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Two-dimensional (2D) materials have completely different thermal transport charac-
teristics from bulk materials. This is mainly induced by their phonon properties [1]. Phonon
performance might be considered the intrinsic dynamic mechanism of 2D materials. In
contrast to acoustic phonons, optical phonon modes can be used to evaluate interlayer
coupling, spin–orbit coupling, magneto-optic coupling, and the number of atomic layers
through Raman spectroscopy measurement. Thus, the dynamics of 2D materials are critical
for electronic [2], magnetic [3–5], and thermal [6] performance.

In this Special Issue, Liu et al. [7] used ab initio molecular dynamics (AIMD) simula-
tions to investigate the thermal properties of the Janus monolayers SnXY (X, Y = O, S, Se).
A system with higher thermal stability exhibits a smaller difference in the bond length of
Sn–X and Sn–Y, which is consistent with the orders obtained after comparing their electron
localization functions and atomic displacement parameters. A simple rule to quickly pre-
dict the maximum temperature up to which the Janus monolayer can stably exist, where
the only input was ADP calculated using second-order interatomic force constants rather
than time-consuming AIMD simulations at various temperatures, was proposed.

Other investigations in this Special Issues also demonstrate effective methods of calcu-
lation. Altbir et al. presented an analysis of skyrmion dynamics, considering Dzyaloshinskii–
Moriya interactions in an STNO device with double-disk geometry [8], using numerical
simulations. Additionally, three regimes were addressed as a function of the geometric
parameters and electric current density: (1) the skyrmion is annihilated at the system’s
border; (2) the skyrmion moves in a non-circular trajectory, alternating its position between
the two disks; and (3) the skyrmion only rotates inside a one-disk subsystem. Further-
more, the dynamics of two skyrmions nucleated in a double-disk structure were explored,
which explained the different forces that skyrmions are subject to. These are shown in
a state diagram of the dynamical states that allow an adequate understanding of the
associate phenomena.

Double quantum dots were constructed using an MoS2-based heterostructure pos-
sessing a 1T-phase embedded in a 2Hphase with the aim of investigating the feasibility of
controlled-NOT gate operation with Coulomb interactions. The Hamiltonian of the system
was addressed. Then, the dynamics of states were investigated using the Crank–Nicolson
method in the potential model and the fourth order Runge–Kutta method in the matrix
model. This showed that the constructed matrix model could be used to simulate the
dynamical behaviors of two interacting double quantum dots with lower computational
resources [9]. In another work, by Wang et al. [10], the mechanical properties of pure
graphene nanoribbons and graphene nanoribbons with vacancy defects were calculated
using the molecular dynamics method. They found that the vibration frequency not only
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decreased significantly with the increase in nanoribbon length but also with the increase in
vacancy concentration.

The surface-enhancement of the Raman signal was investigated by Lombardi and
co-workers [11]. Vibronic coupling of the allowed molecular transitions, with charge-
transfer transitions between the molecule and the substrate, are responsible for the surface-
enhancement of the Raman signal in semiconductor substrates. Such expression of the
Raman enhancement in monolayer graphene was proven to be dependent on the square of
the derivative of the density of states of the graphene. This allows people to maximize the
Raman intensity by carefully aligning the doping level of the graphene substrate with the
charge-transfer transition.

In conclusion, we would like to thank the authors for providing their important
contributions to this Special Issue. We greatly appreciate Olivia Sun for organizing this
Special Issue, as well as the whole editorial team of Nanomaterials, for their great support and
kind cooperation. We sincerely hope that the readers will enjoy reading this Special Issue.
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