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Abstract: Silica aerogels are one of the most widely used aerogels, exhibiting excellent thermal insu-
lation performance and ultralow density. However, owing to their plenitude of Si-O-Si bonds, they
possess high infrared emissivity in the range of 8–13 µm and are potentially robust passive radiative
cooling (PRC) materials. In this study, the PRC behavior of traditional silica aerogels prepared
from methyltrimethoxysilane (MTMS) and dimethyldimethoxysilane (DMDMS) in outdoor environ-
ments was investigated. The silica aerogels possessed low thermal conductivity of 0.035 W/m·K and
showed excellent thermal insulation performance in room environments. However, sub-ambient
cooling of 12 ◦C was observed on a clear night and sub-ambient cooling of up to 7.5 ◦C was achieved
in the daytime, which indicated that in these cases the silica aerogel became a robust cooling material
rather than a thermal insulator owing to its high IR emissivity of 0.932 and high solar reflectance of
0.924. In summary, this study shows the PRC performance of silica aerogels, and the findings guide
the utilization of silica aerogels by considering their application environments for achieving optimal
thermal management behavior.

Keywords: silica aerogel; methyltrimethoxysilane; dimethyldimethoxysilane; thermal insulation;
radiative cooling; thermal management

1. Introduction

Silica aerogels, featuring extremely low density, low thermal conductivity, extremely
high porosity, high specific surface area (SSA), and high pore volume, are the most typical
aerogels [1–8] since their first discovery in 1931 [9]. Owing to their overall performance
such as low thermal conductivity, relatively low cost, and excellent flame resistance, silica
aerogels became commercially available in large-scale production and have been poten-
tially used as Cherenkov radiators and drug carriers [3–5,10]. Furthermore, they have
been widely used for thermal insulation applications due to their extremely low thermal
conductivity [11–16]. For example, silica-aerogel-based rubber composite has been used as
alternative thermal insulation in buildings [11]; a silica-polyimide aerogel blanket has been
used as artificial island thermal insulation [12]; a highly elastic silica composite aerogel
has been used at extremely low temperatures [13]; silica aerogel phase-change materials
have been used for both extremely low and high temperatures [14]; alumina–silica aerogels
have been used for thermal insulation at 1500 ◦C [15]; a highly transparent silica aerogel
monolith has been used for solar heating and heat preservation [16]; etc. It can be concluded
that almost all the applications of silica aerogels in thermal insulation are based on their
low thermal conductivity.

Silica (SiO2) particles, which have the same chemical components (-O-Si-O-) as silica
aerogel, show high intrinsic emissivity in the range of 8–13 µm, which coincides with the
atmospheric transparency window. Therefore, SiO2 particles have been widely used as a
functional component to improve emissivity, hence resulting in excellent passive radiative
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cooling (PRC) performance in polymeric (e.g., polymethylpentene, poly(vinylidene fluoride-
co-hexafluoropropene), polylactic acid, and polyethylene) film and textiles [17–20]. The
working principle of PRC is emitting heat into the cold space by radiation in the range of
8–13 µm, in which the heat absorption by the atmosphere is negligible. Therefore, to obtain
daytime PRC, high solar reflectance is also required [21–25]. Consequently, silica aerogels
must also be excellent PRC materials, and when used in outdoor environments, their PRC
ability may outperform their thermal insulation properties. That is, they may be a cooler
rather than an insulator to keep warm by heat insulation, as confirmed in our recent work,
in which sub-ambient cooling of 10 ◦C was achieved when silica aerogel particles were
used as an additive for a polymer film (thermoplastic polyurethane) [26]. Furthermore,
PRC at night was also observed for the traditional transparent silica aerogel: although the
silica aerogel was heated in the daytime, its temperature is slightly lower than ambient [16].

