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Abstract: Piezoelectric and triboelectric nanogenerators have been widely studied in the past years for
their advantages of easy design/manufacturing, small size, and flexibility. Nanogenerators that are
developed based on the coupled piezoelectric and triboelectric effects (PTCNG) can make full use of
the mechanical energies and achieve both higher output and sensing performance. This review aims
to cover the recent research progress of PTCNG by presenting in detail their key technologies in terms
of operating principles, integration concept, and performance enhancement strategies, with a focus
on their structural simplification and efficiency performance improvement. The latest applications
of PTCNG in tactile sensors and energy-harvesting system are also illustrated. Finally, we discuss
the main challenges and prospects for the future development of PTCNG, hoping that this work
can provide a new insight into the development of all-in-one mechanical energy-scavenging and
sensing devices.

Keywords: piezoelectric-triboelectric nanogenerator; coupled effect; structure integration;
performance enhancement

1. Introduction

Currently, artificial intelligence technology and Internet of Things (IoTs) are playing
important roles in industry and people’s lives, from managing inventories to improv-
ing personalized shopping experiences and assisting in data mining, even transform-
ing how people do business today [1]. Intelligent electronic devices such as wearable
devices [2–5], implantable devices [6–8], medical robots, and other products are showing
explosive growth and helping people control and detect various aspects of the surrounding
environment [9], human health, and energy harvesting [10–12]. However, because the com-
position of artificial intelligence and IoTs require numerous sensors with high performance,
low power consumption, and especially, stable and sustainable operation, which is the key
to realize the full power of IoTs, traditional electrochemical sensor power sources are facing
challenges in this era due to their limited endurance and energy storage capacity [13–15].

As a kind of emerging energy-harvesting technologies, nanogenerators, such as tribo-
electric nanogenerators (TENG) and piezoelectric nanogenerators (PENG), are proposed
for scavenging mechanical energies from our ambient environment and transforming them
into electricity in a distributed manner [16]. TENGs are fabricated based on electrostatic
inductive coupling and the triboelectric effect, while PENG is developed based on the
piezoelectric effect and generating alternating currents from the polarization, both with ad-
vantages of a high output voltage, simple fabrication, lightweight, and small sizes [17–20].

Since Wang et al. proposed the concept of a hybrid nano-energy-harvesting device
for collecting mechanical energy and solar energy in 2009, the strategy of hybridizing or
coupling multi-effects together has been widely applied to the design of nanogenerators for
collecting single or multiple types of energy [21–23]. Among the various all-in-one multi-
energy-harvesting devices, the synergism between piezoelectric and triboelectric effects
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is especially attractive due to the easiness to integrate that comes from their similarity in
both structure and operation principle, which means they can be integrated together with a
simpler structure, higher efficiency, and other complementary characteristics.

Generally, PTCNG structures are divided into three types [24–30]. In the two-end struc-
ture, piezoelectric and triboelectric characteristics are provided by one material. Electrostatic
charges are directly added to the material surface, increasing the potential difference be-
tween the two surfaces of the film. In the three-terminal structure, TENG and PENG share
one electrode, which can increase the triboelectric charge on the PENG electrode. For the
four-terminal structure, PENG and TENG work independently. In addition, the polarity of
piezoelectric material can be flexibly modulated, which can improve the conversion efficiency
of the generator [31]. Previous studies have proved that PENG has the best energy conversion
efficiency in the resonant state, which can be mutually coordinated with TENG to activate
the resonant mode and reduce the output phase difference to achieve effective hybridization
of PENG and TENG [32,33]. At the same time, PENG and TENG have the characteristic of
complementary frequency, and both have high stable output power and conversion efficiency
under weak low-frequency external stimulation, and thus may achieve efficient and stable
mechanical energy collection [28,34]. In addition, due to the wide selection of piezoelectric
and triboelectric materials, the impedance matching between PENG and TENG is not difficult,
which can reduce the additional energy loss [35]. This helps the two-part work in concert
with easy integration, enhanced overall charge density, high flexibility, light weight, and small
size. Besides, both the responsivity and specific detectivity of sensors that are developed on
the coupled device can be enhanced due to the frequency complementarity and multi-signal
division. Consequently, spatially resolved force detection may be realized by recording the
different output voltage signals as a mapping figure in smart devices [36,37].

Here, we systematically review the recent research progress of PTCNG from the
working principle (Figure 1). After illustrating the integration concept and performance
enhancement strategies, the latest applications of PTCNG in tactile sensors and energy-
harvesting systems are also introduced. Finally, the applications of PTCNG in tactile
sensors and energy-harvesting systems are concisely covered, while highlighting the main
challenges and prospects for the future development of PTCNG, in the direction of both
structure optimization, materials’ selection, and multifunctional design. We believe that
such integrated energy conversion devices may make greater contributions to our society.
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2. The Working Principle of Piezoelectric/Triboelectric Nanogenerator
2.1. Piezoelectric Effect

The piezoelectric effect was discovered by Pierre Curie and others in the research of
Rochelle salt, quartz, and other materials. Materials with an asymmetric crystal structure
are piezoelectric materials, and common piezoelectric materials can be divided into two
categories: inorganic piezoelectric materials and organic piezoelectric materials. Inorganic
materials include piezoelectric ceramics and crystals, such as lead zirconate titanate (PZT),
barium titanate (BaTiO3), lithium niobate (LiNbO3), zinc oxide (ZnO), and quartz. Mean-
while, representative organic piezoelectric materials are polyvinylidene fluoride (PVDF)
fibers/films and their copolymers [38]. The piezoelectric effect of piezoelectric materials
occurs because when stress is applied to the surface of the material, the centers of positive
and negative charges in the material lattice do not overlap and there is the presence of
an electric dipole, and when there is an external stimulus, the disordered electric dipole
reverses to form a regular and sequential combination of arrangements, and the centers
of positive and negative charges move to the opposite surface of the material, forming a
built-in electric field on the two surfaces of the material. This is the phenomenon of polar-
ization [39]. This phenomenon of polarization due to material deformation is called the
positive piezoelectric effect [40]. If the direction of the applied force is changed, the polarity
of the charge will change. However, for the inverse piezoelectric effect, when the piezoelec-
tric material is pressurized, the electric field force causes the dipole to drive the crystal to
deform and produce a polarization phenomenon, to show the stretching behavior of the
material surface on a macro-level, which belongs to the inverse piezoelectric effect [41].

