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Abstract: W–Cu composites are commonly subjected to coupled multiple fields in service, which
imposes high requirements on their overall performance. In this study, the ultrafine-grained W–Cu
composite was fabricated using the combination of electroless plating and spark plasma sintering.
The wear resistance and high-temperature compressive properties of the ultrafine-grained W–Cu
composite were investigated and compared with those of the commercial coarse-grained counterpart.
Moreover, the underlying strengthening and wear mechanisms were also discussed. Here we show
that the ultrafine-grained W–Cu composite exhibits superior integrated mechanical performance,
making it a potential alternative to commercial W–Cu composites.
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1. Introduction

Tungsten–copper (W–Cu) composites are typical bimetal materials composed of im-
miscible tungsten and copper, which inherit the advantages of both tungsten and cop-
per, such as high strength and hardness, excellent wear and arc erosion resistance, good
electrical and thermal conductivity, etc. [1,2]. It is widely used in vacuum contacts for
high-voltage switches, resistance welding electrodes, and electronic packaging [3–6]. It is
also a candidate material for the electromagnetic gun rails and the high-temperature heat
sink material in future fusion reactors [7,8]. Therefore, W–Cu composites have attracted
increasing attention in the past decades due to their excellent integrated properties and
multi-functional applications.

Significantly, W–Cu composites are generally in service under multi-field coupling
conditions, which imposes high requirements on their overall performance [9]. For instance,
as electrical contact materials, excellent arc erosion and wear resistance, high strength in
elevated temperatures, and good conductivity are needed [10]. An adjustable thermal
expansion coefficient, good conductivity, and high-temperature strength are required for
heat sink materials [11]. As a result, any performance degradation would affect the service
reliability and durability of W–Cu composites due to the cask effect. Therefore, a systematic
study of the global properties of W–Cu composites is necessary to assess their potential
for applications.

It should be emphasized that W–Cu composites have to bear harsh wear processes and
high-temperature loads in numerous service conditions [12,13]. Therefore, both wear resis-
tance and high-temperature characteristic are essential indicators for high-end applications
of W–Cu composites [14]. However, most studies to date have mainly focused on investi-
gating the hardness and strength of W–Cu composites at room temperature [15–21]. For the
enhancement of wear resistance and high-temperature strength of W–Cu composites, grain
refinement and second-phase strengthening are commonly used methods [22,23]. Owing
to the high thermal stability and superior high-temperature properties, WC has attracted
much attention as the strengthening phase of conventional W–Cu composites [12,24–26].

Nanomaterials 2023, 13, 386. https://doi.org/10.3390/nano13030386 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13030386
https://doi.org/10.3390/nano13030386
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9314-3881
https://orcid.org/0000-0002-7117-5065
https://orcid.org/0000-0003-3844-729X
https://doi.org/10.3390/nano13030386
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13030386?type=check_update&version=1


Nanomaterials 2023, 13, 386 2 of 13

Zhang et al. fabricated WC-reinforced W–25Cu composites using the in-situ reaction of
graphite and tungsten, and they found that the high-temperature strength of W–Cu com-
posites was significantly improved due to the formation of WC [12]. Similarly, Chen et al.
also elevated the high-temperature strength of W–Cu composites with the introduction
of WC [24]. In addition, it has also been reported that the wear resistance of W–Cu com-
posites in a vacuum can be dramatically improved by adding WC [14]. Nevertheless, the
addition of WC usually resulted in a non-negligible drop in electrical conductivity, which
was unsatisfactory. Moreover, grain refinement is beneficial for the wear resistance and
high-temperature properties of W–Cu composites. It was reported the fine-grained W–Cu
composites with a grain size of ~1 µm showed higher high-temperature strength than
the commercial counterparts with a grain size of ~8 µm [27]. In addition, ultrahigh high-
temperature strength was achieved in nanostructured W–Cu–Cr–ZrC composites [28]. The
wear resistance of nanostructured W–Cu composites was also largely improved [29]. Unfor-
tunately, a large number of phase interfaces in nanocrystalline W–Cu also cause a decrease
in electrical conductivity [29]. Therefore, achieving the combined enhancement of wear
resistance and high-temperature strength with a nonsignificant decrease in conductivity
remains challenging.