To further reveal the PRC behavior of native silica aerogels and solve the challenge of
the passive daytime radiative cooling (PDRC) of silica aerogels, in this study, monolithic sil-
ica aerogels are synthesized according to Kanamori’s strategy by using methyltrimethoxysi-
lane (MTMS) and dimethyldimethoxysilane (DMDMS) as co-precursors [27–29]. The silica
aerogel prepared by this method (Figure 1) is white, indicating that it may be a PDRC
material. The transparent silica aerogels [30–34] are not considered because they show solar
heating in the daytime [16]. The traditional thermal insulation properties of the monolithic
silica aerogels will be investigated, and then their passive radiative cooling performance at
night and daytime will be studied. Finally, the reasons for the PDRC performance of the
silica aerogels will be discussed and the mechanism for the thermal management behavior
of the silica aerogel will be proposed.
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Figure 1. (a) Illustration of the synthetic approach to the MTMS–DMDMS aerogel (MDA);
(b–d) photo images of an MDA, a blended DMA, and an MDA standing on a flower, respectively.

2. Materials and Methods
2.1. Materials

MTMS (AR), DMDMS (AR), and ethanol (AR) were obtained from Aladdin Company,
Shanghai, China. Acetic acid (99%), cetyltrimethylammonium bromide (CTAB) (99%), and
urea (99.5%) were obtained from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China.
Distilled water was self-prepared and used as a solvent for silica hydrogels.

2.2. Synthesis of Silica Aerogels

The silica aerogels were synthesized according to the literature [27–29]. Firstly, silica
precursors, urea, and CTAB were mixed with an aqueous solution of acetic acid (5 mmol/L)
in a molar ratio of 1:4:0.1 by stirring. After stirring at room temperature for 1 h, the
homogeneous mixture was poured into molds, sealed, and left to stand in an oven at 60 ◦C
for 3 days to complete the gelation and aging. The gels were soaked in deionized water for



Nanomaterials 2023, 13, 467 3 of 11

2 days and ethanol for another two days to remove residual surfactants and other chemicals.
Finally, the silica aerogels were obtained via ambient pressure drying at 100 ◦C. The volume
ratio of the silica precursors was variable; when MTMS:DMDMS was 3:2 and 7:3, the silica
aerogels were named MDA3-2 and MDA7-3, respectively.

2.3. Characterizations

The solar reflectance spectroscopy of the silica aerogels was tested by a UV-Vis-NIR
spectrophotometer (UV-3600PLUS, Shimadzu, Japan) equipped with a gold integrating
sphere. The thermal conductivities of the silica aerogels were measured by a 3ωmethod
thermal conductivity measurement device at room temperature, and the measurement re-
sults were obtained three times at 5 min intervals between two tests. The surface morpholo-
gies of the aerogels were observed by a cold field emission scanning electron microscope
(S-4800, Hitachi, Japan) at an acceleration voltage of 20 kV after being sprayed with gold.
The water contact angles of the transparent silica aerogels were tested by the video optical
contact angle measuring instrument (OCA15EC, Dataphysics, Germany). The infrared
emissivity was determined using an FT-IR spectrometer (Bruker INVENIO, Germany) with
an integrating sphere (PIKE INTERRATIR). The infrared images of the silica aerogels were
taken with an infrared camera (TiX580, Fluke, USA). The temperatures of the samples were
measured with thermocouples, which were connected to a temperature acquisition system
(JK808, Changzhou Jinailian Co., Ltd., Changzhou, China). The densities of the silica
aerogels were calculated by weighing the samples and measuring the volumes. Porosity
was calculated according to the equation: porosity = (1 − ρb/ρs) × 100%, where ρb is the
bulk density of the silica aerogel and ρs is the skeleton density of silica (~2.2 g/cm3).

