
Citation: Doughan, I.; Oyemakinwa,

K.; Ovaskainen, O.; Roussey, M. Low

Loss Vertical TiO2/Polymer Hybrid

Nano-Waveguides. Nanomaterials

2023, 13, 469. https://doi.org/

10.3390/nano13030469

Academic Editors: Jean-Emmanuel

Broquin and Sonia García Blanco

Received: 19 December 2022

Revised: 17 January 2023

Accepted: 20 January 2023

Published: 24 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Article

Low Loss Vertical TiO2/Polymer Hybrid Nano-Waveguides
Isaac Doughan *, Kehinde Oyemakinwa, Olli Ovaskainen and Matthieu Roussey *

Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland,
P.O. Box 111, 80101 Joensuu, Finland
* Correspondence: isaac.doughan@uef.fi (I.D.); matthieu.roussey@uef.fi (M.R.)

Abstract: This article proposes a novel demonstration of a low-loss polymer channel hybridized with
a titania core leading to a nano-waveguide elongated in the normal direction to the substrate. It
is aimed at using the quasi-transverse magnetic (TM) mode as the predominant mode in compact
photonic circuitry. A detailed design analysis shows how a thin layer of a higher-refractive index
material in a trench within the core of the waveguide can increase the confinement and reduce the
propagation losses. This thin layer, produced by atomic layer deposition, covers the entire polymer
structure in a conformal manner, ensuring both a reduction of the surface roughness and a stronger
field confinement. The trench can be made at any place within the polymer channel and therefore
its position can be tuned to obtain asymmetric modal distribution. The waveguide is demonstrated
at telecom wavelengths, although the material’s properties enable operation over a large part of
the electromagnetic spectrum. We measured propagation losses as low as 1.75 ± 0.32 dB/cm in a
200 nm × 900 nm section of the waveguide core. All processes being mass-production compatible,
this study opens a path towards easier integrated-component manufacture.

Keywords: optical waveguides; integrated optics; micro fabrication; polymer components

1. Introduction

A channel waveguide on a chip is composed of a core, a substrate, and a cladding.
Except for rare exceptions, e.g., slot waveguides [1,2] and anti-resonant reflective waveg-
uides [3,4], the core is usually constituted of one or several materials of a higher refractive
index than the substrate and superstrate, ensuring the required light confinement. The
refractive index difference between the three parts of the waveguide is a measure of the
confinement strength of the propagating modes inside the core. Low refractive index
contrast waveguides, such as glass waveguides made by ion exchange, usually have a large
and high cross section to ensure good confinement of the optical modes within the core
of the waveguide [5,6]. This is a synonym of low loss when the material constituting the
waveguide is homogeneous and exempt from scatterers possibly perturbating the field
propagation. However, in such a case, tight bends are prohibited to avoid extensive losses.
On the other hand, nano-waveguides enabled by high refractive index contrast materi-
als, such as silicon or germanium, allow very tiny and compact photonic circuitry [7–9].
Propagation loss is higher, but the reduced footprint of the components compensates for it.
Polymers offer a trade-off between these two extremes since they have a refractive index
ranging from 1.2 to 2 [10–12]. Moreover, direct electron beam lithography (EBL) is possible
for some of them [13,14], and nanoimprinting is an interesting option for the fabrication of
channel waveguides at large scale [15,16]. However, because of a refractive index close to
that of the substrate, polymers may not be ideal for small-footprint devices.

The cross-sectional geometry of a waveguide is the other key parameter to tuning the
effective index of a guided mode. In particular, the shape, size, and symmetry of the core
will directly affect the birefringence, dispersion, confinement, and localization of a guided
mode. Large core-based waveguides, usually the low refractive index contrast waveguides
or the large 3 µm thick silicon waveguides, present modes with low dependence on the
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fine core modifications. In contrast, nano-waveguides are guiding modes reacting strongly
to any tiny modifications such as a sidewall corrugation or a tapering.

