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Abstract: On-chip optical modulators, which are capable of converting electrical signals into optical
signals, constitute the foundational components of photonic devices. Photonics modulators exhibiting
high modulation efficiency and low insertion loss are highly sought after in numerous critical
applications, such as optical phase steering, optical coherent imaging, and optical computing. This
paper introduces a novel accumulation-type vertical modulator structure based on a silicon photonics
platform. By incorporating a high-K dielectric layer of ZrO2, we have observed an increase in
modulation efficiency while maintaining relatively low levels of modulation loss. Through meticulous
study and optimization, the simulation results of the final device structure demonstrate a modulation
efficiency of 0.16 V·cm, with a mere efficiency–loss product of 8.24 dB·V.

Keywords: silicon photonics; plasma dispersion effect; optical modulator; modulation efficiency;
loss-efficiency product

1. Introduction

Optical modulators are critical enablers in the fields of optical telecommunications,
optical interconnects, optical sensing, and detection. Due to their low power consumption,
high modulation bandwidth, rapid modulation speed, and mass-production capabilities,
on-chip silicon photonic-based modulators have emerged as the most promising candi-
dates, offering extraordinary solutions [1,2]. Their applications extend to optical linear
matrix multiplications and optical phase steering, thereby necessitating densely deployed
phase modulators [3–5]. Devices that demonstrate muscular modulation strength, high
modulation efficiency, and low optical loss, as well as the potential for dense deployment
with minimal crosstalk, are in high demand.

Generally, photonic modulators based on the thermo-optical effect can provide strong
modulation with relatively low optical loss due to significant thermo-optical coefficients [6].
However, these thermal methods are less precise and suffer from significant crosstalk
between channels, thereby hindering further advances in integration density. In contrast,
electro-optic (EO)-based modulators offer precise optical phase control with minimal
crosstalk, making them indispensable for large-scale, compact photonic circuits. The state-
of-the-art silicon photonic EO modulators, based on plasma dispersion [7,8], exhibit the
highest modulation strength. These operate with an accumulation-type structure, where
carriers accumulate near the SiO2 dielectric layer between the N-doped and P-doped
waveguides under an applied electric potential. However, the modulation efficiency of
this approach remains insufficient, and optical loss is not negligible. The best-reported
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modulation performance is approximately 0.2 V·cm [9], with the efficiency–loss product
limited to around 20 dB·V [10–13].

To address these issues, we propose a novel vertical structural accumulation-type
silicon photonic modulator. Our approach, which differs from conventional capacitance
accumulation modulators, introduces a dielectric layer of ZrO2 to replace SiO2. ZrO2, a
high K (HK) material, exhibits a significantly larger dielectric constant than SiO2 [14,15],
enhancing carrier accumulation capacity. Well-studied as an HK metal gate material in
advanced MOSFET structures [16,17], ZrO2 can be easily incorporated using standard
CMOS-compatible processes. Integrating ZrO2 into the design of carrier accumulation
modulators improves modulation efficiency to 0.16 V·cm. Compared to traditional carrier
accumulation modulators, our proposed design offers a 20% enhancement in modulation
efficiency and a 40% decrease in the efficiency–loss product. This research addresses the
challenges of low modulation efficiency and integration complexities in densely deployed
modulators (Figure 1).
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Figure 1. Schematic diagram of conventional accumulation-type electro-optic modulator.

2. Principles and Methods
2.1. Principles

In silicon-based modulators, the plasmonic dispersion effect is the fundamental prin-
ciple employed. Three primary modulation structures are utilized: (i) carrier injection-
based [18], (ii) carrier depletion-based [19,20], and (iii) carrier accumulation-based [9,12,13].
In injection-type structures, modulation is attained by altering the semiconductor’s refrac-
tive index and absorption coefficient through electron and hole injection. These modulators
are typically noted for their high modulation efficiency. However, their overall performance
may be negatively influenced by the carrier lifetime limitations inherent in these systems.
Depletion-based modulation, often achieved through reverse biasing of PN junctions, re-
sults in the highest modulation speed but suffers from a larger footprint, increased power
consumption, and comparatively lower modulation efficiency.