2.4. Passive Radiative Cooling Performance of the Silica Aerogels

The radiative cooling performance of the silica aerogels was tested on the roof of a
five-story building to ensure full access to the open sky and to exclude thermal radiation
from surrounding buildings. The experimental setup consisted of a polystyrene foam box,
aluminum foil, low-density polyethylene (LDPE) film, a radiative cooler, high-temperature
polyimide tape, thermocouples, and a luminometer [17–20]. The relative humidity was
40–80%, and the setup was studied under sunlight on sunny and non-cloudy days. The
foam box was wrapped with aluminum foil to reduce the temperature of other areas of the
foam box owing to heat absorption. A piece of transparent 0.013 mm-thick LDPE film was
applied on top of the thermal isolation box to reduce heat convection and conduction be-
tween the cavity and the environment. Temperatures were measured using thermocouples
placed between the silica aerogel and the substrate, and the thermocouples were in close
contact with the aerogels via an adhesive tape, whereas the temperatures of the ambient
and black substrate were monitored by the thermocouple suspended in the air and placed
on the surface of the black substrate, respectively. Temperature data were stored every 10 s
in a USB flash drive using a handheld multichannel thermometer (JK808). Simultaneously,
the solar irradiance was recorded by a solar power meter (TES-1333) for daytime PRC.

3. Results and Discussion
3.1. Synthesis and Characterization of the Silica Aerogels

To study the PDRC performance of silica aerogels, monolith silica aerogels using
MTMS and DMDMS as co-precursors were synthesized as presented in Figure 1a [27–29,35].
The silica aerogels prepared by these monomers are white and flexible, as shown in
Figure 1b–d. When no DMDMS is used, highly transparent silica aerogels can be pre-
pared [30]. However, the solar heating of transparent silica aerogel is dominated by the
absence of cooling performance [16,36–38]. Interestingly, the introduction of DMDMS can
significantly increase the skeleton size of silica aerogels, thus resulting in opaque aerogels
due to the scattering of light [39–42]. In this study, silica aerogels with a weight ratio of
MTMS:DMDMS equal to 3:2 and 7:3 were synthesized to study their chemical structures
and property relationships. The densities and porosities of the silica aerogels ranged from
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0.08 to 0.120 g.cm3 and 94.5 to 96.4%, respectively. For convenience, the aerogels were
named MDA3-2 and MDA7-3, respectively.

The morphologies of the MDAs are shown in Figure 2a. They are formed by silica
particles with neck structures. The silica particles are as large as 2–5 µm in diameter and
they possess relatively small SSA [27,28], thus the SSA of the MDA was not determined
by the BET method. Large pores of up to tens of micrometers are formed between the
silica particles. All the structural characteristics offered the unobservable shrinkage of the
silica aerogel by ambient pressure dying. The energy-dispersive X-ray spectrometry (EDX)
mapping shown in Figure 2b,c further confirms the silica particle structures. The main
elements of SiO2, O, and Si can be clearly observed, and they also show particle shapes.
Furthermore, C elements can also be observed, which are the -CH3 groups from MTMS
and DMDMS. The relative C weight ratio (which excludes the content of light element H)
in MDA3-2 and MDA7-3 is 5.52 wt.% and 18.71 wt.%, respectively (Figures S1 and S2 in the
supplementary information). The results suggest that increasing the DMDMS can increase
the content of -CH3 groups in the silica aerogels because there are two -CH3 groups in
each DMDMS monomer and only one -CH3 group in MTMS. Owing to the plenitude of
-CH3 groups in the MDAs, they are hydrophobic with contact angles higher than 110◦

(Figure 2d), and water can form droplets on the surface (Figure 2e). Nevertheless, the
thermal conductivities of the MDAs are low, in the range of 0.035~0.045 W/m·K (Figure 2f).
Although the values are relatively higher than that of silica aerogels prepared with other
monomers and supercritical drying [16,27–29,43], they are comparable to silica aerogels
prepared from water glass by ambient pressure drying [14] and should be good thermal
insulators, as will be confirmed in the next section.
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Figure 2. (a) SEM images of the MDAs: 1 and 2 are MDA3-2, 3 and 4 are MDA7-3; (b) EDX mapping
of MDA3-2: the O, Si, and C elements are highlighted in green, blue, and red, respectively; (c) EDX
mapping of MDA7-3: the O, Si, and C elements are highlighted in green, blue, and red, respectively;
(d) contact angles of the MDAs; (e) photo images of colored water and their droplets on MDA;
(f) thermal conductivity of the MDAs.
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3.2. Thermal Insulation Behavior of the Silica Aerogel

