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Abstract: Textiles and nonwovens (including those used in ventilation systems as filters) are currently
one of the main sources of patient cross-infection. Healthcare-associated infections (HAIs) affect
5–10% of patients and stand as the tenth leading cause of death. Therefore, the development of new
methods for creating functional nanostructured coatings with antibacterial and antiviral properties
on the surfaces of textiles and nonwoven materials is crucial for modern medicine. Antimicrobial
filter technology must be high-speed, low-energy and safe if its commercialization and mass adoption
are to be successful. Cerium oxide nanoparticles can act as active components in these coatings
due to their high antibacterial activity and low toxicity. This paper focuses on the elaboration of a
high-throughput and resource-saving method for the deposition of cerium oxide nanoparticles onto
nonwoven fibrous material for use in air-conditioning filters. The proposed spraying technique is
based on the use of an aerodynamic emitter and simultaneous suction. Cerium oxide nanoparticles
have successfully been deposited onto the filter materials used in air conditioning systems; the
antibacterial activity of the ceria-modified filters exceeded 4.0.

Keywords: nanostructured coatings; cerium oxide nanoparticles; antibacterial activity; aerodynamic
acoustic emitter

1. Introduction

The development of new methods for creating functional nanostructured coatings
on the surfaces of materials of various physical natures is extremely relevant, with such
coatings currently being used in almost all areas of industry.

Healthcare-associated infections (HAIs) affect 5–10% of patients in hospitals and are
the tenth leading cause of death [1–3]. These infections include tuberculosis, chickenpox,
measles, flu, severe acute respiratory syndromes (SARS) and methicillin-resistant staphy-
lococcus aureus (MRSA) [4]. Some patient groups are particularly vulnerable: newborns,
the elderly, patients undergoing aggressive and invasive medical manipulations and or-
gan transplants, etc. In these groups, the incidence of healthcare-associated infections is
significantly higher. This problem was especially acute during the COVID-19 pandemic.
A notable proportion of HAIs are spread via airborne transmission from patient to pa-
tient, from medical personnel to patient and through ventilation systems, with relevant
diseases including tuberculosis, chickenpox, measles, flu [4], SARS and methicillin-resistant
Staphylococcus aureus (MRSA).
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Patients and healthcare workers produce bioaerosols when they breathe, talk, sneeze
and cough [5,6]. Medical interventions, such as intubation, are also a source of bioaerosols [7].
All of these actions create droplets that can stay in the air for a long period of time and
travel through a hospital environment via convection motion [4]. Moreover, droplets can
evaporate to form nuclei (<5 µm) and remain infectious [8]. Air filtration and disinfection
are, therefore, critically important in medical organizations. However, the nonwoven
materials used in ventilation systems are one of the main transmitters of cross-infection
in patients [1,2]. Poorly maintained air conditioning systems become reservoirs of dan-
gerous bacteria (e.g., legionella), which can be further aerosolized into the air. This leads
to a high risk of infection via inhalation and a high incidence of lethality [4]. Ventilation,
dehumidification and air conditioning systems are often equipped with multistage airflow
filtration systems. The main load falls on the multilayer primary filter, which removes dust,
soot and dust mites from the air. Antibacterial coatings may be able to protect these filters
from biocontamination.

Antibiotics have played a key role in managing bacterial infections over the last
century. However, the overuse and misuse of antibiotics have led to the emergence of
multidrug-resistant (MDR) bacteria, biofilms, etc. While evaluating the harm caused by
MDR organisms is complicated, MDR infections, for example, were named the third highest
cause of death in the United States in 2010 [9]. The recent and excessive consumption of
various types of antibiotics during the COVID-19 pandemic [10] and their considerable
leakage into the environment [11] have resulted in further unwanted antibiotic exposure
around the world and exacerbated MDR evolution.