2.2. Working Principle of PENG

PENG mainly consists of piezoelectric materials and electrodes, and the working
principle of PENG is that when piezoelectric materials are subjected to external stress, the
positive and negative charge centers of the piezoelectric materials move and a potential
difference is formed on the surface of the materials, leading to the generation of transient
currents [16,42,43]. To obtain a higher piezoelectric response, it is necessary to go through
a polarization method. Due to the positive and negative polarization properties of the
material itself, for example, under the same mechanical stress, GaN will produce positive
and negative polarization effects with different polarities, but for ceramic or polymer
piezoelectric materials, contact polarization and corona polarization methods are commonly
used [44]. Due to the irregular “mosaic” of grains in these two groups of materials, the
arrangement of electric domains is haphazard and has no polarity, and the electric domains
must be oriented in the direction of the electric field by a high-voltage electric field. Contact
polarization is to apply high voltage through electrodes on both sides of a piezoelectric
material [45]. Corona polarization is based on the principle of corona discharge. At room
temperature, the high-voltage electric field will ionize the plasma in the air during the
discharge process, and the oxygen atoms with negative charges will be deposited on
the surface of the piezoelectric film under the acceleration of the high-voltage electric
field. A large number of negative charge ions are deposited on the film to form a potential
difference, which makes the electric dipoles reverse, and they are arranged in a certain order.
However, for semiconductors, which do not require an electric field to produce polarization,
some semiconductors are ferroelectric, and the ferroelectric phase exhibits a spontaneous
ferroelectric polarization rate, changing from a paraelectric phase to a ferroelectric phase
during the transition from high to low temperature. After the polarization step, the
piezoelectric response is increased [46,47].

Since PENG was first proposed by Wang et al. in 2006, many different structures
and materials of PENG have been utilized for the preparation of PENG-based energy-
harvesting devices [48]. Nowadays, there is a shift from traditional rigid materials such
as piezoelectric ceramics (quartz, PZT, and BTO, etc.) to polymeric (PVDF, PDMS, etc.)
materials, including composite materials. The flexible design can satisfy more customer
requirements and enables the designers to construct customized module functions. To
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enhance the performance of PENG [49–51], researchers have also proposed various struc-
tures, such as the vertical growth structure [52–54], horizontal growth structure [55–57],
and stretchable structure [58,59], where the structural and material progress have led to
a significant improvement in the performance and extended the application of PENG in
human health monitoring, wearable devices, energy harvesting, etc.

2.3. Triboelectric Effect

The triboelectric effect can effectively convert mechanical energy into electrical energy
based on coupled triboelectrification and electrostatic induction effects. When a material is in
frictional contact with another material, the charge between the two materials is transferred,
and the charge transfer is accomplished by the thermodynamic movement of electrons
from the occupied high-energy state (valence band) to the unoccupied low-energy state
(conduction band). To put it simply, a material with a strong ability to obtain electrons will
be attracted from another material, and thus electrons gather on the surface of the material,
and then when the two materials are separated, an electric potential difference is formed
between the two electrodes because a large number of opposite charges have accumulated
on the surface of these two materials [60–63]. The potential difference determines the
energy distribution and density of states on the material surface, which is generated by the
Fermi energy level of the conducting surface and the effective Fermi energy level of the
insulator [64]. The triboelectric layer can generate a large amount of electric charge through
periodic contact and separation, and the generated charge can be energy collected after an
external circuit. The triboelectric effect is widespread, and many materials in the process of
contact-separation produce the corresponding potential difference, so the choice of TENG
triboelectric layer materials is very rich, such as wool, melamine, PVC, etc. The polarity of
different materials differs, reflecting the different ability of the materials to gain and lose
electrons, and the preparation of high-output TENG should use the polarity of the difference
between the materials, and thus the friction effect will be stronger [65–68].

2.4. Working Principle of TENG

Since TENG was first reported in 2012, much attention has been paid to the collection
of randomly generated, irregular, and useless mechanical energy based on Maxwell’s
displacement current theory [69,70]. The relative frictional motion of two triboelectric
materials generates charges that can be stored through an external circuit for storage.
Nowadays, there are four modes of operation of TENG: contact-separation mode, lateral
sliding mode, single-electrode mode, and friction-independent mode (Figure 2).
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Contact separation is the more common mode (Figure 2a) of TENG. Under the action
of external force, the two dielectric materials frictionally separate and contact in the vertical
direction, and the charge generated by friction is gathered in the top electrode and back
electrode. Periodic contact-separation movement generates a large number of charges and
forms an alternation current flow through the external circuit, and thus the mechanical
energy is transformed into electrical energy [62].

The sliding mode is structurally the same as the contact-separation mode (Figure 2b),
but the direction of motion of the dielectric layer changes from vertical to horizontal, and
the charge is generated during relative sliding. The potential difference between the two
electrodes changes with the different contact areas of the dielectric layer, and the potential
difference forms a current flow, and a regular AC voltage can be generated through the
periodic sliding separation [71].

The single-electrode mode is similar to the vertical contact-separation mode (Figure 2c).
In this mode, the ground acts as a reference electrode, and the form of charge generation is
also generated by contact separation. In this design, the moving part of the TENG is not
connected with any electrode, which substantially simplifies the device fabrication process
and improves the operation convenience.

Friction-independent mode (Figure 2d) is generated by the motion of the dielectric
layer rubbing the symmetrical electrodes and rubbing the contact parts with each other to
produce an asymmetrical potential, allowing the current to flow between the electrodes,
but the direction of the current depends on the direction of the motion of the dielectric
layer, and the friction-independent mode can adopt either sliding-independent TENG or
contact-independent TENG [72].

Nowadays, TENG can be used in various aspects, such as environmental monitoring,
biomedical and high-voltage applications, etc. [73–78]. Due to the many advantages of
TENG, such as diverse material choices, easy-to-design specific structures, low cost, high
yield, good stability, and excellent output characteristics, it can bring great power to the
development of our society.

3. Strategy for Enhancing the Performance

From a discrete TENG/PENG nanogenerator to PTCNG, structural design, material
selection, and surface modification play an important role in the multi-function, high-output
performance, and good stability. The structure design not only increases the consistency of
the device structure design, but also greatly reduces the complexity of the device design,
making the device more convenient for integrated design. Secondly, for successful coupling
of triboelectric and piezoelectric effects, these two properties must be simultaneously
considered in the material selection and more attention must be paid on how to evaluate
and rank other properties of materials. In many cases, the procedures used in selecting
and surface-modifying PENG and TENG materials are still applicable when designing
a PTCNG [79,80].

3.1. Structural Design of PTCNGs
3.1.1. Electrode Design Strategy

This section describes the fundamental principles of electrode design for integration
and how these principles can be used to advance the efficiency of PTCNG. In general, we
can always develop PTCNGs with a simplified product design by reducing the number
of parts.