The thermal insulation behavior of the silica aerogels is illustrated in Figure 3. As
shown in Figure 3a, silica aerogels, MDA3-2, with a thickness of 1.5 and 4.5 mm were
presented on a hot stage test. Their thermal insulation capacity is illustrated in Figure 3b.
The IR photos of the MDA3-2 presented on a hot stage with different temperatures were
taken with an IR camera after reaching a constant temperature (Figure 3c). It can be seen
that the top surface temperatures are significantly lower than the hot stage. Figure 3d–g
show the temperature changes vs time of the MDA on the hot stage with temperatures
of 100, 200, 300, and 400 ◦C, respectively. The top surface temperatures increased and
reached steady states within 100 to 550 s, depending on thse temperature of the hot stage.
The specific temperature differences (∆T) of the two aerogels with different thicknesses
were 43.7 and 28.9 ◦C when the hot stage was 100 ◦C. Impressively, the ∆T of 184 ◦C was
achieved with a thickness of 1.5 mm when the hot stage was 400 ◦C, and ∆T remarkably
increased to 232.5 ◦C when the thickness was 4.5 mm. The results suggest that the MDA
possesses good thermal insulation capacities in a wide range of temperatures.
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Figure 3. (a) Photo images of the MDAs presented on a hot stage; (b) carton image illustrating the
thermal insulation performance of MDA; (c) IR images of the MDAs presented on the hot stage;
(d) the temperature changes of the upper side of the MDA on a hot stage of 100 ◦C; (e) the temperature
changes of the upper side of the MDA on a hot stage of 200 ◦C; (f) the temperature changes of the
upper side of the MDA on a hot stage of 300 ◦C; (g) the temperature changes of the upper side of the
MDA on a hot stage of 400 ◦C.
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3.3. PDRC Performance of the Silica Aerogels

Figure 4a,b show the setup used to evaluate the PRC performance of the silica aerogels
in the outdoor environment at night. In the experiment, the silica aerogels were used as
passive radiative coolers. A thermocouple was suspended in the air to measure the ambient
temperature. The PRC results are shown in Figure 4c. The ambient temperature gradually
decreased from 9 ◦C at 20:00 to 5 ◦C the next morning at 6:00. Notably, regardless of the
low thermal conductivity and sound thermal insulation property of the silica aerogels, the
temperatures of the silica aerogel were lower than the ambient; sub-ambient cooling of
12 and 10 ◦C was achieved at 6:00 for MDA7-3 and MDA3-2, respectively. Interestingly, the
white, opaque silica aerogels also show the same passive cooling capacity as the transparent
silica aerogels. Moreover, the cooling is even more robust for the MDA, and the cooling
temperature can be slightly varied by the volume ratio of MTMS to DMDMS.
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In fact, for most of the materials with relatively high IR emissivity, passive cooling
can be achieved on clear nights but it is a challenge to cool in the daytime owing to the
robust solar heating effect [44,45]. Therefore, high solar reflectance is required to reach
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effective daytime radiative cooling. To investigate the PDRC performance of the silica
aerogels, Figure 5a,b show the setup used to evaluate the PDRC performance in the outdoor
environment. In the experiment, the black base and cavity temperatures of the equipment
were measured. Thermocouples were placed at the bottom of each sample and on the
surface of the black base. A thermocouple was suspended in the cavity to measure the
cavity temperature. Considering the characteristics of the solar radiation intensity on
14 December 2022, the time for the experiments was chosen to be from 13:00 to 15:00. The
PDRC results are shown in Figure 5c. The solar irradiance is weak in winter, ranging from
400 to 500 W·m−2. Nevertheless, solar heating is still robust under relatively low irradiation,
the temperature of the black base could be heated up to 40 ◦C at 13:00, and it was 20 ◦C
at 15:00 when the cavity temperature dropped to 10 ◦C. Notably, the temperatures of the
silica aerogels were lower than that of the cavity. The average cooling temperatures for the
MDA3-2 and MDA7-3 were 5.5 and 7.5 ◦C, respectively. In summary, an obvious daytime
cooling was observed in the MTMS/DMDMS-based silica aerogels, which we can attribute
to their high solar reflectance and high IR emissivity.
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3.4. Reasons and Proposed Mechanism for PDRC