In contrast, optical modulators based on carrier accumulation do not modulate carrier
concentration through electrically controlled injection. Instead, they incorporate a dielectric
layer within the waveguide, facilitating the accumulation of free carriers on either side of
this layer. This design allows such devices to bypass the limitations imposed by minimal
carrier lifetime, enhancing modulation speed. Conversely, accumulation-based modulation
offers a balanced performance, achieving high modulation efficiency while optimizing
speed, power consumption, and footprint [21].

When the wavelength is 1550 nm, the refractive index change is empirically related to
the carrier concentration as follows [22]:

∆n = −5.40 × 10−22N1.011
e − 1.53 × 10−18N0.838

h (1)

∆α = 8.88 × 10−21N1.167
e + 5.84 × 10−20N1.109

h (2)

where Ne represents the electron concentration, Nh represents the hole concentration, and
the above is referred to as the Soref–Bennett formula.

The vertical structure is frequently regarded as one of the optimal choices for efficient
modulators. Currently, this structure is predominantly constructed using Poly-Si-oxide-
silicon. The peak modulation efficiency attained with this design is around 0.2 V·cm [9].
The key factor influencing modulation efficiency is the carrier accumulation capability,
which is determined by material characteristics, such as (i) the dielectric constant of the
oxide layer, (ii) the band gap in the oxide layer, and (iii) the affinity of electrons in the oxide
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layer. Of these, the dielectric constant plays the most crucial role. Therefore, employing
high-K materials with a higher dielectric constant increases capacitance and enhanced
carrier accumulation.

In the design of high-efficiency modulators that utilize carrier accumulation, three pri-
mary types are identified based on their gate electrode materials: ITO–oxide–silicon [23,24],
III–V materials–oxide–silicon [25,26], and silicon–oxide–silicon [9,12,13]. Here, the choice
of gate electrode material significantly influences the refractive index change. Modulators
with ITO gate electrodes often exhibit high modulation efficiencies but suffer considerable
modulation loss, limiting their efficiency benefits. Modulators using III–V gate electrode
materials, while achieving higher efficiency and minimal losses, often require complex
bonding operations in their fabrication, which pose challenges for large-scale integration. In
contrast, silicon–oxide–silicon-based modulators, particularly those using SiO2 as the oxide
layer, have reached the efficiency limits, prompting the need for innovative approaches to
enhance their performance.

Figure 2 illustrates the design of the intended optical modulator using SOI (silicon-
on-insulator) technology, which is compatible with CMOS processes. SOI technology is a
prevalent methodology in fabricating silicon photonic chips and is extensively employed
in producing various optoelectronic devices [27]. The design comprises three distinct
layers: a top layer, a middle layer, and a bottom layer. These layers consist of polysilicon
(poly-Si), an oxide layer, and crystal silicon. Both the poly-Si and the single-crystal silicon
are doped with a concentration of 1 × 1018 cm−3 to reduce resistance, enhance the electro-
optic (EO) bandwidth, and provide an abundance of free carriers for accumulation. The
oxide layer, with a thickness of 5 nm, is made from zirconium dioxide (ZrO2). The poly-Si
layer measures 150 nm thick, while the single-crystal silicon layer is 220 nm thick. The
top electrode, which is positioned 900 nm from the optical field center, aligns with the
bottom electrode, strategically placed along the left side of the single-crystal silicon. This
configuration significantly mitigates losses, as indicated in reference [28].
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2.2. Methods

The simulation work introduces the overall simulation tools, boundary conditions, grid
division, and settings of the excitation port. This simulation adopts the finite element analysis
method, which is divided into two parts: electrical simulation and optical simulation.

The electrical stimulation primarily involves applying different voltages at the ex-
citation port to obtain varying distributions of carriers in semiconductor materials. The
changes in the refractive index and absorption rate caused by the carrier variations are
incorporated into the optical model for optical mode simulation using the Soref–Bennett
formula. Except for the excitation port, all other boundaries are considered ideal insulators
in the electrical simulation. The semiconductor material model is a steady-state model,
which is calculated primarily from the following formula:

∇ · Jn = 0 (3)

∇ · Jp = 0 (4)