Conventional antibiotics have lost the majority of their worth, and new therapeu-
tic platforms are being developed. Certain types of nanomaterials, such as fullerene
derivatives [12], gold nanoparticles [13–16], ferromagnetic nanoparticles [17], rare earth
nanoparticles [18–24] and others, have been reported to possess antibacterial properties
and have been observed to be highly effective against MDR strains.

One of the key demands for the practical use of antibacterial nanoparticles is their
safety for humans and the environment. Cerium oxide (CeO2) nanoparticles have excellent
antibacterial activity against both Gram-negative and Gram-positive bacteria [25–32], ex-
hibit antiviral properties [33–36] and possess low cytotoxicity to mammalian cells [37,38].
The particle size of CeO2 greatly affects its antibacterial [39] and antiviral [40] proper-
ties [41–43], which allows the desired effect to be fine-tuned. It is worth noting that cerium
(Ce) is one of the most abundant rare earth elements, making the nanomaterials produced
using CeO2 highly affordable.

The development of new effective methods for the coating of various materials is
extremely relevant. There are various methods for applying antimicrobial particles to
nonwovens [44], including high-frequency low-pressure induction (HFI) plasma [45], which
deposits silver nanoparticles in an environmentally friendly way, but suffers from quite
low productivity.

The successful commercialization and mass adoption of antimicrobial filter technol-
ogy require it to be high-speed, low-energy and safe. In this regard, the sonochemical
method [46,47] is a promising alternative for depositing nanoparticles on fibers from sus-
pensions. The physical and chemical phenomena caused by cavitation in liquids [48–50]
allow in situ syntheses to be carried out and metal or metal oxide nanoparticles to be
deposited on textiles or nonwoven materials. Cavitation-induced shock waves and micro-
jets in liquids cause nanoparticles to collide with textile surfaces at high speeds, resulting
in strong nanoparticle adhesion to the fibers and the formation of stable coatings [45].
However, our previous findings show that the process is quite inefficient for nonwovens.

The dip-rolling process from liquid has been widely used in various high-throughput
industrial plants for the deposition of nanoparticles. Although this method of nanoparticle
deposition is simple and fast, it has several drawbacks when used in different industrial
plants. One of the main disadvantages is the lack of precise control over the thickness
and uniformity of the nanoparticle coating. This can lead to variations in coating thick-
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ness across the filters, which may not meet the stringent requirements for antibacterial
applications. Multiple dip and roll cycles are often required to achieve the desired coating
thickness, which can increase production time and cost, making it less suitable for high-
throughput manufacturing. In addition, the dip-rolling process can lead to inefficiency and
waste of nanoparticle materials.

In addition, the need for liquid processing limits the performance of the method and
requires the use of additional reagents and the additional drying of the material, thus
increasing the cost of the final product. Thus, many industrial sites choose the spraying
technique for their coating processes [51].

This current manuscript presents a spraying method to produce nanoparticle coatings
on nonwovens that does not involve immersing the material in a liquid. The disadvantages
of the classical spraying method [52] are its lack of applicability on multilayer materials (for
example, for filters) due to the impossibility of ensuring the penetration of nanoparticles
into the deeper layers of the material and the unevenness of the resulting coating where a
nanosol is used, which is due to the fact that the sprayed nanoparticle suspension forms
droplets of various sizes during spraying.

In this study, the sputtering of cerium oxide nanoparticles was achieved using aerody-
namic acoustic emitters with simultaneous suction from the reverse side of the material.
This experimental design ensures the penetration of the droplets, and hence of the nanopar-
ticles, into the bulk of the material due to the pressure difference. At the same time, the
method makes it possible to control the size of the droplets.

2. Materials and Methods
2.1. Synthesis

The hydrothermal synthesis of ultrafine CeO2 nanoparticles from ceric ammonium
nitrate (NH4)2Ce(NO3)6 is described in detail by Shcherbakov et al. [53]. In brief, 2.33 g of
(NH4)2Ce(NO3)6 was dissolved in 23 mL of distilled water and heated at 95 ◦C for 24 h. The
resulting light-yellow precipitate was separated by centrifugation, washed three times with
isopropanol and redispersed in 25 mL of deionized water. To remove residual isopropanol,
the solution was boiled for 1 h. The resulting sol was labeled “CeO2”.

