are composed of Fe3O4 [26]. The intensity of the Fe3O4
characteristic peaks weakens after coating silica layers and quaternary ammonium shells,
but the nanocrystalline crystal properties of magnetite particles are not destroyed during the
synthesis processes of the Fe3O4@SiO2@N(CH3)3

+. The above results are strongly indicative
of the successful fabrication of the target product as follows: quaternary ammonium-type
ion-exchange microspheres (Fe3O4@SiO2@N(CH3)3

+).
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Figure 2. (a) FT-IR spectra and (b) XRD pattern of Fe3O4, Fe3O4@SiO2, Fe3O4@SiO2@N(CH3)3
+.

The full-survey spectrum of the Fe3O4@SiO2 and Fe3O4@SiO2@N(CH3)3
+ are pre-

sented in Figure 3, and there are significant peaks at 532.05 eV, 152.19 eV, and 102.54 eV
corresponding to O 1 s, Si 2 s, and Si 2 p, respectively [27,28]. Moreover, the high-resolution
spectra of Si 2 p and N 1 s are shown in Figure 2b,c. In Si 2 p spectrum, the strength of
Si decreases before and after coating quaternary ammonium. Then, the N 1 s spectrum
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forms a new peak at 402.63 eV, corresponding to the C-N functional groups, due to the
introduction of -N(CH3)3

+ from quaternary ammonium [29,30]. These results indicate that
the synthesis of Fe3O4@SiO2@N(CH3)3

+ is successful. Figure 3d shows that the saturation
magnetizations of Fe3O4@SiO2 and Fe3O4@SiO2@N(CH3)3

+ are 47.85 and 40.49 emu/g, re-
spectively. The composite magnetism decreases due to the non-magnetic layer of -N(CH3)3

+

on the surface. Although the magnetic saturation intensity of Fe3O4@SiO2@N(CH3)3
+ is

reduced, it can easily be separated from the water under an external magnetic field (inset).
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+: (a) survey, (b) Si 2 p, (c) N 1 s, and

(d) VSM diagram of Fe3O4@SiO2 and Fe3O4@SiO2@N(CH3)3
+.

3.2. Optimization of Absorption Condition by Fe3O4@SiO2@N(CH3)3
+

The optimization of the experimental conditions designed by batch adsorption ex-
periments is displayed in Figure 4. As shown in Figure 4a, the increase in the dose of
Fe3O4@SiO2@N(CH3)3

+ has a negative effect on adsorption because the ratio of acetic acid
to the active site decreases. The effect of temperature variation on acetic acid adsorption is
shown in Figure 4b. With the temperature increase in the range of 25–45 ◦C, the adsorption
capacity increases from 7.20 to 11.01 mg/g, indicating that acetic acid adsorption is an
endothermic process. The influence of acetic acid concentration on the adsorption capacity
of synthesized materials (Figure 4c) reveals that, with the increase in concentration from
10 to 50 mg/L, the adsorption capacity increases from 1.81 to 8.67 mg/g. This is due to
the presence of vacant sites that are initially more accessible for adsorption; the repulsive
forces between the ions dominate and hinder their accessibility. The data show that the
adsorption capacity significantly increases in the first ten minutes as the time elapses,
with no significant change in the adsorption capacity. Ultimately, under comprehensive
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consideration, the maximum adsorption capacity is 7.25 mg/g, where the condition of
Fe3O4@SiO2@N(CH3)3

+ dosage = 1 g/L, initial concentration = 30 mg/L, v = 10 mL, and
temperature = 25 ◦C.
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Figure 4. Effect adsorbent dose (a), temperature (b), different concentration, and contact time (c) on
the adsorption capacity of Fe3O4@SiO2@N(CH3)3

+.

3.3. Regeneration Study

For the recovery of Fe3O4@SiO2@N(CH3)3
+ after adsorption, 0.1 M NaOH was used

as the eluent for elution. After elution, the Fe3O4@SiO2@N(CH3)3
+ was collected by a

magnet, washed until neutral, dried, and re-adsorbed again. As depicted in Figure 5, after
five adsorption–desorption cycles, the adsorption capacity of the nanoadsorbents was only
reduced by less than 5%, suggesting that synthetic Fe3O4@SiO2@N(CH3)3

+ has an excellent
regeneration performance. In addition, the nanomaterials before and after the adsorption
of acetic acid remained unchanged in the morphology and crystal structure (Figure S1).
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Figure 5. Regeneration capacity of Fe3O4@SiO2@N(CH3)3
+ for acetic acid removing.

3.4. Real Sample Measurement

To have an insight into the practical applicability of synthesized Fe3O4@SiO2@N(CH3)3
+,

which is applied to extract acetic acid from the DMAC waste liquid. The nanoadsorbent
(2 g and 3 g) is added to the aqueous solution and the DMAC waste liquid with an acetic
acid concentration of 0.006 and 0.06%, respectively. After full adsorption, the supernatant
is assayed by HPLC-DAD, as depicted in Figure 6. When the mass concentration of acetic
acid is 0.006% in water and DMAC waste liquid, the removal rate is 100%. Additionally,
while the mass concentration of acetic acid increases to 0.06%, the removal rate of acetic
acid in water and DMAC waste liquid is the same to be about 60%. This means that the
change in the matrix does not affect the removal of acetic acid by Fe3O4@SiO2@N(CH3)3

+,
and a better removal effect is achieved by increasing the amount of nanoadsorbent (insert
picture). All the above conclusions confirm that the Fe3O4@SiO2@N(CH3)3

+ is practical for
removing acetic acid from DMAC waste liquid.
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4. Conclusions

In conclusion, a novel quaternary ammonium ion-exchange magnetic microspheres
(Fe3O4@SiO2@N(CH3)3

+) was synthesized under normal thermal and atmospheric con-
ditions and used for the deep removal of trace acetic acid from industrial solvents. The
use of a nanoadsorbent was confirmed by SEM, FTIR, XRD, VSM, and XPS analyses. After
optimizing the adsorption conditions through batch experiments, Fe3O4@SiO2@N(CH3)3

+

demonstrated the efficient removal of acetic acid. Moreover, ion exchange played a key
role in this acetic acid removal. Fe3O4@SiO2@N(CH3)3

+ can be effectively regenerated by
0.1 mol/L NaOH and reused five times in adsorption–desorption cycles; the adsorption ca-
pacity reduces only by less than 5%. Therefore, the synthesized Fe3O4@SiO2@N(CH3)3

+ is
potentially applicable for extracting acetic acid from the DMAC waste liquid. Additionally,
the extraction result is close to the analyte in an aqueous solution. Therefore, it provides a
useful tool for rapidly and effectively removing acetic acid from industrial DMAC via a
low-energy process.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13030509/s1, Figure S1: FTIR spectra and SEM images
of Fe3O4@SiO2@N(CH3)3

+ (b-before, c-after acetic acid adsorption).
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