Nguyen et al. prepared a PTCNG with a single-electrode structure (Figure 3a,b). By
sharing the conductive electrodes of PENG, this design does not need to make additional
conductive electrodes for single-electrode TENG, thus simplifying the configuration of
PTCNG. This strategy of sharing the conducting electrode is universally applicable in the
design of PTCNG [81].
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Qian et al. prepared a double-electrode PTCNG (Figure 3c–e). The bi-functional layer
(PDMS/ZnO NFs/3DGr) has both tribological and piezoelectric characteristics. When the
upper electrode is close to the functional layer, the electrostatic induction increases until it
contacts the functional layer. As the external force continues to be applied, a current loop
will be formed between the upper and lower electrodes. When the pressure is released, all
charges will return to their initial state and reach electrostatic balance [82].
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Jung et al. designed a three-electrode PTCNG (Figure 3f–h). Gold is deposited on
both sides of the piezoelectric layer (PVDF). The other electrode is composed of friction
layer (PTFE) aluminum. The middle layer of gold is a common electrode as the driving
electrode of the two functional layers. Through this three-layer electrode design, the
TENG part works in the contact-separation mode, and the device shows an impressive
output enhancement, with an open-circuit output voltage of 370 V and a current density of
12 µAcm−2, and an output power density of 4.44 mWcm−2 [83].

Pongampai et al. introduced bacterial cellulose/carbon nanotube composites to make
soft electrodes (Figure 3i,j), which can reduce the gaps that are formed due to the surface
microstructure between the electrode and the dielectric material. Such a design can both
increase the contact efficiency of the TENG part and improve the charge transfer density
between the piezoelectric layer and the electrode. As a result, the contact efficiency (η)
reached 91.67% and the output current density increased 1.1 times [84].

Yu et al. made transparent and flexible hybrid nanogenerators (Figure 3k,l) by weld-
ing silver nanowires (AgNWs) as electrodes. Due to the recrystallization and merging
of AgNWs at the contact position, the conductivity of AgNWs electrodes was greatly
improved, which reduced the contact resistance in both the TENG and PENG parts, while
the transparency of AgNWs/PVDF reached 71% with high flexibility, electrical output, and
sensing performance [85].

The preparation of electrodes is one of the factors for sensors with high-output char-
acteristics. More research is built on the use of traditional metal electrodes, which are
not only costly but can also cause some metal pollution, and research on electrodes with
ultra-flexible and high conductivity is urgently needed.

3.1.2. Overall Structure Design of PTCNGs

A well-designed structural integration strategy is increasingly valuable as the devel-
opment of PTCNG dramatically increases the reliability and improves the performance of
the device. Zhu et al. designed the generator with a D-arch structure (Figure 4a,b). The top
PET film not only plays a supporting role, but also improves the output performance of
the piezoelectric layer. In addition, the finite element simulation of PVDF film established
through COMSOL software confirmed that the PET film with a thickness of 0.3 mm is the
most appropriate. When a force of 3 N is applied to the top of the 0.3 mm PET film, the
maximum piezoelectric potential is 44.15 V [86].

Zhu et al. drilled a small hole with a diameter of 1.2 mm on the PTFE film (Figure 4c,d).
The hole acts as a conductive channel, which makes it easier to form metal–metal point
contact between the Ag electrode in the middle of the device and the Cu electrode at the
bottom, increasing the charge transfer rate. This innovative structural design also provides
a feasible method to distinguish the piezoelectric and triboelectric effect processes [87].

Yu et al. prepared a PTCNG with beam-shaped porous MWCNTs/P(VDF-TrFE)
aerogel and a PDMS valve structure (Figure 4e,f). This design promotes the diffraction
and scattering of sound waves inside the hole wall, enhances its vibration and friction,
and thus produces enhanced output. In addition, the flexible PDMS valve is designed
to imitate the human tympanic membrane, which has a certain pressurization effect and
good frequency response characteristics. The two structures constitute a built-in composite
acoustic resonator. The optimal output voltage and current of the tested device under
150 Hz and 115 dB acoustic stimulation are 34.4 V and 1.74 µA. The corresponding peak-to-
peak voltage is 62.0 V, and the power density is 11.62 mW/m2 [88].

Inspired by ancient origami, Chung et al. prepared a PTCNG based on triangular cylin-
der origami, which is composed of vertical TENG, rotary TENG, and PENG (Figure 4g,h).
The cylinder is composed of multiple triangles, and the base is a pentagon. The design of
this structure can maximize the requirements of PENG’s high mechanical deformation and
TENG’s large surface area. The single-layer surface contact area of the cylinder is 1.38 times
that of the plane and improved the output [89].
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Wang et al. adopted the head-to-head parallel design (Figure 4i,j). By connecting
piezoelectric films with the same polarity, triboelectric elements were added to the gap
between two contact films. In most studies on piezoelectric fiber films, the high performance
is attributed to piezoelectric properties, while their triboelectric contributions are ignored.
Such a design realizes the synergistic effect of triboelectricity and piezoelectricity. The
output performance of the films fabricated by head-to-head parallel assembly is about four
times that of conventional series connection [90].

The overall structural design of the device is more about increasing the high mechani-
cal deformation rate of the PENG and the friction area ratio of the TENG, and it is often
easier to ignore how to enhance the charge transfer rate and reduce the charge loss.
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3.2. Material Selection