In our previous work [30], ultrafine-grained (UFG) W–Cu composites were prepared
using electroless plating and spark plasma sintering. Well-balanced room-temperature
compressive strength and electrical conductivity were achieved using the combination of
grain refinement with a continuous copper network structure. However, other properties
of the UFG W–Cu composite still remain to be explored. Accordingly, in this paper, the
friction behavior and high-temperature compressive performance were further investigated,
which were then compared with those of the commercial coarse-grained (CCG) W–Cu
composite. This work sheds light on the effects of grain refinement on wear resistance and
high-temperature properties as well as the underlying mechanisms, which are of great
importance for the design of advanced metal matrix composites.

2. Experimental
2.1. Materials and Methods

Ultrafine tungsten powders with an average particle size of ~240 nm and a purity
of 99.9% (Hawk, Beijing, China) were used as the raw material. All the other reagents
used in this paper were analytically pure. In this work, the UFG W–Cu composite with a
copper content of 30 wt.% was chosen as a representative due to its common use. For the
fabrication of the UFG W–Cu composite, tungsten powders were firstly coated with copper
using a modified electroless plating process; more details can be found in our previous
work [30]. Then, the obtained copper-coated tungsten powders were reduced at 800 ◦C
for 60 min in a H2 atmosphere to remove oxide. Thereafter, the composite powders were
consolidated using spark plasma sintering (SPS) at 1000 ◦C for 5 min under a pressure
of 100 MPa. The heating rate was 100 ◦C/min, and the specimens were cooled with a
furnace. Finally, UFG W–Cu composite bulks with a diameter of 20 mm and a height of
10 mm were obtained, which were subsequently used for the following performance tests.
For comparison, the commercially available coarse-grained W–Cu composite bulks with a
nominal copper content of 30 wt.% were purchased from the market.

2.2. Characterizations

The microstructure and morphology were characterized using scanning electron
microscopy (SEM, Nova NanoSEM 200, FEI, Hillsboro, OR, USA) equipped with an X-
ray energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM,
JEOL JEM-2100F, JEOL, Akishima, Japan). The electrical conductivity was measured
using the eddy current conductivity meter (Sigma 2008, Xiamen Tianyan Instruments Co.,
Ltd., Xiamen, China), and all specimens were sanded and mechanically polished prior
to testing. The Vickers hardness was measured with a load of 394.2 N and a dwell time
of 10 s. At least ten points were measured to obtain reliable data. The room temperature
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compressive properties were measured using an NKK 4050 universal test machine. The
wear resistance was evaluated using the reciprocating sliding tribometer (Lanzhou Zhongke
Kaihua Technology Development Co., Ltd., Lanzhou, China). All specimens were sanded
and mechanically polished prior to testing. The tests were performed in the air for 30 min
with a normal load of 80 N, a rotation speed of 500 r/min, and a travel length of 5 mm.
No lubricant was used. A silicon nitride ball with a diameter of 5 mm was used as the
counterpart. After the test, the wear scar profile was measured using a profilometer. The
high-temperature compression test was performed using a thermal cyclic simulation test
machine with a strain rate of 0.02 s−1. Thermocouples were soldered to the surface of the
specimen for real-time temperature measurements before testing. For the compression
process, the specimens were heated to the testing temperature with a rate of 10 ◦C/s and
maintained for 3 min prior to loading. All tests were repeated at least three times to obtain
reproducible results.