Jn = qnµn∇Ec + qDn∇n − qnDn∇ln(Nc) + qnDn, th ∇ln(T) (5)
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Jp = qpµp∇Ev − qDp∇p + qpDp∇ln(Nv)− qpDp, th ∇ln(T) (6)

in the optical simulation, the working wavelength is set to 1550 nm. A comprehensive
optical mode simulation is conducted after introducing the refractive index changes caused
by the carriers into the optical model. The boundary conditions for this simulation are
ideal conductors. Since this is an optical field mode analysis simulation, no fixed excitation
exists. The primary formula used during the optical mode simulation process is:

∇× (∇× E)− k2
0ϵrE = 0 (7)

α = jβ + δz = −λ (8)

E(x, y, z) =
∼
E(x, y)e−αz (9)

finally, the grid division is consistent in both the electrical and optical simulations, utilizing
a grid size with a side length of 1 nanometer (nm). This acceptable grid density helps to
enhance the reliability of the simulation results.

Moreover, in designing the optical modulator, several key parameters are prioritized
as our primary criteria for design and optimization. First, the magnitude of the applied
voltage is critical, as it directly affects compatibility with the standard voltage used in the
CMOS-process-integrated circuits. This parameter is essential for enhancing the density
of the optoelectronic co-design. Second, the modulation efficiency, represented as VπL
(V·cm), the optical loss (measured in dB/cm), and the optimal figure of merit (FOM),
which combines specific values to balance both aspects, are central to our evaluation.
The lower the numerical value for the modulation efficiency, the higher the integration
capability of the modulator. Similarly, a lower efficiency–loss product (αVπL) indicates
greater cost-effectiveness in the design context.

3. Results

To assess the differences in carrier accumulation capacities between high K (HK)
materials and conventional SiO2 dielectric materials, we conducted a comparative analysis
under a −2 V voltage condition for materials. Figure 3 illustrates that using HK material
significantly increases carrier accumulation on both sides of the dielectric layer. Based on
empirical formulas, this marked increase will lead to enhanced modulation efficiency and
corresponding changes in the effective mode refractive index.
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Having demonstrated the superior carrier accumulation capabilities of high-K (HK)
materials, our research next focused on exploring the relationship between applied voltage
and modulation performance. The range of applied electrode voltages spanned from −4 V
to 0 V. Our simulations, illustrated in Figure 4, show a consistent decrease in the VπL
value as voltage increases. Notably, at −1.4 V, a critical juncture is observed where α·VπL
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reaches an optimal point. At this voltage, the modulation efficiency peaks at 0.29 V·cm,
accompanied by a relatively low optical loss of 38.31 dB/cm and an efficiency–loss product
of 11.12 dB·V. These metrics significantly outperform those of traditional silicon-based
SiO2 dielectric materials that are typically used in modulator devices. Capitalizing on
this critical voltage point opens avenues for further performance enhancement through
structural optimizations.

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 

 

 
Figure 4. Voltage–modulation performance relationship chart. 

Three principal factors determine the modulation efficiency of optical modulators. 
Firstly, the characteristics of the dielectric layer, which include intrinsic properties, such 
as dielectric constant, electron affinity, and bandgap width, are critical, as well as dimen-
sional attributes, including layer thickness. These factors directly influence the capacitor’s 
value and the capacity for carrier accumulation. Secondly, doping concentration signifi-
cantly impacts modulation efficiency, especially regarding carrier density in monocrystal-
line and poly-Si. Lastly, there is a notable correlation between the modulator’s geometric 
variables, such as the thickness and etching depth of poly-Si, and its modulation effi-
ciency. Collectively, these factors substantially impact the modulation efficiency, optical 
loss, and efficiency–loss product of the modulator. 

Our approach to designing and optimizing modulators is meticulously structured 
into three distinct phases, with each phase focused on enhancing the performance aspects 
mentioned above. Through this phased methodology, we aim to enhance the modulator’s 
performance by precisely adjusting these variables. This approach aims to achieve higher 
modulation efficiency and the lowest possible product of loss–efficiency. 

3.1. Dielectric Layer Thickness 
Firstly, the impact of the dielectric layer thickness is approached by defining the pla-

nar capacitor formula: C = A 𝜀଴𝜀௥d  (10)

where A denotes the planar surface area, d represents the distance between the two elec-
trode plates, 𝜀଴ stands for the vacuum permittivity, and 𝜀௥ is the dielectric constant of 
the oxide layer material. 