The selection of functional layer materials is very important for PTCNGs. While
structural materials are selected for their load-bearing capacity, functional materials are
selected for the nature of their response to mechanical, electrical, magnetic, optical, or
chemical stimuli, thus endowing the PTCNGs with multifunction and robustness. For
instance, Singh et al. added ZnO into PVDF to prepare PTCNGs (Figure 5a,b). The
addition of ZnO induces the increase of β-phase in PVDF and leads to the enhancement of
piezoelectricity. Moreover, it makes the surface roughness of ZnO-PVDF nanocomposite
film increase, which improves the surface charge density for triboelectrification, and the
output of the tested composite film-prepared devices is 2.5 times higher than that of bare
PVDF composite nanogenerators [91].Nanomaterials 2023, 13, x FOR PEER REVIEW 13 of 36 
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Figure 5. (a) SEM and AFM images of ZnO-PVDF film and schematic diagram of PTCNG. (b) Rectified
open-circuit voltage and short-circuit current density of PTCNG. (c) The circuit diagram of the PTCNG
for lighting up LEDs and charging ability test of the PTCNG. (d) The output voltage, output current,
and instantaneous power changes with the increasing load resistance for the PENG. (e) Perovskite
crystal structure of KNN and SEM image of KNN powder. (f) Output voltage response and output
current response of the EF-attached PTCNG at a 240 BPM tapping frequency. (g) Photograph of
the prepared BTO/PDMS composite film and cross-sectional SEM image of the composite film.
(h) Output voltage under the three testing modes: hybrid, triboelectric, and piezoelectric. (i) Different
views of 3D virtualization by SRXTM analysis of CS/BT-NRs 7 wt.% composite film, with an inset of
the TEM image for BT-NRs. (j) Average maximum voltage output and average maximum current
output with a tendency for varying amounts of BT-NRs fillers (0, 3, 7, 10, 12, and 15 wt.%) and
composited films. (k) XRD pattern and the SEM image of the BTS particles (the inset shows its grain
size distribution). (l) The open-circuit voltage and the short-circuit current of the HEH with different
BTS particles’ content. (m) The SEM image of the SbSeI nanowire. (n) Voltage signals recorded for
shaker tip excitation at an 80 Hz frequency and spectra of peak-to-peak voltage generated by driving
the shaker with a rectangular signal for an unloaded device. (o) The schematic of the proposed
PTCNG. (p) Rectified output voltage and current density of PTCNG. (q) Unit cell crystal structures
of Cs3Bi2Br9 and SEM images of pure Cs3Bi2Br9 thin film. (r) The output voltage and current of
LPPS-NFC-based TPENG under 0%, 25%, and 50% strain.

Chen et al. used electrostatic spinning to prepare P(VDF-TrFE) nanofiber films
(Figure 5c,d). The P(VDF-TrFE) material has higher piezoelectricity and flexibility than con-
ventional PVDF, which can increase the contact area with electrodes and can collect more
charges and enhance the output of the generator. Under the stress of a frequency of 4 Hz,
the peak output and current generated by the piezoelectric part are 96 V and 3.8 µA, which
is about two times the initial output. Additionally, the performance of the triboelectric part
was improved by 8 and 16 V with the assistance of the piezoelectric potential [92].

Inorganic materials have greater piezoelectric properties. Abdullah et al. used potas-
sium sodium niobate (KNN) combined with porous carbon nanotubes (MWCNT) into
PVDF matrix (Figure 5e,f). Since KNN has a large piezoelectric response, ferroelectric
properties, high Curie temperature (>400 ◦C), and is suitable for low-cost and lightweight
requirements, it was experimentally demonstrated that when the specific gravity of KNN
reached up to 5%, the nanogenerator fabricated using this composite film had a much
higher output performance [93].
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Suo et al. combined BaTiO3 with PDMS to form a composite structure (Figure 5g,h).
When the BTO content was 20% and the film thickness was 100 µm, the device showed
excellent output performance, and the addition of BTO was the main factor affecting the
piezoelectric output, and the preparation of composite films using this material led to an
increase in the dielectric constant and the charge density of PDMS. The PTCNG prepared
using BTO material has the advantages of simplicity, low cost, and high performance [94].

Pongampai et al. extracted the natural polymer chitosan from animal shells and
hybridized it with lead-free BaTiO3 nanorods (Figure 5i,j). Due to the natural degradability,
biocompatibility, non-toxicity, and easiest processing of chitosan into thick and thin film
forms, the huge number of primary hydroxyl (–OH) and secondary amine (–NH2) groups
tends to release electrons, thus generating positive zeta potentials, and offering proper
matric cation trapping for modification, enhancing the output of TENGs [84].

Shen et al. used a mixture of Ba(Ti,Sn)O3 and P(VDF-CTFE) materials to prepare the piezo-
electric layer (Figure 5k,l). The addition of Sn4+ further increased the BaTiO3 piezoelectricity,
and the peak open-circuit voltage was 4.16 V when the BTS particle content was 2 wt.%. A
further increase of the BTS content would lead to a decrease in the output voltage, and the
performance output decreased due to the high conductivity of BTS particles, and the insulating
properties of the composite are weak because the BTS particles are not uniformly dispersed [95].

Toron et al. fabricated a compressed antimony iodide (SbSeI) PTCNG (Figure 5m,n). Its
high surface triboelectricity and the highly reactive surface area allow for the induction of
electrostatic charges, and the prepared device produced significantly higher voltage per surface
area and force unit (15.8 V/(N×cm2)) compared to similar reports of other PTCNGs [96].

Ali et al. used UV-curable polyurethane (PU) and ZnO composites to prepare PTCNGs
(Figure 5o,p), combining PU with ZnO powder to make full use of the advantages of
biocompatibility, high durability, and toughness for the fabrication of PENG and TENG. In
the synthetic planar band, self-healing PTCNG showed an open-circuit voltage of 120 V
and a current density of 140 µA/cm2, which means that it can be widely used in portable
devices, health monitoring, and energy harvesting in the future [97].

Jiang et al. prepared a stretchable, breathable, and stable nanofiber composite (LPPS-
NFC) by electrospinning lead-free chalcogenide/(PVDF-HFP) and SEBS (Figure 5q,r),
where Cs3Bi2Br9 is an effective electron acceptor for polymer chain crystallization and the
good energy level matching between Cs3Bi2Br9 and PVDF-HFP improves the electron trans-
fer efficiency and reduces the charge loss, thus facilitating the electron capture process. The
devices can operate continuously for up to five months, setting a record output voltage for
halide chalcogenide-based nanogenerators, extending the applications of halide materials
and opening new avenues for future research on electronic skin and wearable devices [98].

The choice of materials is generally ceramics with high-voltage electrical coefficients
for doping, and piezoelectric ceramics are not environmentally friendly and can easily
cause harm to human health if made into flexible wearable devices. There is a trend to find
natural extracts with biocompatible properties to prepare sensors.

3.3. Surface Modification

Surfaces are the boundaries with the external environment and the interface, where
the electrode material works and behaves to present good functioning and the object
made thereof. Surface modification that tailors the surface property is therefore needed to
transform them into highly efficient energy-harvesting and sensing films and has become
an important part of the nanogenerator research.

Kim et al. prepared a flower-like ZnO nanostructure by chemical precipitation and
combined ZnO, MWCNT, and PDMS (Figure 6a,b). The high roughness introduced by the
ZnO nanoflowers on the PDMS surface can be used to enhance the triboelectric potential
while increasing the piezoelectric potential and the degree of polarization [99].