A citrate ion-stabilized CeO2 sol was synthesized from cerium (III) chloride and citric
acid. In brief, 2.33 g of CeCl3·7H2O and 4 g of citric acid were dissolved in 200 mL of a
water–isopropanol solution (V(iPrOH):V(H2O) = 20:1) and kept under vigorous stirring for
2 h. The resulting white precipitate was separated via filtration, washed with isopropanol
and dried at 50 ◦C overnight. The dried powder was dispersed in 100 mL of distilled
water, and 10 mL of concentrated aqueous ammonia (28 wt.%) was then added. The
obtained solution was stirred for 2 h at room temperature and heated at 95 ◦C for 6 h
until a dark-brown sol formed. During heating, the pH value of the solution was kept
higher than 12 via the addition of ammonia solution. At the final stage of the synthesis,
the sol was boiled to get rid of the excess ammonia and to lower the pH of the sol to ~8.
The resulting sol was labeled “CeO2-Cit”. The exact concentration of cerium oxide was
determined gravimetrically.

The sol was dispersed onto the surface of the Topperr (Russia) FC 1 textile air condi-
tioner filter 350 × 700 mm2 using an experimental setup, the schematic diagram of which
is shown in Figure 1. The experimental equipment consisted of a compressor, a vacuum
pump, an aerodynamic acoustic emitter, a cylindrical transparent vessel, a vacuum gauge,
a vessel for an aqueous sol, a separating plate and the filter to be processed. The separating
plate divided the cylindrical vessel into two zones: a vacuum pump created a low-pressure
area on the back side of the filter (in the upper zone of the container, see Figure 1), and the
sol was sprayed from the bottom (see the position of the hydrodynamic acoustic emitter
in Figure 1). The aerodynamic acoustic emitter was supplied with compressed air at a
pressure of 4 atm.
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Figure 1. Principal scheme of the experimental setup: 1—compressor; 2—transparent cylindrical
container; 3—vacuum pump; 4—aerodynamic acoustic emitter; 5—vacuum gauge; 6—vessel with sol
solution; 7—base; 8—compressor pipe; 9—emitter tube; 10—vacuum pump hose; 11—separation
plate; 12—filter.

The working principle of the proposed method is the generation of microdroplets of
sol using an aerodynamic emitter. This technique allows the distribution of the droplet
size to be controlled. The mist forms below the filter and is sucked through the filter by
the vacuum pump. By using the aerodynamic emitter, we can ensure that the size of the
droplets is small enough to penetrate between the fibers and reach the back of the filter.
With this technique, we achieve coverage of the fibers on both the front and back sides of
the filter. This ensures the antibacterial properties of the whole filter and contributes to
preventing the development of zones where bacteria could form colonies due to the lack
of coating.

In order to deposit cerium oxide onto the filter surface, the synthesized sols were
diluted with distilled water and isopropanol to achieve CeO2 concentrations of 2.5 g/L and
an isopropanol volume fraction of 40%.

2.2. Methods

Powder X-ray diffraction (PXRD) patterns were acquired using the powder diffractome-
ter D8 Advanced (Bruker, Berlin, Germany) in the reflection geometry (Bragg–Brentano)
with CuKα1,2 radiation. XRD patterns were collected in the 20–80◦ 2θ range with a 0.02◦