3. Results and Discussion
3.1. Microstructures and Properties

The performance of W–Cu composites depends strongly on their microstructures.
Figure 1 presents the backscattered SEM morphologies and grain size distribution of the
tungsten phase of both the CCG W–Cu composite and the UFG W–Cu composite, where
the gray phase is tungsten, and the black phase is copper. As indicated by Figure 1a,b, the
CCG W–Cu composite exhibited a uniform microstructure except for a few copper molten
pools of several microns. The tungsten phase formed a continuous skeleton structure,
meaning a high W–W contiguity. The average grain size of tungsten in the CCG W–Cu
composite was ~3.5 µm according to statistics (Figure 1c). This is in accordance with the
typical characteristics of W–Cu composites prepared using the conventional infiltrating
method, in which a tungsten skeleton was first prepared using sintering, followed by the
infiltration of copper at high temperatures, thus leading to the high contiguity and coarse
grain size of the tungsten phase [31]. In contrast, as indicated in Figure 1d,f, the UFG
W–Cu composite also showed a homogeneous microstructure (the size of copper-rich areas
was less than 1 µm), but with a finer grain size (246 nm). This is mainly caused by the
short sintering time during SPS. The ultrafine grain size of the tungsten phase was further
revealed using TEM (Figure 2). In addition, it can also be found from Figure 2a that the
UFG W–Cu composite showed lower tungsten contiguity, which should be attributed to
the copper-coated tungsten powders prepared using the electroless plating process [32].
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Table 1 shows the hardness, room-temperature compressive yield strength, and electri-
cal conductivity of both the CCG and UFG W–Cu composites. According to the national
standard (GB/T8320-2017) for W–30Cu composites, the electrical conductivity and hard-
ness should be no less than 42% IACS and 175 HB, respectively. Thus, both composites
meet the criteria for industrial applications. However, as a result of the grain refinement,
the UFG W–Cu composite exhibited largely improved Vickers hardness (353 HV) and
compressive yield strength (1150 MPa), which were ~78% and ~77% higher than those
of the CCG W–Cu composite, respectively. Although, the presence of a large number of
interfaces in the UFG W–Cu composite was detrimental to the conductance due to the
enhanced interfacial resistance. However, on the other hand, the low tungsten connectivity
in the UFG W–Cu composite promoted electron transport [30]. Therefore, the electrical
conductivity of the UFG W–Cu composite (49% IACS) was only ~4% lower than that of
the CCG W–Cu composites (51% IACS), which was negligible compared to the 77% en-
hancement in mechanical properties. This is also consistent with the results in our previous
study [30], that is, the UFG W–Cu composite prepared in this work exhibits a superior
combination of room-temperature mechanical performance and electrical conductivity than
the CCG W–Cu composite.

Table 1. Properties of the CCG W–Cu and UFG W–Cu composites.

W–Cu Hardness/HV30
Compressive Yield

Strength/MPa
Electrical Conductivity/

%IACS

CCG 198 ± 4 650 ± 10 51 ± 0.5
UFG 353 ± 3 1150 ± 8 49 ± 0.5

3.2. Friction and Wear Resistance

The friction and wear resistance of W–Cu composites greatly affect their service life
for use in electrical contact materials or electromagnetic railgun materials. A low friction
coefficient and wear rate are always expected. Therefore, the friction and wear behavior of
the UFG W–Cu composite and CCG W–Cu composite were investigated and compared.
Figure 3a shows the real-time friction coefficient evolution with the friction time of the two
composites. It can be observed that the friction coefficient of the UFG W–Cu composite
was relatively stable with only a small fluctuation, while that of the CCG W–Cu composite
increased gradually with time. The average friction coefficient of the UFG W–Cu composite
during the whole wear process was calculated to be 0.34, which has been reduced by 24.4%
relative to that of the CCG W–Cu composite (0.45). After the wear test, the profiles of
the wear scar were recorded, with the results shown in Figure 3b. For both the UFG and
CCG W–Cu composites, significant pile-ups can be found at both ends of the wear scar
due to plastic deformation. However, the pile-ups of the CCG W–Cu composite were
much larger than that in the UFG W–Cu composite because the UFG W–Cu had higher
hardness and greater resistance to deformation [29]. In addition, the width and depth of
the wear scar for the UFG W–Cu composite (0.69 mm, 25.65 µm) were also much smaller
than that of the CCG W–Cu (0.78 mm, 32.82 µm), indicating a reduced wear rate. The
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wear rate calculated according to the area of the wear scars for the UFG W–Cu composite
was ~4.79 ± 0.16 × 10−6 mm3/Nm, which has been reduced by 32% relative to that of
the CCG W–Cu composite (~7.05 ± 0.35 × 10−6 mm3/Nm). Evidently, grain refinement
contributed significantly to the improved wear resistance of UFG W–Cu composites.
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In order to shed light on the underlying wear mechanisms and reveal the origin of the
low friction coefficient and wear rate in the UFG W–Cu composite, we further investigated
the surface morphology and cross-sectional microstructure of the wear scars. As shown in
Figure 4a,b, many grooves parallel to the sliding direction and debris were found on the
worn surface of the CCG W–Cu composite; that debris can be as large as several microns.
In addition, some fatigue cracks were also found on the worn surface (Figure 4c), which
were thought to be caused by the continuous reciprocating slide load and would result in
the formation of debris [33]. By contrast, as shown in Figure 5a–c, grooves, debris, and
fatigue cracks were also found on the worn surface of the UFG W–Cu composite. However,
the debris on the UFG W–Cu composite were much smaller than that in the CCG W–Cu
composite, which further led to much narrower grooves in the UFG W–Cu composite,
since grooves were typically caused by the scratches of the worn debris. It can then be
concluded that abrasive wear and fatigue wear are the dominant wear mechanisms for
both UFG W–Cu and CCG W–Cu composites, which is also consistent with previously
reported results [29].