Fang et al. used a surface texture transfer technique to transfer texture patterns onto
thin films to prepare micro-nanostructures (Figure 6c,d). This structure can increase the
effective contact area, capture more charges, and improve the output of triboelectricity.
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Devices with an area of 30 × 25 mm were prepared with an open-circuit voltage of up
to 1.2 V and a short-circuit current of up to 30 nA, which can also be used as an acoustic
detection device to capture small vibrations [100].Nanomaterials 2023, 13, x FOR PEER REVIEW 17 of 36 
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Figure 6. (a) Schematic diagram for the PAT-HNG device. (b) Output voltage and current of the device
under piezoelectric, triboelectric, and hybrid modes. (c) Schematic diagram of the device and SEM image
of NEFS fiber arrays deposited on the PCB substrate. (d) Output voltage of PTCNG. (e) XRD diagram of
ZnO and Li-ZnO. (f) Response of PTCNG and current response of PTCNG under applied load of 0.039 J
and enlarged response of applied load of 0.039 J. (g) Surface SEM images of PVDF films. (h) Dielectric
constant and dielectric loss of PDMS and PDMS: GQD films and XRD pattern of PVDF films before and
after modification with TiO2 nanoparticle. (i) The phase transformation process of PVDF-TrFE under hot
pressing and liquid nitrogen quenching, structure diagram of the PTNG, and surface and cross-section SEM
images of the aerogel bulk. (j) The optimal output voltage and current of the quenched PANI/PVDF-TrFE
PTNG. (k) Cashew nut as a source for the production of cardanol oil, and chemical structure of cardanol
with the indication of the polar group and lipophilic chains. (l) Open-circuit voltage and short-circuit
current generated by the PTCNG, under finger tapping (~2 N, ~5 Hz) and with a 10 MΩ probe.
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Doping technology is an important direction in the research of thin-film devices,
where two or more materials are doped to improve the output performance of the device by
changing the properties of the materials through chemical interactions. Chowdhury et al.
inserted ZnO nanowires with surface modification into the PVDF matrix (Figure 6e,f). The
effect of ZnO is to induce an increase in the β-phase in PVDF, which enhances the bipolar
ordering of PVDF, due to the increase in the negative charge on the NW surface by local
electrostatic interactions of the dipoles of PVDF, and this interaction of chemical groups can
reduce the necessity of polarization. The devices prepared by surface modification have a
stronger piezoelectric response and lower dielectric impedance [101].

Yang et al. used a double-doping technique to dope the piezoelectric and friction layers
simultaneously (Figure 6g,h), using graphene quantum dots (GQD) and titanium dioxide
(TiO2) nanoparticles to further modify PDMS and PVDF. The addition of GQD improves the
dielectric properties of the film and increases the effective contact area with the electrode,
and the addition of TiO2 induces an increase in the β-phase in PVDF, which increases the
piezoelectric properties and leads to a greater improvement in device performance [102].

Yu et al. used a new strategy of liquid nitrogen mutagenesis and doping technology
to prepare high-performance PTCNGs (Figure 6i,j). The liquid nitrogen quenching method
allows the β-phase to be increased to 71%, which is essentially due to the rapid cooling
of liquid nitrogen from the bottom to the top, resulting in the conversion of disordered
molecules in molten α-PVDF into ordered β-phase, in addition to causing the rapid cooling
and recrystallization of PVDF, resulting in a highly uniformly oriented β-phase. Polyaniline
(PANI) doping enhances the mesoporosity of composite films and traps more charge [103].

As the research on surface modification deepened, many researchers searched for
low-cost, all-natural modifiers. Mariello et al. proposed an oily component cashew nut
shell liquid (CNSL) in cashew nut agricultural products (Figure 6k,l). Cashew nut phenolic
oil as a plasticizer can form a dense fiber network and improve the flexibility and dielectric
constant of electrospun PVDF, which facilitates contact charging during friction due to its
lipophilic alkyl chains [104].

Surface modification is one of the means to improve device performance, and doping
techniques to alter the film morphology to increase friction are commonly used. Today, there
exist many researchers exploring low-cost, purely natural modifiers to modify the piezoelec-
tric and frictional properties of thin films to further improve device performance output.

4. Application of PTCNGs

With tunable flexibility, adaptivity, and enhanced output and sensing performance,
PTCNGs have been widely used in energy conversion and physiological monitoring systems.

4.1. Tactile Sensors Based on PTCNG

PTCNG are not only capable of self-powering the system to make it continuously op-
erational but can also be used as sensors to detect various tiny signals in human motion
and disease monitoring. So far, tactile sensors can fuse different sensing mechanisms (piezo-
resistive, capacitive, piezoelectric, and frictional electric) and materials to make various
wearable tactile sensors, while smart sensor devices with practical functions such as biocom-
patibility, degradability, self-healing, and self-energy supply come into being. In addition,
tactile sensors are effectively integrated with related functional components to create wearable
systems with good flexibility, spatial adaptability, and functionality [105,106].

4.1.1. Tactile Sensor for Motion Monitoring

Liu et al. mounted a PTCNG on the human arm (Figure 7a,b), which can generate
an output current under both bending and stretching with a maximum output current
of 1.5 µA. Due to the narrow gap of the triboelectric pair and the high sensitivity of the
ferroelectric composite film, the device can be placed on the back of the hand to detect
the weak body motion energy during clenching and stretching of the fist, enabling the
collection of energy from daily movement energy [107].
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corresponding photography images for the tests. (c) Schematic representation of multi-stack PTCNG
along with the digital picture of rough film, surface morphology of rough film, and cross-sectional
image of the film. (d) Demonstration of body activity counter with various yoga movements for
calculating the calories burnt. (e) Photographs of the HPTS under different deformations. (f) The
HPTS could monitor the human posture. (g) Response to different types of action modes while
wearing a leg rehabilitation device. (h) The data on the output of five different action modes (walk,
run, jump, limp, hop) while wearing a rehabilitation device. (i) Coupling mechanism of TENG and
PENG. (j) Output voltage and details of athlete 1’s 301C diving motion, and output voltage and
details of athlete 2’s 301C diving motion. Wireless Bluetooth transmission system.

Sahu et al. prepared a PTCNG using the high-voltage electrical properties of lead-
free ceramic (BCZT-BH) (Figure 7c,d). This device is integrated with an IR transmitter,
receiver, and self-powered wireless IR communication module for human yoga counting,
and the output of the device can also reach 60, 120, and 45 V in three postures. This device
effectively counts the repetitive movements of the exerciser and the effective degree of the
body, providing a possibility for commercializing self-powered counters in the future [108].