We present, here, an alternative geometry allowing the use of polymer waveguides
even at a small-footprint scale. The cross section of the waveguide is presented in Figure 1.
The geometry, i.e., the cross section of the waveguide, consists of a polymer waveguide of
width 2w + 2t made of AZ-2070 (nLOF) electron beam resist of refractive index nP = 1.601
at λ = 1550 nm [17–19]. A trench of width 2t is opened in the channel at a position yT
varying from −a to a, with a = w + t and yT = 0 corresponding to the center of the
waveguide. To ensure confinement of the field in the central core of the waveguide, the
trench is filled up with a high-refractive index material. We opted for titania, TiO2 with
nTiO2 = 2.24 at λ = 1550 nm, deposited by atomic layer deposition (ALD) in a conformal
manner all over the polymer channel [20–22]. This fabrication method leads to a coating of
thickness t on the sides and lateral unguiding regions of the waveguide, but also to a filling
of the high aspect ratio trench, as sketched in Figure 1. The entire structure is fabricated
on a thermally oxidized silicon wafer. The thermal oxide layer of 3 µm thickness ensures
isolation of the optical mode with the silicon wafer. Therefore, a vertical high-refractive
index nano-waveguide can be created.
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on-chip amplifier [23]. Another application could be the use of quantum dots or dyes in-
side the trench to provide the up or down conversion of a signal in order to reach other 
wavelength ranges [24]. Emitters at very low concentration within the trench can provide 
very small amounts of photons and with a proper design of the polymer section, a single 
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Figure 1. Cross-section geometry of the vertical nano-waveguide. The substrate is an oxidized silicon
wafer. The polymer is AZ-nLof. The coating is TiO2. The coating thickness is t, the height and width
of each part of the polymer region are h and w, respectively. The trench thickness is 2t and its position
with respect to the waveguide is at yT = 0 when centered.

In this article, we focus on the demonstration of the waveguide with a titania core.
However, it is worth mentioning that as long as the refractive indices match the condition
nPOLYMER < nTRENCH, any changes in the materials are prevented. One can imagine a
multitude of applications for which a hybrid waveguide is necessary but it is not easy at
wafer scale. For instance, one can include a gain medium within the trench in order to
create an on-chip amplifier [23]. Another application could be the use of quantum dots or
dyes inside the trench to provide the up or down conversion of a signal in order to reach
other wavelength ranges [24]. Emitters at very low concentration within the trench can
provide very small amounts of photons and with a proper design of the polymer section, a
single photon source could be achieved [25] for quantum photonics purposes.

2. Materials and Methods
2.1. Designing Tools

The finite-difference time-domain method (FDTD) is a tool for modeling and simulat-
ing nanoscale optical devices. It is well capable of handling dielectric structures that are in-
homogeneous and complicated while producing field solutions that are well defined [26,27].
The waveguides studied in this work have been investigated with the commercial software,
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Ansys Lumerical suite. The configuration was set up as a structure group controlled with
script as shown in Figure 1. The boundary conditions of the simulation region were set
as perfectly matched layers (PML), which act as absorbers for any scattered field. The
mesh step size used in the simulations was 20 nm in x, y, and z directions. This mesh size
allows for numerical convergence of the results. The central illumination wavelength was
1550 nm. Due to high computational power and memory requirements with the 3D-FDTD,
leading to time-consuming simulations, the waveguide and bend variation simulations
were mostly carried out in 2D-FDTD using effective index approximation. The results were
analyzed with MATLAB R2018b, MathWorks (Natick, MA, USA). The mode calculations
were performed using the Lumerical in-built mode solver based on the finite difference
method. In all calculations, the dispersion of the materials, measured by ellipsometry, was
taken into account.

2.2. Fabrication Techniques

A layer of diluted negative resist (MicroChemicals AZ nLof 2070, Ulm, Germany) was
spin-coated (Laurell WS-650MZ-8NPPB, Lansdale, PA, USA) at 1100 rpm on an oxidized
silicon wafer. The polymer layer was soft baked at 110 ◦C on a hot plate for 1 min. The
predefined waveguide structure was then transferred onto the resist layer by electron beam
lithography (EBL, Vistec EBPG5000+HR, Dortmund, Germany). The acceleration voltage
was set at 100 kV, and an exposure dose of 40 µC/cm2 was used. After exposure, the
sample was baked hard at 110 ◦C for 1 min. The pattern was then developed in AR 300-47,
AllResist (Strausberg, Germany), for 90 s and then stopped in de-ionized (DI) water for 30 s
before rinsing with DI-water. nLof is a negative EBL resist, which means that exposed
areas remain after development. The sample was further coated by atomic layer deposition
(ALD) for a 100 nm titanium dioxide film. In the ALD process, the precursors were titanium
tetrachloride (TiCl4) and water (H2O). The deposition rate was 0.0718 nm/cycle. The
process temperature was set to 120 ◦C to ensure the deposition of an amorphous material.