step. The identification of the diffraction peaks was carried out using the ICDD database
(PDF2, release 2020). PXRD pattern refinements were performed using the Rietveld method
in Maud software [54]. Scanning electron microscopy (SEM) images were obtained using
NVision 40 (Zeiss, Oberkochen, Germany) and Amber GMH (Tescan, Brno, Czech Republic)
microscopes operated at an accelerating voltage of 1–2 kV, using secondary and backscat-
tered electron detectors. Energy-dispersive X-ray spectroscopy (EDS) was performed using
an Ultim Max (Oxford Instruments, Abingdon, UK) detector at an accelerating voltage
of 20 kV. Transmission electron microscopy (TEM) images were acquired using a charge-
coupled device (CCD) camera, Ultra Scan 4000 (Gatan, Pleasanton, CA, USA), installed in a
transmission electron microscope, Libra 200MC (Zeiss, Oberkochen, Germany), operated at
200 kV. Electron energy loss (EEL) spectra were collected in the conventional TEM mode.
The half-width of the peak of zero electron energy loss was 0.2 eV. The EEL spectra were
processed using Digital Micrograph software.
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The ceria sol absorption spectra were measured in the wavelength range of 200–800 nm
with a 0.1 nm resolution using an SF-2000 (OKB Spectrum, Saint-Petersburg, Russia)
spectrometer. The optical absorption spectra of the filters after CeO2 deposition were
collected on a QE65000 (Ocean Optics, Dunedin, FL, USA) spectrometer in the 200–1200 nm
wavelength range using an ISP 50 8 R (Ocean Optics, Dunedin, FL, USA) integrating sphere.
A combination of deuterium and halogen lamps was used as a light source in the DH-2000
(Ocean Optics, Dunedin, FL, USA) device.

A suspension of Escherichia coli K12 with an optical density of OD = 0.8 was used to
assess the antibacterial properties of the coatings. The fabric samples were placed in the
culture medium LB + 1.5% agar. Subsequently, they were coated with 100 µL of bacterial
suspension. After 12 h of incubation at 37 ◦C, the fabric samples were removed from the
medium, and the residual antibacterial effect was tested on petri dishes. The test was
carried out with four repetitions for every type of sample. The quantitative characteristics
of antibacterial activity were analyzed using the standard method ISO 20743:2012. The
antibacterial performance of the samples was evaluated using the formula A = F − G, where
F is the bacterial growth rate of the control samples (log10 CFU/mL after incubation–log10
CFU/mL prior to incubation), CFU is colony-forming units and G is the bacterial growth
rate of the test samples.

3. Results

Optical absorption spectroscopy showed that both the CeO2 and CeO2-Cit sols pos-
sess an absorption edge in the range of 300–400 nm, and no absorption bands at longer
wavelengths were detected (Figure 2A). A clear shift in the absorption edge of the CeO2-Cit
sol towards the long-wavelength region is most likely caused by an admixture of triva-
lent cerium compounds, both on the surface and in the structure of the cerium dioxide
nanoparticles.
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According to the results of powder X-ray diffraction analysis, both sols contain a
cerium oxide phase (ICDD PDF2 card 34-0394), with other crystalline phases being absent
(Figure 2B). A full profile analysis of the diffraction patterns was performed using the
Rietveld method, which showed that the region of coherent scattering (crystallite size) of
cerium oxide nanoparticles is 3.0 nm for the CeO2-Cit sol and 3.8 nm for the CeO2 sol.