Figure 6a shows the spectral reflectance of the silica aerogels. The average reflectance
values of MDA3-2 and MDA7-3 were 0.858, and 0.924, respectively. The results confirmed
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that the introduction of DMDMS can significantly increase the solar reflectance of the silica
aerogels owing to their large pore size and silica particles. sThe results indicated that
solar reflectance is the critical parameter to fulfill PDRC, as has also been confirmed in the
literature for other radiative cooling materials [45–50]. Moreover, the IR emissivity spectra
shown in Figure 6b indicated that both MDA7-3 and MDA3-2 possessed high emissivity in
the range of 8–13 µm. The average emissivity values of MDA7-3 and MDA3-2 were 0.932
and 0.946, respectively. The high emissivity of the silica aerogel may be due to the plenitude
of Si-O-Si and Si-C bonds, whose fingersprint area of the silica aerogel ranged from 1300
to 600 cm−1 in the Fourier transform infrared images (Figure S3), coinciding with the
atmospheric transparency window (8–13 µm). The strong and highly selective absorption
of the silica aerogels can significantly contribute to the high emissivity of the silica aerogel
and further contribute to the powerful PDRC performance of the silica aerogels.
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Energy exchange between materials and the environment includes thermal conduction
and convection, solar heating, outward thermal radiation, and thermal radiation from the
environment. Under the condition of thermal equilibrium, the net power of gain Pnet [44,45]
can be referred to as Equation (1):

pnet(T) = prad(T)− patm(Tamb)− psolar − pconv+cond (1)

where Prad represents the energy that the sample emits outward, Psolar is the radiation
received from the sun, Patm is the radiation from the atmosphere, and Pcond+conv is the non-
radiative heat exchange with the environment through thermal conduction and convection.

In traditional applications, the thermal management of silica aerogels is only con-
sidered with their low thermal conductivities. However, ins specific conditions, such as
outdoor use, the silica aerogel interacts with the entire environment, and its net energy gain
must be referred to as Equation (1) rather than just considered with thermal conductivity.
Therefore, the thermal management behavior of the MTMS–DMDMS-based silica aerogel
is proposed in Figure 7. The heat gain from the sun can be reflected and emitted strongly
to space, which affords the silica aerogel with robust PDRC capacity. Thus, when silica
aerogels are used for thermal insulation directly in the outdoor environment, their PDRC
performance should be considered to obtain ideal thermal management results. It is worth
noting that when silica aerogel is designed for thermal insulation purposes, silica aerogels
with MTMS as the single component may be preferable owing to the reduced PDRC and
lower thermal conductivity.
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4. Conclusions

In summary, silica aerogels with low thermal conductivity, high solar reflectance, and
high IR emissivity are synthesized by using MTMS and DMDMS as co-precursors. The
silica aerogels exhibit good thermal insulation on a hot stage in the room environment,
which is similar to traditional aerogels. Interestingly, the robust PDRC performance of the
silica aerogels was confirmed; they showed an impressive sub-ambient cooling of 7.5 ◦C in
the daytime and 12 ◦C at night in an outdoor environment. The excellent PDRC of silica
aerogels can be attributed to their high solar reflectance and IR emissivity. The results
indicated when silica aerogels are used for thermal insulation, negative results may be
obtained because they are robust coolers. The findings in this study provide new insight
into silica aerogels and help to guide comprehensive consideration when using aerogels for
thermal management in an outdoor environment.
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