Figure 2 describes the 4-step process flow for the manufacturing of the waveguides.
The relatively large features of the structure would allow the use of nanoimprint technology
instead of EBL for a faster, lower cost, and larger scale fabrication.

Nanomaterials 2023, 13, x FOR PEER REVIEW 3 of 11 
 

 

software, Ansys Lumerical suite. The configuration was set up as a structure group con-
trolled with script as shown in Figure 1. The boundary conditions of the simulation region 
were set as perfectly matched layers (PML), which act as absorbers for any scattered field. 
The mesh step size used in the simulations was 20 nm in 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 directions. This 
mesh size allows for numerical convergence of the results. The central illumination wave-
length was 1550 nm. Due to high computational power and memory requirements with 
the 3D-FDTD, leading to time-consuming simulations, the waveguide and bend variation 
simulations were mostly carried out in 2D-FDTD using effective index approximation. 
The results were analyzed with MATLAB R2018b, MathWorks (Natick, MA, USA). The 
mode calculations were performed using the Lumerical in-built mode solver based on the 
finite difference method. In all calculations, the dispersion of the materials, measured by 
ellipsometry, was taken into account. 

2.2. Fabrication Techniques 
A layer of diluted negative resist (MicroChemicals AZ nLof 2070, Ulm, Germany) 

was spin-coated (Laurell WS-650MZ-8NPPB, Lansdale, PA, USA) at 1100 rpm on an oxi-
dized silicon wafer. The polymer layer was soft baked at 110 °C on a hot plate for 1 min. 
The predefined waveguide structure was then transferred onto the resist layer by electron 
beam lithography (EBL, Vistec EBPG5000+HR, Dortmund, Germany). The acceleration 
voltage was set at 100 kV, and an exposure dose of 40 µC/cm2 was used. After exposure, 
the sample was baked hard at 110 °C for 1 min. The pattern was then developed in AR 
300-47, AllResist (Strausberg, Germany), for 90 s and then stopped in de-ionized (DI) wa-
ter for 30 s before rinsing with DI-water. nLof is a negative EBL resist, which means that 
exposed areas remain after development. The sample was further coated by atomic layer 
deposition (ALD) for a 100 nm titanium dioxide film. In the ALD process, the precursors 
were titanium tetrachloride (TiCl4) and water (H2O). The deposition rate was 0.0718 
nm/cycle. The process temperature was set to 120 °C to ensure the deposition of an amor-
phous material. 

Figure 2 describes the 4-step process flow for the manufacturing of the waveguides. 
The relatively large features of the structure would allow the use of nanoimprint technol-
ogy instead of EBL for a faster, lower cost, and larger scale fabrication. 

 
Figure 2. Process flow of the waveguide fabrication: resist deposition on an oxidized silicon wafer, 
electron-beam patterning of the nLof resist, development of the pattern, ALD coating of titania. 

Several patterns were fabricated. This included bends of different radii of curvature 
(𝑟𝑟) as well as long waveguides. These patterns were categorised into three chips as shown 
in Figure 3. Each waveguide had an input and output taper part of 3 µm width and 500 
µm length. In chip 1, the bend radius was kept at 100 µm and the length 𝐿𝐿 was varied 
from 500 µm to 5 mm. Chip 2 presents waveguides with varying bend radii from 2 µm to 
20 µm whilst the length 𝐿𝐿 was kept constant at 1 mm. In chip 3, the position of the trench 
filled by TiO2 was varied linearly within the bend for three different bend radii. 