A detailed study of cerium oxide nanoparticles was carried out via transmission
electron microscopy, and the high-resolution TEM images are shown in Figure 3A,B. In
order to determine the average size, a statistical analysis of TEM images was performed,
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and the size distribution diagrams were obtained (Figure 3C,D). The particle sizes of the
sols do not differ statistically. The cerium oxide sol that was obtained without the use of a
stabilizer (CeO2) displayed a particle size of 2.8 ± 0.6 nm, while the sol synthesized in the
presence of citric acid (CeO2-Cit) had a particle size of 2.5 ± 0.5 nm. The obtained values
are close to the sizes of the coherent scattering regions measured using PXRD. However,
since the CeO2-Cit sol was synthesized using the Ce3+ compound (CeCl3), residual trivalent
cerium may be present in the sol, and the electron energy loss spectroscopy (EELS) method
was used to determine the possible presence of Ce3+. The EEL spectra (Figure 3E) are similar
in the region of the Ce-M4 and Ce-M5 edges of both nanoparticle assemblies. However, a
significant shift in the absorption edges of Ce-M4 and Ce-M5 to lower energies indicates
a larger Ce3+ fraction in the CeO2-Cit nanoparticles. At the same time, it is impossible to
distinguish Ce3+ ions that are adsorbed onto the ceria surface from those embedded in
the ceria crystal lattice. In summary, it can be argued that the differences in the CeO2 and
CeO2-Cit sols are mainly due to the presence of trivalent cerium in the CeO2-Cit sol, while
the sizes of the nanoparticles in the sols are nearly identical.
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The diluted sols were used for the preparation of cerium-oxide-nanoparticle-based an-
tibacterial coatings. The deposition of the nanoparticles onto the surface of air conditioning
filters was performed using an aerodynamic emitter and a compressor to create a pressure
difference between the sides of the filter. The filter can be placed at various distances from
the aerodynamic emitter, and so preliminary experiments were carried out to determine the
optimal distance between the emitter and the textile air conditioner filter using a solution
of PRO COLOR (Russia) red dye. Figure 4 shows the photographs of the obtained samples.
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Figure 4. Photographs of the treated area with a diameter of 10 cm sprayed with dye at a distance of
(A) 20 cm, (B) 40 cm and (C) 50 cm from the aerodynamic emitter.

At a distance of 40 cm from the emitter (Figure 4B), the filter enters the zone where the
drops formed by the emitter become significantly smaller. However, at a distance of 30 cm,
the flow distribution becomes nonuniform. At a distance of 50 cm (Figure 4C), the relative
uniformity of the flow covering the treated area is restored, and the distances of 20 cm and
50 cm were therefore chosen for ceria nanoparticle deposition.

Next, the filter treatment modes were tested using the CeO2 sol by varying the deposi-
tion duration and emitter-to-filter distances. The optical absorption spectra of the filters
after the deposition of the cerium oxide nanoparticles were collected in diffuse reflection
mode (Figure 5); the peak at 360–400 nm in the spectra corresponds to the absorption of
cerium oxide.
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Figure 5. Optical absorption spectra of filters with deposited nanoparticles of CeO2 sol: (A) at
different emitter-to-filter distances; (B) at different dispersion durations. (C) nanoparticles of CeO2-
Cit sol at different dispersion durations. Solid lines correspond to spectra collected from the treated
side, and the dashed lines indicate spectra obtained from the filter back side.

A comparison of the optical absorption spectra of the filters with ceria nanoparticles
deposited using different emitter-to-filter distances (20 and 50 cm) showed that the content
of cerium oxide differs slightly on the treated side of the filter. However, higher contents
are achieved on the back side of the filter at a distance of 50 cm after both 20 s and 60 s of
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treatment (Figure 5A). Depositing a cerium oxide sol on the filter at a distance of 50 cm for
different times (20–150 s) shows a proportional increase in the content of cerium oxide on
the treated surface (Figure 5B). At the same time, a significant increase in CeO2 content on
the back side is observed only after treatment for 150 s, whereas treatment for 20 and 60 s
shows comparable content. A similar increase in cerium oxide content was also observed
when the CeO2-Cit sol was deposited onto the filter (Figure 5C).

An emitter-to-filter distance of 50 cm and a treatment duration of 20 s were chosen for
the further production of ceria-based stable coatings on the filter surfaces. At this distance,
the formation of a stable flow is achieved, and minimal differences in the cerium oxide
content on the treated and back sides are ensured. Regarding the duration of treatment,
multiple increases only led to slight increases in cerium oxide content on the treated and
back sides, and a treatment time of 20 s was therefore chosen to reduce nanoparticle-
sol consumption.