Nanomaterials 2023, 13, 385 15 of 27

Yu et al. proposed a piezoelectric-triboelectric hybrid sensor (HPTS) based on PZT
and PDMS. This tactile sensor can be installed at human joints to monitor human motion
posture, record multiple motion states, detailed motion physiological information, and
obtain stride frequencies of various gait, which shows the excellent ability of HPTS to
monitor human motion [109].

Lu et al. proposed a self-powered multifunctional sensor on the coupled piezoelec-
tric/triboelectric effects (SPMS) to test these movements (walking, running, jumping,
limping, hopping) of people (Figure 7g,h). To maximize the use of the new sensor as a gait
sensor for monitoring human movement characteristics, it was combined with machine
learning to identify human biomechanical characteristics, recording useful waveforms from
the SPMS and obtaining pattern recognition. The results showed that individual sequential
gait SPMS signal recognition accuracy reached 81.8% [110].

Zhu et al. reported a piezoelectric-triboelectric electrokinetic sensor (PTSS) consisting of
TENG, PENG, and flexible transparent stretchable self-healing hydrogel electrodes (Figure 7i,g).
The PTSS has a wide monitoring range due to the coupling of piezoelectric and triboelectric
effects. It can be used to monitor multidimensional movements of the human body such as
bending, twisting, and rotation, including the spiral pulling action of table tennis and the 301C
technique of diving. This PTCNG can be used as a wearable motion monitoring sensor, providing
a new strategy in the field of sports, motion monitoring, and human–computer interaction [111].

4.1.2. Tactile Sensor for Disease Monitoring

Tactile sensors can be applied to disease monitoring. Fang et al. constructed a
human–computer interaction command control system based on PTCNGs (Figure 8a,b),
and the combination of advanced technology (LSTM), which was integrated into a smart
mask, recognized personal human characteristics through facial muscle dynamics, and
the recognition rate of chewing, gasping, talking, coughing, and yawning can reach 87.9%.
This device can provide a monitoring method for respiratory diseases in the future [100].Nanomaterials 2023, 13, x FOR PEER REVIEW 22 of 36 
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Figure 8. (a) Response to different types of mask vibrations for two different testers. (b) PTHS output
voltage, with various facial movements of the test subject. (c) (1) Three-dimensional (3D) illustration
and real photo of the applicability of the hybrid PENG underneath the surgical face mask. (2) Concept
of the motional energy sources harvested by the hybrid PENG. (d) (3) Open-circuit voltage signals
generated by the hybrid PENG for specific movements reproduced at ∼1 to 1.5 Hz: (i) smiling,
(ii) mouth-opening, (iii) adjusting the mask, and (iv) normal breathing in/out. (e) The voltage signals
of head movements. (f) Photograph demonstrating the E-skin as a wearable self-powered pulse
monitoring sensor. (g) Schematic illustration to show the concept and working principle of artificial
EG-skin using silk hydrogel. (h) Forearm by tapping the hand to stimulate the muscle, elbow by
bending and releasing, chest for monitoring respiration cycles, and embedded in chicken breast
tissue. (i) Open-circuit voltage of the HS under hand tapping frequency of ~5 Hz and force of ~5 N
on the WHS applied on the human wrist (as in the photos), and 3D representation of the human body
and the positions of the WHS for sensing human gestures. (j) Open-circuit voltage of the WHS for
monitoring movements of (a) neck, (b) elbow, (c) wrist, (d) knee, and (e) ankle.

Mariello et al. prepared a biocompatible hybrid device (Figure 8c,d). Due to the strong
electrostatic property of the membrane and the plasticization of cardanol, the PTCNG has
ultra-sensitive electromechanical conductivity. This device reveals the potential applications of
intelligent masks and coupling energy-collection devices in the future. It can not only be used for
anti-infection protection, but also to provide sensors or active antibacterial/viral devices [104].

Zhu et al. reported the electronic skin with excellent perception ability (Figure 8e,f),
which can measure and distinguish the sense of contact and non-contact, such as sense
of click, distance discrimination, breath detection, head motion perception, vocal cord
vibration recognition, and some physiological signal monitoring, further expanding the
application scope of electronic skin detection and providing better diagnostic information
for predicting Parkinson’s disease and cardiovascular disease [112].

Since the electronic skin is in direct contact with the human body, it is a trend to use
green and non-polluting materials to avoid the toxicity of the material causing harm to
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the human body. Gogurla et al. reported the electronic skin based on the engineering silk
protein hydrogel (Figure 8g,h). The triboelectric and piezoelectric effects are synergistic,
which are used to monitor human muscle strain, respiratory activity, and can be used as an
implantable electronic device, generating high power (~1 mW/cm2), enough to turn on the
blood oxygen meter to monitor human health [113].

Mariello et al. prepared a highly sensitive and ultra-flexible PTCNG based on AlN and
polystyrene encapsulation (Figure 8i,j). The device is in direct contact with the skin through
an ultra-flexible patch covered with an ultra-thin friction parylene film on both sides, and the
device exhibits a sensitivity of 59.4, 160, and 3.7 mv kPa−1 at pressures of 0~50, 50–120, and
120–400 kPa, respectively. In addition, the sensor can be applied to the monitoring of human
heart rate, blood pressure wave, voice vibration, or body movement to detect micro-friction
phenomenon and ensure the stability and repeatable recognition of biological signals [114].

The main challenge of PTCNGs today is that they can only measure dynamic stresses,
and strategies for preparing multimode sensors are relatively easy. However, high crosstalk
between multiple sensing modes hinders them from detecting both static and dynamic
stresses, and they must have self-powered, fast response, and high-sensitivity capabilities.
As mentioned above, it is important to accelerate the research of PTCNGs [115].