Figure 2. Process flow of the waveguide fabrication: resist deposition on an oxidized silicon wafer,
electron-beam patterning of the nLof resist, development of the pattern, ALD coating of titania.

Several patterns were fabricated. This included bends of different radii of curvature
(r) as well as long waveguides. These patterns were categorised into three chips as shown
in Figure 3. Each waveguide had an input and output taper part of 3 µm width and
500 µm length. In chip 1, the bend radius was kept at 100 µm and the length L was varied
from 500 µm to 5 mm. Chip 2 presents waveguides with varying bend radii from 2 µm to
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20 µm whilst the length L was kept constant at 1 mm. In chip 3, the position of the trench
filled by TiO2 was varied linearly within the bend for three different bend radii.
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2.3. Characterization Methods

The final structure was characterized by the end-fire coupling method [28] described in
the set-up shown in Figure 4. Light from a laser source was coupled through a tapered lens
fiber into the waveguide and the transmittance power was measured using a power meter.
The laser source used was a Tunics plus tunable laser source with wavelength accuracy of
1 pm. Its operation wavelength range was 1510 nm to 1640 nm. A polarization controller
was used to set the desired polarization of light. The microscope objective (Olympus Plan N,
20×, NA = 0.4) was used to image the output of the waveguide on a near-infrared camera
(Point Grey Chameleon CMLN-13S2M). The focused spot size of the lensed fiber used was
2 ± 0.5 µm. A Glan-Thompson GTH10M polarizer ensured the desired polarized light
passed through to the NIR detector and power meter (Thorlabs S122c, PM100D) to measure
the transmitted power. Alternatively, to the detector, the output mode could be imaged
allowing a check at any time of the experiment that a well-coupling to the waveguide is
performed without any modification of the measurement system. We used the cut-back
method [29,30] to estimate the propagation losses by comparing transmissions through
waveguides of varying lengths and fitting the length dependence under similar coupling
conditions and surface roughness.
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Different height lengths of waveguides were created for the propagation loss mea-
surements. The transmission through each waveguide was measured five times, changing
the injection side and the order of the measurement, i.e., from the longest to the shortest
waveguide and vice versa. Results were averaged to obtain a single value used for the
estimation of the propagation losses.

3. Results and Discussion
3.1. Optimization of the Waveguide Parameters

One figure of merit for many waveguide structures, especially as it relates to reducing
propagation losses, is the mode confinement (Γ) within the core of the waveguide. To
obtain the highest confinement, the parameters of the waveguide were optimized.

3.1.1. Modal Effective Index

The optimization of the waveguide parameters was performed at the operation wavelength
λ = 1550 nm, i.e., the central telecom wavelength of the C-band, 1525 nm < λ < 1575 nm.
The evolution with w, h, and t of the characteristics of the waveguides, such as the effective
index, the confinement factor, and the birefringence between TE00- and TM00-modes were
studied. The width and height of each polymer section were set to w = 800 nm and
h = 900 nm to ensure single modal behavior of the waveguide, when considering titania
inside the trench. It should be noted that several solutions exist for the dimensions of the
polymer sections to maintain a single mode waveguide. We opted for these dimensions
for fabrication constraints and for a better mode confinement in the trench, for which the
height plays the most important role.

In Figure 5a,b, we show the dependence on the effective index of the two fundamental
modes as a function of the TiO2 thickness 2t inside the trench. When 2t increased, both ef-
fective indices increased. For 2t > 200 nm, the waveguide became multimodal. Figure 5c,d
shows the field intensity distribution for both fundamental modes. One can remark that
the quasi-TM fundamental mode had a higher effective index and a better confinement
in the TiO2-filled trench than the quasi-TE mode. While the quasi-TE mode was mainly
confined in the polymer region on the interfaces TiO2/polymer (ΓTE

trench ' 14%), similar to
standard nanowires, the fundamental quasi-TM mode was highly located inside the high
refractive index region (ΓTM

trench ' 39%), similar to a 90◦-rotated (vertical) standard ridge
nano-waveguide. Moreover, the TM nature of the mode allowed a significant confinement
factor (ΓTM

above ' 5%) above the waveguide allowing for sensing with optimized parameters,
e.g., a reduction of the height of the waveguide.