SEM images of the filter samples before and after the deposition of cerium oxide
nanoparticles are shown in Figure 6. The bare fibers of the filters have a mean size of about
20–30 µm with a smooth surface (Figure 6A). The microstructure of the fibers after the
deposition of CeO2 (Figure 6B) and CeO2-Cit (Figure 6C) nanoparticles at a distance of
50 cm and a duration of only 20 s was significantly altered. The ceria-based coating is
observed on the fiber surfaces, as is seen in the SEM images taken in the elemental contrast
mode. CeO2 nanoparticles completely cover the surface of the fibers, whereas individual
aggregates are formed in the case of CeO2-Cit. The EDS spectra of the filters covered with
CeO2 and CeO2-Cit nanoparticles (Figure 6D) confirm the presence of cerium on the surface
of the fibers. The EDS spectra of CeO2-Cit and CeO2 samples contain chlorine and nitrogen,
which are most likely residues from the cerium-containing precursors: cerium (III) chloride
and ammonium cerium (IV) nitrate, respectively. Aluminum in the EDS spectra is detected
from the SEM stage material.
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covered with CeO2 and CeO2-Cit nanoparticles. * Al Kα is the impurity signal from the SEM stage.



Nanomaterials 2023, 13, 3168 9 of 13

The presence of nanoparticles on both sides of the filter confirms that the pressure
difference on the different sides of the filter ensures the penetration of nanoparticles into
the bulk of the nonwoven material. It has been found in preliminary experiments that
activating the suction during the coating process leads to a significant increase in cerium
oxide content on both sides of the filter, compared to cerium oxide content on filters coated
by spraying without suction, even at low processing times.

The total content of cerium oxide in the filters after treatment was assessed gravimetri-
cally (Table 1). When CeO2 nanoparticles were deposited on a filter, their content doubled
with increasing treatment time from 20 to 60 s, reaching 2.1 and 4.2 wt. %, respectively.
Nevertheless, the deposition of CeO2-Cit sol at treatment times of 20 and 60 s results in a
cerium oxide content of 0.7–0.8 wt. %. The lower content of ceria in the case of CeO2-Cit
deposition may be due to the presence of the citrate anion on the nanoparticle surfaces. It
has been found that an increase in the deposition duration of CeO2 sol leads to an increase
in the content of ceria on the fibers, whereas, in the case of CeO2-Cit sol, the ceria content
barely changes with time. Moreover, it should be noted that it is possible to achieve higher
concentrations of cerium oxide on the fibers when using a distance of 50 cm between the
filter and the emitter. Presumably, this is due to the fact that smaller droplets penetrate
deeper into the material. Thus, the samples obtained at an emitter-to-filter distance of
50 cm and at a treatment time of 20 s were chosen for further study into biological activity.

Table 1. Content and surface concentration of ceria after deposition onto filters.

Treatment Conditions

CeO2 CeO2-Cit

Content, wt.% Surface Concentration
10−4 g/cm2 Content, wt.% Surface Concentration

10−4 g/cm2

50 cm, 20 s 2.1 3.4 0.8 1.2
50 cm, 60 s 4.2 6.7 0.7 1.1

Table 2 presents the results of the antibacterial activity studies of the obtained samples.
E. coli bacteria were applied to the samples to check their antibacterial activity.

Table 2. Antibacterial activity of the samples.

CFU before Incubation CFU after 24 h Antibacterial Activity Average Antibacterial Activity
for This Type of Sample

Control 2.0 × 108 2.2 × 106 Not applicable -
CeO2 1 2.6× 108 4.4 × 106 No activity

0.45
CeO2 2 2.5 × 108 1.3 × 106 0.33
CeO2 3 2.2 × 108 3.7 × 105 0.82
CeO2 4 2.6 × 108 3.9 × 105 0.87

CeO2-Cit 1 2.7 × 108 2.0 × 102 4.17

4.15
CeO2-Cit 2 2.6 × 108 1.5 × 102 4.28
CeO2-Cit 3 2.5 × 108 2.5 × 102 4.04
CeO2-Cit 4 2.6 × 108 2.3 × 102 4.09

As can be seen from Table 2, the filters coated with ceria nanoparticles using CeO2
sol demonstrate quite low antibacterial activity, up to 0.45, at a ceria surface concentration
of 3.4 × 10−4 g/cm2. Despite the much lower ceria concentrations in the samples coated
with CeO2-Cit sol (1.2 × 10−4 g/cm2), their antibacterial activity is significantly higher and
reaches 4.15.