4.2. Energy-Harvesting System Based on PTCNG
4.2.1. Clean Energy Harvesting

It is a trend to use PTCNGs to collect clean energy (low-frequency mechanical energy, wind
energy, water wave energy, etc.) in the future. Jurado et al. designed a coastal wave energy
collection system (Figure 9a,b). When the simulated actual wave frequency is 0.7–3 Hz, the
output performance is improved by about 2 times compared to the use of a single nanogenerator.
In addition, this equipment can be used in the power supply network of the artificial intelligence
sensor system. By establishing a large PTCNG interface, it can produce about 21.61 W of
high-output power, and the energy conversion efficiency can reach 30.22% [116].Nanomaterials 2023, 13, x FOR PEER REVIEW 25 of 36 
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Schematic diagram of the structure, photograph of the hybrid nanogenerator (left and right), and 
the working principle of the PTCNG. (j) (1) Real-time Isc measurement of the E-TENG, PENG, and 
hybrid NG at a wind speed of 5.1 m s−1. (2) Rectified Isc as a function of wind speed for the E-TENG, 
PENG, and hybrid NG. (3) Voc of the E-TENG, PENG, and hybrid NG as a function of wind speed. 
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Figure 9. (a) Digital photo and cross-sectional digital photo of the hybrid nanogenerator. (b) Average
instantaneous rectifier output current and output voltage at different frequencies. (c) Photo of a boat with
incorporated BCHNG modules in a water tank, and state-of-the-art performance of the device structure
with the wave energy harvesting. (d) Output performance of different parts of the hybrid nanogenerator
plotted in simulated water waves. (e) 3D representation of the custom-made setup for simulating rainfalls.
(f) (1) Open-circuit voltage of the HNG under the impact of single 100 µL water droplets. (2) Open-circuit
voltage of the HNG under the impact of single raindrops at different frequencies in the range of 2–12 Hz.
(3) Open-circuit voltage of the HNG under simulated rainfalls after the first impact with water and after
1/2 h of continuous water falling. (4–6) Open-circuit voltage of the HNG under simulated rainfalls for
(4) different flow rates, (5) different heights, and (6) different inclination angles of the HNG with respect
to the vertical direction. (g) (1) Design of a synergetic PTCNG wind energy harvester (SHPTWEH), (2) its
geometric configuration, (3) the prototype, and (4) an SEM image of the FEP used in the device. (h) The
voltage response of the SHPTWEH at different wind speeds obtained from experiments and simulations,
respectively. (i) Schematic diagram of the structure, photograph of the hybrid nanogenerator (left and
right), and the working principle of the PTCNG. (j) (1) Real-time Isc measurement of the E-TENG, PENG,
and hybrid NG at a wind speed of 5.1 m s−1. (2) Rectified Isc as a function of wind speed for the E-TENG,
PENG, and hybrid NG. (3) Voc of the E-TENG, PENG, and hybrid NG as a function of wind speed.
(4) The output voltage and output power as a function of load resistance for the hybrid NG.

Zhang et al. prepared a dual-pendulum-coupled PTCNG (BCHNG) module (Figure 9c,d).
This module collects the kinetic energy and gravitational potential energy of water waves.
The peak power density of the module reaches 358.5 Wm−3, which is much higher than
that of the landmark dual-pendulum-assisted TENG (200 Wm−3). Although the load
impedances of the two generators are not the same, compared with a single generator, the
simple superposition of PTCNGs can effectively improve the collection efficiency of water
wave energy, and establish a foundation for self-powered ocean-sensing detection using
clean energy in the future [117].

Mariello et al. used the hybrid device to collect raindrop energy and water wave energy
(Figure 9e,f). A single raindrop (100 µL) can produce a maximum voltage of ~0.8 V. When the
rainfall is 3.33 mL/s, the output voltage is as high as ~2.2 V. Since a single nanogenerator has
many disadvantages, such as low-output voltage and current, different internal impedance,
and is not suitable for all applications, the preparation of this hybrid device increases the
ability to collect energy from different water transfer sources (such as impact/breakwater,
raindrops, buoyancy waves) and expands the application range of the sensor [118].



Nanomaterials 2023, 13, 385 19 of 27

Although the traditional wind power generation equipment can achieve good energy
conversion efficiency, it has the disadvantages of huge volume and high maintenance costs.
However, the application of PTCNGs can not only collect wind energy, but also power small
electronic devices. Wang et al. designed the boundaries of the triboelectric nanogenerator
to improve the performance of the device. These boundaries not only limit the maximum
deformation of the beam under high wind speeds and avoid damage to the device, but also
increase the vibration frequency of the device (Figure 9g,h). The experiment shows that
this device can work stably at low and high wind speeds, expand the working wind speed
range, improve the conversion efficiency of wind energy to electric energy, and can be used
in small wind power generation systems in the future [119].

Zhang et al. used the PTCNG to form a wind power generation system (Figure 9i,j).
At the wind speed of 5.1 m s−1, the open-circuit voltage and short-circuit current of the
PTCNG are 140 V and 16 µA, respectively, the maximum output power is ~0.49 mW, and
the matching resistance is 8 MΩ, which is 22% higher than the output power of E-TENG.
The PTCNG can charge the lithium battery to 2.9 V within 8 h, which is used to drive the
infrared remote LED lamp and control the switch of the lamp. It effectively uses the wind
energy and increases the recycling of clean energy [120].

PTCNGs can only collect low-frequency mechanical energy, wind energy, water wave
energy, etc. If its application is made wider and the practicality is accelerated, it is important
to explore the stability and repeatability in high-frequency energy collection, not only to
strengthen the study of material selection and preparation processes, but also to meet the
reasonable design of the whole energy collection system.

4.2.2. Self-Powered System Based on PTCNG

The PTCNG can be combined with an external circuit to continuously supply power
for electronic equipment, or it can be combined with a capacitor to form a battery power
unit to form a self-powered system. Patnam et al. converted the AC signal output by the
hybrid device into a DC signal through the bridge rectifier circuit (Figure 10a,b). To verify
the device performance, the capacity values are 0.47, 2.2, 4.7, 22, and 47 µF commercial
capacitor charges, and the instantaneous output can light 140 LED lights, which can be
used as a power supply for self-powered electronic devices [121].Nanomaterials 2023, 13, x FOR PEER REVIEW 28 of 36 
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compressive force (2) and (3) demonstration of self-powered electronics using the PCF-HG device 
by powering a wristwatch and a temperature sensor. (f) (1) Commercial capacitor charging using 
individual components such as TENG, PENG, and hybrid combinations. (2) Cyclic stability test us-
ing a commercial 33 μF capacitor. (g) Structure design of hybrid TENG and PEG module, and sche-
matic illustration of autonomous WSN for equipment vibration monitoring. (h) VR demonstration 
of monitoring status of the train, and wireless acceleration data stream received in serial port soft-
ware on the host computer. (i) Schematic diagram of device operation. (j) As an application proto-
type, a piezoelectric-based active code of “2019′′ and a triboelectric-based self-driven code of “1234′′ 
were synthesized by logical operation “or”, and the obtained final secret code was used for personal 
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Figure 10. (a) Photographs of 140 commercial blue and green LEDs connected in series directly
lightened by 2% Ca-BZT-based HNG without any rectification. (b) Charging curves of various
capacitors with the capacitances of 0.47, 2.2, 4.7, 22, and 47 µF, rectified voltage of 2% Ca-BZT-
based HNG device. (c) Instantaneous activation of 70 LEDs and 180 LEDs under periodic hand
compression for device areas of 1 × 1 cm2 and 3 × 3 cm2, respectively. (d) (1) The open-circuit
voltage and (2) the short-circuit current under a repeatable hand compressive process for a device
area of 1 × 1 cm2. (3) Working electric circuit of the PTNG-based self-charging system. (4) Charging
a commercial capacitor with the PTNG device. (e) (1) 60 green LEDs lit up using the PCF-HG
device under the compressive force (2) and (3) demonstration of self-powered electronics using the
PCF-HG device by powering a wristwatch and a temperature sensor. (f) (1) Commercial capacitor
charging using individual components such as TENG, PENG, and hybrid combinations. (2) Cyclic
stability test using a commercial 33 µF capacitor. (g) Structure design of hybrid TENG and PEG
module, and schematic illustration of autonomous WSN for equipment vibration monitoring. (h) VR
demonstration of monitoring status of the train, and wireless acceleration data stream received
in serial port software on the host computer. (i) Schematic diagram of device operation. (j) As an
application prototype, a piezoelectric-based active code of “2019” and a triboelectric-based self-driven
code of “1234” were synthesized by logical operation “or”, and the obtained final secret code was
used for personal identification.