3.1.2. Dispersion and Birefringence of the Waveguide

The dispersion, Figure 5e, in the waveguide was comparable to that observed in other
waveguides, such as those used in silicon photonics, in the C-band [31]. Most importantly,
the dispersion variation for the fundamental quasi-TM mode was relatively low over the
studied wavelength range, which opens the path for broadband operating devices. The
birefringence observed in Figure 5f was high (close to 0.1 refractive index unit). Such a
difference between the modal effective indices of the modes would enable a polarization
management in the waveguide for future applications, such as polarization rotation [32],
or polarization maintaining waveguide [33], by acting on the shape, size, and position of
the trench.

3.1.3. Effect of the Position of the Trench

The TiO2 trench surrounded by polymer enabled a reduced bend loss and, therefore, a
smaller bend radius. This comes from the fact that the trench yields a higher localization of
the mode in the center of the waveguide, especially for the fundamental quasi-TM mode.
The trench can be easily placed at any position within the waveguide leading to a tuning of
the mode distribution central position. Figure 6 shows the TM00-mode profile (|Ex|) and the
TE00-mode profile (

∣∣Ey
∣∣) along the y-direction as a function of the position yT of the trench.
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One can see that the mode distribution can be off centered with little or no modification of
the overall modal distribution that remains well confined within the waveguide.
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An important aspect to consider while designing a waveguide is the bend loss since
bends are nearly unavoidable in most photonics circuitry. The tighter the bend, the smaller
the footprint, and the higher the integration of the devices.

We performed simulations for three distinct positions of the trench, namely: yT = 0 nm,
−400 nm, and −600 nm, keeping w = 800 nm, h = 900 nm, and t = 100 nm constant, and
observed the transmission after a U-turn (180◦) of the waveguide for different bend radii
1 µm < r < 20 µm. The results are shown in Figure 7. One can clearly see the expected trend
for the transmission with an asymptotic limit for large values of r. In Figure 7a, the trench
was shifted even on straight portions of the waveguide, while in Figure 7b, the trench was
shifted only inside the bend portion. In the latter case, the titania part became elliptical to
remain inside the polymer. One can remark that losses increased as soon as the trench was
no longer centered; however, by operating a shift only in the bend part, losses were nearly
negligible compared to the centered case. For the minimal radius r = 1 µm, the loss for the
bend was about 8% and rapidly decreased when r increased until reaching an asymptotic
value below 1% for r > 7 µm. Such a feature is a key towards waveguide coupling regions
and other classical waveguide management that could be used in further applications. No
major differences could be observed between the different core positions within the bend.
This allows us to expect relaxed fabrication constraints and alignment, especially when
considering nano-imprinting as a manufacturing method.
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Figure 7. TM00 mode transmission after a U-turn bend for yT = 0 nm (black), yT = −400 nm (blue),
and yT = −600 nm (red) for: (a) when yT is varied in the entire U-turn bend waveguide and (b) when
yT = 0 is varied only at the bend section.

3.2. Fabricated Sample

The target parameters chosen for the fabrication of the structure were: w = 800 nm,
h = 900 nm, and t = 100 nm. A less than 5% error in these dimensions was measured from
the SEM pictures. Figure 8 presents several SEM pictures acquired on different samples.

Figure 8a is a scanning electron microscopy (SEM) picture of the cross section of the
waveguide prior to atomic layer deposition (ALD) coating. The dimensions of the polymer-
based channel were well respected despite the trench having a footing. Such an issue arises
from limitations in the resist performance and fabrication. Figure 8b is an SEM picture of
the cross section of the waveguide after TiO2 deposition (cleaved within the tapered section
of the waveguide, which explains a larger waveguide than in Figure 8a). As expected, the
material conformally coated the structure and a slight drop in the thickness was observable
above the trench due to the unavoidable rounding of the edge of the waveguide [34] which
was followed during the ALD process. The layer was thickened afterwards to fill this gap
by an additional ALD coating of 10 nm. The roughness of the waveguide seems acceptable
although one can see some contamination at the top of the waveguide both before and after
the TiO2 deposition. Figure 8c is an SEM picture of the bent waveguides used for the loss
measurements. The zoomed-in section on the bend highlights the precision with which the
trench can be positioned within the waveguide. Among the tests we carried out prior to
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the fabrication of these waveguides, we realized that the exposure of the bottom part of the
trench in the polymer channel is not obvious for all aspect ratios of the trench. We had to
make a trade-off between the designed device and the fabrication possibilities, the most
important of which was to ensure a single modal behavior of the waveguide; we chose to
leave a partly unexposed resist inside the trench in order to keep the titania width as small
as possible. Additional simulations have been performed including this default and no
major change in the trends or even in the effective indices of the fundamental quasi-TM
mode was observed. Finally, one should also note that such a bias is to be expected if the
waveguide patterning is made by the nano-imprinting technique.
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3.3. Experimental Determination of the Propagation Losses