The antibacterial activity of nanoparticle-based materials can be governed by various
factors, including the properties of the nanoparticles and their coating approach over sub-
strates or filter surfaces [55,56]. Taking into account the fact that the same conditions were
used during nanoparticle deposition and antibacterial testing, it can be assumed that the
antibacterial activity of the filters is caused by the features of the cerium oxide nanoparticles.
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As shown above, the key difference between the CeO2 and CeO2-Cit samples is the
higher content of Ce3+ in the latter, which may be the reason for its higher antibacterial activ-
ity, and the antibacterial effect of cerium compounds (+3) has recently been discussed [57].
In particular, Zhao et al. [58] have demonstrated that Ce3+ ions exert a dose-dependent
antibacterial effect on E. coli, while Yin et al. [59] have produced gelatin fibers containing
Ce3+ that also have high antibacterial activity against this type of bacteria. Sargia et al. [60]
have shown that CeO2 nanoparticles with a high content of cerous species (Ce3+) on the
surface have pronounced antibacterial activity against E. coli.

Possible approaches to increasing the CeO2-Cit content on the filter material are a
surface modification, which would clearly influence the antibacterial activity of the nanopar-
ticles, or a change in the application conditions. However, the results obtained showed
that a significant increase in deposition time only slightly increases the concentration of
sol nanoparticles, which makes the deposition process less resource-efficient. At the same
time, our findings demonstrated that even lower concentrations of CeO2-Cit exhibit strong
antibacterial activity. Therefore, further research should focus on the development of
synthesis methods that ensure a higher Ce3+ content, since, as mentioned above, we believe
that the trivalent cerium content is crucial for the antibacterial properties.

In addition, a comprehensive study of the antibacterial performance of CeO2-Cit-
coated filters over time is planned. To this end, filter samples will be placed in the air
conditioning systems of different institutions (including hospitals) to determine the perfor-
mance of the coating when exposed to large amounts of bacteria.

4. Conclusions

This work proposes a method for coating nonwoven textile fine filters for air condition-
ers with nanoparticles. This method includes the spraying of nanoparticle colloid solutions
through aerodynamic emitters in combination with a suction element at the rear of the
filter. This approach makes it possible to deposit nanoparticle coatings onto nonwoven
materials, e.g., filters used in air conditioning systems.

In this work, cerium oxide nanoparticles were deposited on nonwoven materials to
impart antibacterial properties. Ceria nanoparticles were synthesized using two different
approaches, with either cerium (III) chloride or cerium (IV) ammonium nitrate as the
precursor. An analysis of particle size, phase and chemical composition revealed that
the key difference was the presence of trivalent cerium in cerium oxide nanoparticles
synthesized from cerium (III) chloride and citric acid, and that it is the presence of this
trivalent cerium in ceria nanoparticles that causes a significant increase in antibacterial
activity. Filters coated with bare CeO2 nanoparticles demonstrate only slightly higher
antibacterial activity than the control sample. By contrast, filters coated with citrate-
stabilized cerium oxide nanoparticles with an admixture of trivalent cerium demonstrated
high antibacterial properties, with the E. coli suppression level being over 99.9999%, giving
an antibacterial activity of more than 4.15.

We believe that the higher content of Ce3+ in citrate-stabilized cerium oxide could
be the reason for its higher antibacterial activity. Further research should focus on the
development of synthesis methods that ensure a higher content of Ce3+.

This method is used to produce air filters for use in healthcare facilities to prevent the
spread of nosocomial infections. In this context, a comprehensive study of the antibacterial
performance of CeO2-Cit-coated filters over time is planned. To this purpose, filter samples
will be placed in the air conditioning systems of different institutions (including hospitals)
to determine the performance of the coating when exposed to large amounts of bacteria.
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