According to the formula, an increase in the oxide layer thickness leads to a reduction 
in capacitance, which, in turn, diminishes the capacity for carrier accumulation. To inves-
tigate the relationship between the thickness of the oxide layer and modulation perfor-
mance, we generated performance graphs for each modulator with various oxide layer 
thicknesses, from 5 to 11 nanometers, and under different voltage conditions. The results 
of these tests are depicted in Figure 5a,b. 

Figure 4. Voltage–modulation performance relationship chart.

Three principal factors determine the modulation efficiency of optical modulators.
Firstly, the characteristics of the dielectric layer, which include intrinsic properties, such as
dielectric constant, electron affinity, and bandgap width, are critical, as well as dimensional
attributes, including layer thickness. These factors directly influence the capacitor’s value
and the capacity for carrier accumulation. Secondly, doping concentration significantly
impacts modulation efficiency, especially regarding carrier density in monocrystalline
and poly-Si. Lastly, there is a notable correlation between the modulator’s geometric
variables, such as the thickness and etching depth of poly-Si, and its modulation efficiency.
Collectively, these factors substantially impact the modulation efficiency, optical loss, and
efficiency–loss product of the modulator.

Our approach to designing and optimizing modulators is meticulously structured
into three distinct phases, with each phase focused on enhancing the performance aspects
mentioned above. Through this phased methodology, we aim to enhance the modulator’s
performance by precisely adjusting these variables. This approach aims to achieve higher
modulation efficiency and the lowest possible product of loss–efficiency.

3.1. Dielectric Layer Thickness

Firstly, the impact of the dielectric layer thickness is approached by defining the planar
capacitor formula:

C = A
ε0εr

d
(10)

where A denotes the planar surface area, d represents the distance between the two elec-
trode plates, ε0 stands for the vacuum permittivity, and εr is the dielectric constant of the
oxide layer material.

According to the formula, an increase in the oxide layer thickness leads to a reduction
in capacitance, which, in turn, diminishes the capacity for carrier accumulation. To investi-
gate the relationship between the thickness of the oxide layer and modulation performance,
we generated performance graphs for each modulator with various oxide layer thicknesses,
from 5 to 11 nanometers, and under different voltage conditions. The results of these tests
are depicted in Figure 5a,b.
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(a) Schematic diagram of modulation efficiency changing with oxide layer thickness (b) Efficiency–
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The observed outcomes align with the predictions made by the capacitance formula.
As the thickness of the dielectric layer increases, capacitance decreases, resulting in reduced
carrier accumulation. When evaluating the modulation efficiency and efficiency–loss
product parameters, using thicker oxide layers than the optimized voltage range proves
counterproductive. Such thicknesses lead to a higher efficiency–loss product and lower
modulation efficiency. Considering the complexities inherent in manufacturing processes,
the optimal thickness of the oxide layer was 5 nm.

3.2. Doping Concentration

The next step in our study involved evaluating the impact of doping, a critical param-
eter that directly affects modulation capabilities. Higher doping concentrations introduce
a more significant number of carriers, thereby enhancing modulation abilities. However,
empirical formulas indicate that holes, compared to electrons, result in more considerable
refractive index changes and reduced losses. To confirm this observation, we analyzed
the variations in losses and efficiency–loss product at different concentrations of P-doping
and N-doping, specifically at the critical voltage of −1.4 V. The results of this analysis are
presented in Figure 6a,b.
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Both P-doping and N-doping demonstrate increased losses. However, lower losses
and efficiency–loss products are attainable when reducing the P-doping concentration. At
a P-doping concentration of 2 × 1017 1/cm3, the losses were merely at 20.46 dB, resulting
in an exceedingly low efficiency–loss product of 6.19 dB·V. In contrast, within the same
range of concentration variations, the minimum efficiency–loss product for N-doping was
confined to 9.5 dB·V. Therefore, our data suggest that minimizing P-doping near the pole
voltage in our designed structure can yield superior modulation performance.

Moreover, according to empirical formulas, holes demonstrate lower absorption than
electrons. However, they generate more significant changes in the refractive index. Con-
sequently, maintaining hole concentrations that are too low might result in a decrease in
modulation capabilities.