Figures 4d and 5d show the cross-sectional morphology under the wear scar of the
CCG W–Cu and UFG W–Cu composites, respectively. As can be observed, three regions
can be divided from the interior of the composite to the worn surface: the matrix without
deformation, the plastic deformation zone, and the mechanical mixing layer (MML). EDS
was used to further confirm the distribution of elements in the three regions, as shown
in Figures 6 and 7. It was found that both the matrix and the plastic deformation zone
were dominated by tungsten and copper, while a clear enrichment of oxygen was found
in the MML. That is, only deformation occurred in the plastic deformation zone, while
severe oxidation occurred in the mechanical mixing zone. According to our previous study,
the MML was mainly composed of oxides of tungsten and copper [29]. Significantly, the
thickness of the MML and plastic deformation zone in the CCG W–Cu composite can be
more than 5 µm, which was more than two times that of the UFG W–Cu composite (less
than 2 µm).
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Hereafter, in order to explain the discrepancy in the wear behavior between the
UFG W–Cu and CCG W–Cu composites, an analysis of the wear process was performed
on the basis of the observed microstructures. At the beginning of the friction process,
the composite was subjected to an additional force from the grinding pair, which was
determined using the normal load and the friction coefficient. This created a decreasing
stress field in the surrounding region centered around the contact point. Due to the small
contact area, the central stress was large enough (exceeding the yield strength) to force the
material to deform, and the deformation decreased gradually with the depth. Thus, the
plastic deformation region was formed. Thereafter, the surface phase continued to harden
under the repeated application of the exerted force, and the break-up finally occurred. Some
tungsten particles may also be pulled out. Those fractured and pulled-out metals then
spread over the surface of the worn track under the repeated action of friction. Meanwhile,
under the action of heat and oxygen, those broken phases oxidized and mixed together to
form the MML [34]. In this work, the forces exerted on the surface of CCG W–Cu and UFG
W–Cu were initially close since their friction coefficients were close and the normal loads
were equal, leading to similar stress fields. However, the UFG W–Cu composite exhibited
higher hardness and strength than the CCG W–Cu composite. Therefore, the stress-affected
regions, namely the plastic deformation zone and MML, were narrower for the UFG W–Cu
composite. For the CCG W–Cu composite, the exerted force was further enhanced with
the increase of its friction coefficient, which further increased the thickness of the plastic
deformation zone and MML. As the friction continued, under the continuous action of
normal and shear stresses, fatigue cracks would occur and propagate in the MML or the
interface between the MML and plastic deformation layer, leading to the formation of hard
fragments [29], which further resulted in the abrasive wear. Thicker MML in the CCG
W–Cu composite tended to produce larger debris, resulting in a high friction coefficient,
which in turn led to an increased exerted force and thicker MML. Therefore, it was noticed
that the friction coefficient of CCG W–Cu increased with time. Meanwhile, those large
fragments exacerbated the abrasive wear, and the thicker MML aggravated the damage
caused by fatigue failure, all of which together contributed to the high wear rate of the
CCG W–Cu composite. By contrast, the thinner MML in the UFG W–Cu composite enabled
smaller debris, which reduced the friction coefficient and weakened the abrasive wear. In
addition, the thinner MML also reduced the mass loss rate due to fatigue damage. As a
result, the UFG W–Cu composite exhibited a greatly reduced wear rate.