The characterization setup used for measuring the propagation loss is shown schemat-
ically in Figure 4. In this article, we are mainly interested in demonstrating a waveguide
for which the quasi-TM fundamental mode is predominant over the others. Therefore,
the polarization was set to TM for all characterizations. Figure 9a shows an image of the
quasi-TM fundamental mode at the output of one of the waveguides at λ = 1550 nm. We
recall that tapers are used for the in- and out-coupling, which explains the size of the
observed mode. To measure the propagation losses, several waveguides of different lengths
with bend radius of 100 µm were measured while assuming that insertion losses are similar
for all waveguides. Due to some damage (because of some fabrication, cleaving, handling
issues), some waveguides were not measurable. Repeating the transmission measurements
five times through the waveguides allowed us to give error bars on our measurements and
give a better estimate of the propagation losses using the cut-back method from the slope
of the curve presented in Figure 9b. The estimated propagation loss was measured to be
1.75 ± 0.32 dB/cm, which is close to the state-of-the-art for a titania nano-waveguide [35–37].
We would like to remark that due to the very thin additional re-coating of 10 nm of tita-
nia performed to fill the remaining gap, the waveguide became slightly multimodal (as
Figure 5a predicted). However, this did not influence the loss measurements because we
observed that the higher order TM mode was filtered out after the first bend.
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Figure 9. (a) Photograph of the output quasi-TM fundamental mode at the output of waveguide
(chip 2) with bend radius of 5 µm. (b) Normalized power measured at the output of the waveguides
(chip 1) as a function of the length of the waveguide (blue circles) and a linear fit (red line) using the
cut-back method. Propagation losses are estimated at 1.75 ± 0.32 dB/cm.

In addition to the propagation losses, we measured the transmission through waveg-
uides with varying bend radius. We observed constant transmission (with regard to an
error similar to the one observed during the propagation loss measurements) down to
7 µm radius (as theoretically expected), followed by a sudden drop leading to non-
measurable values.

4. Conclusions

In this paper, we have presented a detailed analysis of the geometric characteristics
of a low loss TiO2/polymer waveguide. This structure is highly flexible in terms of
operation over a large wavelength range. Furthermore, because such a waveguide is able
to operate with very tight bends (radius < 7 µm), it offers a tradeoff between the quality
of transmitted light, the device footprint, and relaxed fabrication and therefore can suit
different applications. The trench feature enabled us to shift the position of the mode away
from the center of the waveguide while still maintaining a high confinement without any
modification to the geometry of the waveguide. Due to the confinement of the mode within
the high index region, small footprint devices are achievable enabling mass production of
compact photonic circuitry. The ALD fabrication process ensures a conformal deposition
of a low-loss material inside the trench. These features allowed us to achieve waveguides
with a low value for propagation loss (1.75 ± 0.32 dB/cm). The geometry of the waveguide
itself allows high versatility in terms of the hybridization of materials. We have shown in
this paper that despite a thin layer of high refractive index all over the sample, the mode
remained confined inside the core of the waveguide. It yields an opening for many possible
material combinations to be deposited with or without the conformal method. Finally,
we point out that the use of polymer makes the core of the waveguide more robust and
resistant to any contamination, mechanical stress and, therefore, such a concept could be
used, for instance, in flexible photonics for wearable sensing devices.
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