3.3. Modulator Geometric Factors

The last crucial factor affecting modulation efficiency is the influence of geometry. The
distance between the region where carriers amass high charge density, and the center of
the optical mode considerably affects both the modulation efficiency and the product of the
loss–efficiency. The highest modulation efficiency occurs when these elements perfectly
align, as suggested by the following formula:

neff(V) = neff,i +

∫
E∗(y) · ∆n(y, V)E(y)dy∫

E∗(y) · E(y)dy
· dneff

dnco
(11)

here, the equation denotes neff,i as the effective refractive index of the non-doped optical
waveguide, dneff/dnco as the ratio of the mode change effective refractive index to the
change in refractive index of the optical waveguide core layer, which is very close to 1, and
E(y) as the 1D electric field distribution obtained via the effective refractive index method.

The primary influencers of the modulator’s ultimate performance are derived from
the formula mentioned above and the current geometric configuration. The key aspects
are predominantly the ridge height (aligned with the thickness of the poly-Si) and the
depth of etching (relating to the alteration in the refractive index within the single-crystal
silicon region).

We initiated the investigation by analyzing the etching depth. Subsequently, based
on our model configuration and the manufacturing process, we can convert the silicon on
both sides of the waveguide into silicon dioxide through an etching operation. Therefore,
we can assume an etching depth of 155 nm at the initial state, as depicted in Model
Figure 2. Here, the sides of the poly-Si are entirely composed of silicon dioxide. However,
in this research, we investigated the impact of silicon dioxide confinement on the overall
modulation performance by increasing the etching depth to transform the monocrystalline
silicon region into silicon dioxide. The results are illustrated in Figure 7a,b.

An increased etching depth facilitates the transformation of single-crystal silicon
adjacent to the center of the optical field into silicon dioxide. This change alters the
refractive index, resulting in a more concentrated electric field intensity on both sides of the
dielectric layer. Our graph directly correlates with increased etching depth and enhanced
modulation efficiency. Thus, we analyzed a normalized light field intensity profile along
line AB to support this hypothesis, overlaid with carrier concentration data at a voltage
of 4 V. This analysis is visually represented in Figure 8, where it is evident that a greater
etching depth is associated with higher normalized light field intensity values on both sides
of the dielectric layer, leading to increased modulation efficiency.

In our investigation of the efficiency–loss product, we performed scans of this pa-
rameter at various etching depths using four different voltage settings. A clear and con-
sistent pattern emerged from this analysis: At all voltage levels, the efficiency–loss prod-
uct decreased as the etching depth increased. This finding confirms that augmenting
the etching depth effectively reduces the loss–efficiency product, thus, improving the
modulator’s performance.
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Figure 8. Schematic of overlapping normalized electric field intensity with carriers.

Another critical factor causing modulation performance variations is the thickness
of the poly-Si. Here, changes in poly-Si thickness led to alterations in the thickness of the
waveguide, which in turn impacted the central position of the optical field. Similar to
the influence of the etching depth, this effect can be attributed to the degree of overlap
between the center of the optical field and the region of the dense carrier accumulation. We
conducted a performance scan on the modulator using a range of poly-Si thicknesses to
elicit clear and intuitive conclusions. Since the initial poly-Si thickness was 150 nm, we
set the scanning range from 120 to 200 nm. The outcomes of this scan are presented in
Figure 9a,b.

Increasing the poly-Si thickness impacts modulation efficiency while concurrently
decreasing the efficiency–loss product. As the poly-Si thickness increases, the normalized
optical field strength on both sides of the dielectric layer also rises, thus, boosting the
modulation efficiency. However, this increase in thickness has its constraints. Maintaining
the overall polysilicon thickness below 220 nm is crucial to meet the single-mode optical
transmission condition. Notably, and irrespective of the applied voltage, the trend toward a
product with reduced efficiency–loss and increased polysilicon thickness remains consistent,
providing a valuable guideline for our optimization design process.
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To more intuitively demonstrate the influence of geometric factors on modulation
efficiency, we have developed optical field intensity diagrams under varied geometric
scenarios, presented in Figure 10a,b. Indeed, Figure 10a illustrates the optical field intensity
distribution for an etching depth of 155 nm and a polysilicon thickness of 150 nm. In this
configuration, the central position of the optical field intensity is predominantly concen-
trated in the center of the monocrystalline silicon layer, considerably distant from the sides
of the dielectric layer. Conversely, Figure 10b shows a noticeable upward shift in the central
position of the optical field when the etching depth and the polysilicon thickness were
increased to 370 nm and 200 nm, respectively. This shift increased the overlap with the
dielectric layer’s position, resulting in significantly higher modulation efficiency. These
observations confirm our proposed hypothesis and underscore the crucial role of geometric
modifications and the complex relationship between physical structure and functional
efficacy in photonic devices.
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Building upon insights from our previous research, we redesigned and optimized the
structure of our modulator. The outcomes of this re-simulation are depicted in Figure 11.
After optimization, the modulator achieves its peak efficiency–loss product at a voltage
of −1.2 V—registering a remarkable 6.1 dB·V. This peak corresponds to a modulation
efficiency of 0.26 V·cm. It is important to note that these results specifically pertain to the
efficiency–loss product. However, increasing the applied voltage is a viable strategy should
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a higher modulation efficiency be the priority. For example, at −4 V, the modulator can
surpass a modulation efficiency of 0.1 V·cm, attaining an impressive 0.096 V·cm.
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Figure 11. Schematic of modulator performance after optimization.