3.3. High-Temperature Compressive Properties

While pure tungsten has excellent high-temperature strength, copper can be extremely
soft at high temperatures. It was reported that the strength of copper was less than 30 MPa
at 900 ◦C [35,36]. As a result, the strength of W–Cu composites usually decreases with
temperature. However, W–Cu composites have to withstand severe contact-loading at
high temperatures in many domains, making high-temperature strength a crucial indica-
tor for applications. Therefore, the compressive behavior of the UFG W–Cu composite
was studied. The strain–stress curves of the UFG W–Cu composite at different testing
temperatures are shown in Figure 8a. It can be found that the UFG W–Cu composite
exhibited a gradually declined compressive strength of ~680 ± 10 MPa, 364 ± 14 MPa,
and 180 ± 6 MPa with the temperature raised from 300 ◦C to 600 ◦C and 900 ◦C, which
were ~1.55 times, ~1.72 times, and ~1.80 times that of the coarse-grained W–Cu composites.
Evidently, grain refinement has greatly enhanced the high-temperature strength of the
W–Cu composite. According to the previous study [30], the high strength of UFG W–Cu
composites at room temperature was attributed to the load-bearing effect of tungsten and
the dislocation strengthening induced by the grain boundaries and phase boundaries. As
the temperature was raised, the motion of atoms and dislocations was intensified [37,38],
and the critical shear stress required for dislocation slip was reduced [39], so the strength of
both copper and tungsten decreased with temperature. Comparatively, however, tungsten
remained in a hard phase at high temperatures, making it the dominant load-bearing phase.



Nanomaterials 2023, 13, 386 9 of 13

Moreover, compared with the coarse-grained W–Cu composites, grain refinement enhanced
the high-temperature strength of the tungsten phase in the UFG W–Cu composite [37].
Thus, the load-bearing capacity of the tungsten phase was improved in the UFG W–Cu
composite. In addition, despite the increased dislocation motion, the largely increased
phase interfaces in the UFG W–Cu composite can hinder and accumulate dislocations
more efficiently [35]. Therefore, the improved high-temperature strength of the UFG W–
Cu composite should be attributed to the enhanced load-bearing effect and dislocation
strengthening induced by the grain refinement.
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According to previous studies [27,40], the strain–stress curves of both the coarse-
grained and fine-grained W–Cu composites at high temperatures could usually be divided
into two stages. As the strain increases, their flow stress typically first increases steeply and
then rises slowly or remains stable. In addition, they typically exhibit limited plasticity
due to the damage of the tungsten skeletons [12]. By contrast, however, our UFG W–
Cu composite has shown different high-temperature deformation behavior. The flow
stress first increased rapidly to a peak value and then decreased gradually with strain.
That is, the strain softening dominated the entire deformation process of the UFG W–Cu
composite after yielding. In addition, the UFG W–Cu composite did not exhibit a strain
limit during the high-temperature compression test. The above discrepancy is attributed to
the finer grain size and the low tungsten contiguity in the UFG W–Cu composite. Dynamic
recrystallization is usually considered to be the main reason for strain softening at hot
deformation conditions [41]. Furthermore, the determinants of the driving force of dynamic
recrystallization are grain boundary energy and dislocation density [42]. For the UFG W–Cu
composite, the grain size was much smaller than that of the coarse-grained and fine-grained
W–Cu composites, implying a highly improved grain boundary energy. In addition, the
increased phase boundaries and grain boundaries in the UFG W–Cu composite can hinder
dislocations and improve the dislocation density. As a result, the dynamic recrystallization
was accelerated in the UFG W–Cu composite, thus the dynamic softening exceeded the
work hardening and dominated. Meanwhile, the low tungsten contiguity in the UFG W–Cu
composite enabled a large deformation of the copper phase without causing the fracture of
tungsten skeletons, thus contributing to the high strain.