He et al. prepared a 3 × 3 cm2 PTCNG with an output current capable of lighting
180 commercial LEDs (Figure 10c,d), with a high piezoelectric output due to the enhanced
surface piezoelectricity of ZnO NFs, and with a high triboelectric output voltage due to
the significant enhancement in electrification of the Au–PDMS contact, which enables this
device not only to collect human activity and its small mechanical energy, but also to serve
as a self-powered charging power source [122].

Vivekananthan et al. prepared a dual-chalcogenide PTCNG (Figure 10e,f). To verify
that the device has the ability to charge and discharge, it was tested with power capacitors,
LEDs, and watches, and this device can charge capacitors to 2.5 V in 25 s. Furthermore, the
device has good stability over the entire cycle of 1500 s, and can instantaneously light up
60 LEDs, as well as 100 µF to power watches. This work provides an opportunity for future
development of high-output, stable, built-in self-powered devices [123].

Wang et al. proposed a set of autonomous wireless sensor networks using PTCNG
(Figure 10g,h). PENG and TENG impedance matching was used to optimize the broad-
band performance and tunable resonant frequency of PTCNG to achieve good sensing
performance, which can light up 30 series LEDs for sinusoidal vibration and 20 series
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LEDs for shock vibration. The self-powered accelerometer has a sensitivity of 15 V/g
(0–1.5 g) with an optimized 1.5 mm separation gap and good linearity, in addition to
continuously powering the Arduinonano and RF transceiver, and sending acceleration
signals via a wireless module in combination with artificial intelligence to realize a virtual
reality train monitoring demonstration, extending the prospects of WSN for a wide range
of future applications [124].

PTCNG can also be applied to identification technology. Wen et al. proposed an
intelligent identification system with high security (Figure 10i,j), a high recognition rate,
and self-powered, using PVDF of different lengths arranged in binary order to form a piezo-
electric active code. Relative sliding triboelectricity was used to form a self-driven code,
and the two coded messages were combined to form a self-powered dual-authentication
microsystem (DAM). The results verify that these features can improve the recognition
rate up to 98%, the maximum load output power density of RS-TENG is 51.2 µW/cm2,
and the obtained power can drive the LCD with pre-compiled information (i.e., 1234) for
about 26 s [125].

Although PTCNGs have a high-output performance, they can only power low-power
electronic devices, such as the use of a multi-layer stacking design to enhance output and
other methods, so that they can be applied to different power systems as soon as possible.

5. Conclusions and Perspectives

With the increase of the world’s demand for renewable energy, the development
of green energy harvesters becomes ever more important. As a result, the design of
hybridized generators such as PTCNG units has become a promising research field for
energy-harvesting and environmental sensing systems. This review systematically reported
the progress of PTCNG technology, in terms of electrode fabrication, structural design, and
integration concepts. Applications in energy-harvesting and self-powered sensors, as well
as their further integration with other potential technologies, were also introduced from
the mechanisms, including the methods of charge generation and energy-boosting. Finally,
the outlooks and conclusions about future development trends of PTCNG technologies are
discussed toward multifunctional and intelligent systems.

Overall, PTCNG is aiming to satisfy the energy and sensing needs of a range of elec-
tronic devices and adapt to a variety of working environments. These studies demonstrate
new approaches to developing hybrid techniques and novel assemblies for efficiently
harvesting environmental energy from a number of sources.

However, there are still some problems that need to be solved, which not only limit
the output performance, but also limit their possible future applications:

1. Although the output of PTCNG is higher than that of single nanogenerators, as
an important component of self-powered systems, it is far from enough to power some
larger power electronic products. In the future, we can enhance the research on surface
modification of functional layers, such as physical modification and molecular engineering,
to change the triboelectric layer morphology, chemical modification, or add piezoelectric
materials and high dielectric constant materials in a polymer or organic matrix to improve
the overall device performance output.

2. Nowadays, there are also many different structural designs for PTCNG, but in
general, most of the research only makes a simple stacking design for all layers of the device,
which limits a wider range of use of the device and fails in simplification. Multilayer
structures not only waste the use of materials, but also easily cause system errors and
deteriorate the reliability, leading to device performance degradation. It is hoped that
future research will explore from the perspective of functional layers, and a smaller number
of layers can meet the requirements of all functions and achieve the simpler design via
structural integration and miniaturization.

3. While pursuing higher output performance, the trade-off between durability and
stability of the device may be neglected, and these two properties determine whether
the future device can be used in practice. The triboelectric layer material, especially the
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triboelectric layer surface, is designed to increase the triboelectric microstructure. However,
in long-term use, such designs are more likely to cause damage and wear, hence the need
to study the triboelectric materials with self-healing or low-wear properties. In addition, in
most of the research on monitoring self-powered systems, the whole system can only run
for a short period of time, and it is necessary to improve the stability of the device.

4. With the rapid development of artificial intelligence, many industries are involved
in some of its applications. For PTCNG, most of the research simply integrates the device
with other functional sensors to make a self-powered monitoring system and then proves
that the system has certain effects through simulation experiments. This simple integration
does not reach the practical application conditions of future devices. In this era of the
Internet of Things, we need to fully combine the two to enable intelligent monitoring
integration for a wider range of applications in the future, such as self-powered wearable
devices, medical devices, environmental monitoring, and large-scale energy harvesting,
with higher reliability, a simpler structure, and lower power consumption.
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