Nevertheless, a working voltage of −1.6 V appears optimal following a comprehensive
evaluation. At this voltage, the modulator exhibits a modulation efficiency of 0.16 V·cm
and a corresponding efficiency–loss product of 8.24 dB·V. This optimization process show-
cases the modulator’s efficiency across different electrical conditions and underscores the
critical need to balance the modulation efficiency and efficiency–loss product for optimal
performance in practical applications.

Upon the foundation of our optimized structure, we conducted a comparative analysis
of the simulation results for non-optimized structures using SiO2 and ZrO2 dielectric
layers, as shown in Figure 12. The collected data distinctly highlights the advantages of
using high-k (HK) materials in modulators. Whether considering modulation capability
or efficiency–loss metrics, modulators employing ZrO2, an HK material, consistently
surpass those with traditional dielectric materials. Furthermore, the optimized structure
demonstrates significant performance enhancements compared to the initial design. This
improvement confirms the effectiveness of the structural optimization. In a side-by-side
comparison using the same framework, our optimized structure, when contrasted with
traditional SiO2 dielectric layers, shows a clear and substantial increase in the simulation
results. Both the efficiency–loss product and modulation efficiency increased by over 200%.
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One of the primary metrics for evaluating the efficiency of optical modulators is the
phase shift length. Our study compared the phase shift lengths of optical modulators
employing traditional SiO2 dielectric layers, high-k (HK) material ZrO2 dielectric layers,
and optimized ZrO2 dielectric layers through simulations. As depicted in Figure 13,
the optical modulators with ZrO2 dielectric layers demonstrate an approximate 200%
improvement in phase shift length compared to those with traditional layers. Following
the optimization of the device’s geometric structure and doping, the phase shift length was
further reduced based on these findings. Specifically, at a voltage of −1.4 V, the phase shift
length was 1.14 mm, and at voltages below −1.6 V, it was less than 1 mm. This reduction in
phase shift length contributes to greater integration, underscoring the benefits of using HK
material ZrO2 dielectric layers in optical modulators.
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Figure 13. Schematic illustration of phase shift length variation with voltage.

In our final simulation, we assessed the leakage current and bandwidth of the optical
modulators with optimized ZrO2 dielectric layers. Figure 14a illustrates that the leakage
current consistently stays below 7.6 × 10−5 A/cm2 at voltages above −3.2 V. However, at
voltages below −3.2 V, there is a marked increase in leakage current, culminating in a peak
of 0.039 A/cm2 at −4.0 V.
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An analysis of the device’s S11 parameter indicates a −3 dB bandwidth of 2.94 GHz,
as depicted in Figure 14b. The utilization of high-k (HK) materials increases overall capaci-
tance compared to traditional SiO2 dielectric layers. Although the bandwidth of optical
modulators using HK material dielectric layers still necessitates further optimization—
especially when contrasted with traditional SiO2 layer modulators, which can achieve
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bandwidths exceeding 10 GHz—this aspect will be a primary focus in our future re-
search endeavors.