Furthermore, as shown in Figure 8b, we compared the high-temperature compres-
sive strength of our UFG W–Cu composite with that of other binary W–Cu compo-
sites [12,24,25,27,35,40]. Typically, both finer grain size and higher tungsten content con-
tribute to a higher strength of W–Cu composites. However, owing to the greatly refined
grain size (~240 nm), our UFG W–Cu composite even showed higher compressive strength
than the fine-grained W–Cu composites with a copper content of 25 wt.%. In addition, the
high-temperature strength of the UFG W–Cu composite was also higher than that of some
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WC-reinforced W–Cu composites [40]. Although the fine-grained W–25Cu composites
with the addition of 3% graphite or carbon nanotubes exhibited higher strength (improved
by ~16%) than our UFG W–Cu composite, their electrical conductivity was also severely
damaged (decreased by ~46%) due to the formation of a nonconductive WC phase [12,25].
By contrast, the UFG W–Cu composite exhibited a well-balanced high-temperature per-
formance and electrical conductivity, which further highlighted the advantage of grain
refinement in improving the comprehensive properties of W–Cu composites.

3.4. Evaluation of Overall Performance

As we have discussed, the complex service environment of W–Cu composites typically
calls for a synergistic improvement of multiple properties rather than the enhancement of
a single property. To highlight the performance advantage of the UFG W–Cu composite
over the CCG W–Cu composite, a radar map was plotted in Figure 9. The area enclosed
by the data points of the UFG W–Cu composite was almost twice that of the CCG W–Cu
composite, indicating that our UFG W–Cu composite showed better integration perfor-
mance than the CCG W–Cu composite. Moreover, unlike those second-phase reinforced
W–Cu or nanostructured W–Cu composites, which are strengthened at the expense of
conductivity, the UFG W–Cu composite has exhibited substantially enhanced hardness,
wear resistance, and room and high-temperature compressive strength compared to the
CCG W–Cu composite, with only a negligible decrease in electrical conductivity. It can then
be inferred that the UFG W–Cu composite would exhibit better service performance than
the CCG W–Cu in some specific domains. For instance, the improved high-temperature
strength can effectively increase the maximum welding force and enable the structural sta-
bility of the electrodes for resistance welding. This is suitable for the welding of advanced
materials with high high-temperature strength, such as superalloys [43]. Additionally, the
enhanced wear resistance and high-temperature strength will also mitigate mechanical
damage to the surface of guide rails, thus extending the durability of the electromag-
netic railgun [44]. Therefore, the UFG W–Cu composite is potentially an alternative to
commercial W–Cu composites.
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4. Conclusions

In this paper, the UFG W–Cu composite with well-balanced room temperature strength
and electrical conductivity was prepared using the combination of the electroless plating
and SPS techniques. The wear behavior and high-temperature deformation behavior of
the UFG W–Cu composite were investigated. It was found that abrasive and fatigue wear
were the dominant wear mechanisms for both the UFG W–Cu and CCG W–Cu composites.
However, grain refinement enhanced the resistance against plastic deformation, leading to a
reduced MML thickness and debris size in the UFG W–Cu composite. This further resulted
in the reduced friction coefficient and wear rate of the UFG W–Cu composite. In addition,
the high-temperature strength of the UFG W–Cu composite was largely improved due to the
grain refinement and enhanced blocking effect of the tungsten phase on dislocations. The
ultrafine crystal structure accelerated the dynamic recrystallization, resulting in the strain-
softening of the UFG W–Cu composite during high-temperature deformation. Overall, the
UFG W–Cu composite exhibits superior comprehensive properties, making it a potential
alternative to commercial W–Cu composites.
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