4. Discussion

High-efficiency modulators often incorporate accumulation capacitors in their design.
The capacity of the oxide layer to accumulate carriers is crucial in determining modulation
efficiency. This efficiency is also influenced by the doping concentration, the modulator’s
geometry, and the applied voltage. Geometric factors are instrumental in dictating carrier
accumulation and its interaction with the optical field distribution, which, in turn, impacts
both modulation efficiency and losses. An increased overlap between these elements results
in higher modulation efficiency, leading to more significant losses. On the other hand,
a thicker oxide layer diminishes capacitance and carrier accumulation capability, which
reduces modulation efficiency.

Regarding the effects of doping, modulation capability is closely linked to carrier con-
centration. However, N/P doping scenarios exhibit distinct behaviors. Hence, increasing
doping concentrations in the N and P-type regions can enhance modulation efficiency, yet
the resulting losses vary significantly. At equivalent doping concentrations, holes demon-
strate more pronounced modulation efficiencies, leading to reduced losses and a lower
efficiency–loss product. Thus, strategically employing holes as the primary modulation
carriers is a crucial method for improving the efficiency–loss product.

This study suggests using a vertical structure capacitor modulator constructed with
an innovative oxide layer material to achieve enhanced modulation efficiency and reduced
efficiency–loss products, while also simplifying the manufacturing process. When focusing
on a single performance goal, we can attain an ultra-low efficiency–loss product of 6.1 dB·V
and an exceptional modulation efficiency of 0.096 V·cm. Nevertheless, this involves a
trade-off with losses. The realized modulation efficiency is 0.16 V·cm, corresponding to an
efficiency–loss product of 8.24 dB·V. A comparison with other silicon-based accumulation
modulators is provided in Table 1.

Table 1. Performance parameters of accumulation modulators with different gate materials.

Gate Material Oxide VπL (V·cm) Loss (dB/cm) α· VπL (dB·V) Result Type

ITO [23] Al2O3 0.052 >1500 >80 Experimental

ITO [24] Al2O3 0.095 16,000 152 Experimental

InGaAsP [25] Al2O3 0.047 4.6 <1 Experimental

InP [26] SiO2/Al2O3 0.54 2.3 1.24 Experimental

Poly-Si [7] SiO2 1.8 >30 >48 Experimental

Poly-Si [29] SiO2 0.886 >18 >16 Numerical

Poly-Si [9] SiO2 0.2 65 13 Experimental

(This work)
Poly-si ZrO2 0.16 50 8.24 Numerical

Compared to traditional SiO2 dielectric layer capacitor structures, our modulator
demonstrated significant advancements in modulation capabilities. Our approach has
resulted in a 20% increase in modulation capacity and a notable 40% decrease in the
efficiency–loss product, ultimately, outperforming the most advanced high-efficiency mod-
ulators currently available.

Our modulator also shows substantial improvements over alternative approaches,
such as those using ITO gate materials. Specifically, we have achieved a significant reduc-
tion in modulation losses. Moreover, compared to III–V material modulators, our design
eliminates the need for additional bonding processes, thereby simplifying the overall com-
plexity of the manufacturing procedure. This advancement creates new possibilities for
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future research and offers innovative solutions for achieving high-density, high-efficiency,
and high-precision modulations.

5. Conclusions

This paper presents a high-density modulator based on a vertical structure incorpo-
rating CMOS-compatible high-k (HK) material dielectric layers, featuring an innovative
accumulation structure using ZrO2 oxide layers. Our simulations indicate that the mod-
ulator achieves a modulation efficiency of 0.16 V·cm in the vertical direction, with a
corresponding loss-efficiency product of 8.24 dB·V. Further optimization of the voltage
settings could lead to even more impressive modulation efficiency, potentially lowering
the efficiency–loss product to 6.1 dB·V and fulfilling the requirements for high-precision,
dense, and efficient modulations.

In summary, our research underscores the advantages of HK materials in constructing
high-efficiency optical modulators. The significant benefits of utilizing high-k materials,
such as ZrO2, and structural optimization have opened new avenues for enhancing device
performances. This breakthrough emphasizes the critical role of material selection and
structural design in optimizing the optical modulator efficiency. It establishes a new
standard in the field, fostering further research and innovation in photonic technology.
This advancement heralds exciting prospects for developing more efficient, powerful,
and versatile optical communication systems. However, further research is essential to
evaluate its performance and explore its practical applications fully. Nevertheless, the
outcomes of this research mark a significant step forward in devising innovative designs
for high-efficiency optical modulators.
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