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Abstract: Cellulose-based carbon (CBC) is widely known for its porous structure and high specific
surface area and is liable to adsorb gas molecules and macromolecular pollutants. However, the
application of CBC in gas sensing has been little studied. In this paper, a ZnO/CBC heterojunction
was formed by means of simple co-precipitation and high-temperature carbonization. As a new
ammonia sensor, the prepared ZnO/CBC sensor can detect ammonia that the previous pure ZnO
ammonia sensor cannot at room temperature. It has a great gas sensing response, stability, and
selectivity to an ammonia concentration of 200 ppm. This study provides a new idea for the design
and synthesis of biomass carbon–metal oxide composites.

Keywords: gas sensor; ammonia; zinc oxide; microcrystalline cellulose

1. Introduction

Ammonia is a colorless, toxic, and corrosive substance with a strong odor and a
choking effect. Excess ammonia can pose a huge threat to human health and cause envi-
ronmental pollution. Different from other toxic gases, ammonia has a low boiling point of
−33.5 ◦C, a low melting point of −77.75 ◦C, a low density of 0.771 g·L−1, a refractive index
of 1.33, and a dipole moment of 1.42 d. These characteristics make ammonia an excellent
gas sensor, and its sensors can be used in a variety of applications, such as environmental
monitoring, agriculture, medical diagnostics, and dealing with industrial waste [1,2].

Recently, metal oxide semiconductors (MOSs), such as ZnO [3], MoO3 [4], TiO2 [5],
WO3 [6], NiO [7], and V2O5 [8], etc., have been widely used in the field of gas sensing due
to their excellent physical and chemical properties. A gas sensor based on a TiO2/Ti3C2Tx
bilayer film was fabricated by Tai et al. which can operate at room temperature but is only
3.1% responsive to a concentration of 10 ppm ammonia [5]. Chou et al. fabricated a NiO
thin-film ammonia sensor using a radio frequency sputtering process. This ammonia sensor
showed a good sensing performance to 1000 ppm ammonia; however, this sensor needs
to be at 250 ◦C to achieve the optimal gas sensing performance [7]. Zinc oxide is a metal
oxide semiconductor material with a wide band gap (3.37 eV), high bonding strength, and
large exciton binding energy (60 meV) at room temperature. Based on these properties, it is
often used in gas sensors, chemical sensors, biosensors, cosmetics, energy storage, optical
and electronic devices, and other products [9–13]. The existing zinc oxide gas sensors show
great gas sensing performance for carbon dioxide, ammonia, and ethanol. A resistive gas
sensor based on ZnO nanosheets was prepared by Srinivasulu et al. which has a large
surface area and can quickly and highly detect carbon dioxide in the air [14]. The ZnO
nanoflowers prepared by Yu et al. have great gas sensing properties for low concentrations
of ammonia [3]. However, the original zinc oxide still has some shortcomings, such as
poor gas sensitivity, slow response and recovery time, and poor selectivity. Therefore,

Nanomaterials 2023, 13, 3151. https://doi.org/10.3390/nano13243151 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano13243151
https://doi.org/10.3390/nano13243151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0009-0001-2690-1902
https://orcid.org/0000-0001-5713-0760
https://orcid.org/0009-0005-8310-7034
https://doi.org/10.3390/nano13243151
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano13243151?type=check_update&version=2


Nanomaterials 2023, 13, 3151 2 of 13

many researchers have used methods such as doping with other elements or mixing zinc
oxide with other metal oxides to prepare composite materials to improve the gas sensing
performance [15–19].

An effective way to improve the gas sensing performance of the sensor is by intro-
ducing carbon material into the gas sensing material based on zinc oxide. Using activated
carbon fiber as a template, Chao et al. synthesized ZnO/C nanoporous fibers using a
hydrothermal method. The materials showed a great gas sensing performance for low
concentrations of ethanol and acetone at the optimum operating temperature [20]. The
heterojunction ZnO/hollow porous carbon microtubule (CMT) prepared by Sun et al. from
simple carbonized buttonwood fluff fibers showed a great gas sensing response to trace
ammonia molecules [21]. Hu et al. prepared composite materials by generating zinc oxide
particles on nitrogen-doped carbon sheets, and the heterogeneous structure improved the
gas sensing ability of the composite materials to ppb grade NO2 [22]. Cellulose, as a natural
polymer material abundant on the earth, has a large number of hydroxyl functional groups,
excellent biodegradability, and stable physical and chemical properties [23]. Compared
with other carbon sources, cellulose is more available in nature, which can reduce the
cost of producing carbon materials significantly. In recent years, there have been many
reports on the application of cellulose-based carbon (CBC) as a carbon material in the field
of supercapacitors and photocatalytic degradation by taking advantage of its excellent
properties, such as its porous structure, huge specific surface area, and ability to adsorb
gas molecules and macromolecular pollutants [24–28]. However, there is little research on
carbonizing cellulose into biomass carbon materials into ZnO-based gas sensors.

In this work, zinc oxide was prepared using a simple chemical precipitation method,
and then it was carbonized with microcrystalline cellulose at a high temperature, and
ZnO/CBC was prepared for ammonia detection. Compared with the original ZnO-based
ammonia sensor, due to the construction of the heterogeneous structure between ZnO
and CBC, the composite has a great gas sensing response to a certain concentration of
ammonia at room temperature and has a better ammonia selectivity. The use of cellulose as
the precursor of biomass carbon materials combined with metal oxides to form composite
materials provides a new reference in the field of gas detection.

2. Materials and Methods
2.1. Materials

Zinc acetate dihydrate (Zn(CH3COO)2·2H2O, 98%) was obtained from Anneji (Shang-
hai) Pharmaceutical Chemical Co., Ltd. (Shanghai, China). Ammonia liquor (NH3·H2O,
26–28%) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
Microcrystalline cellulose (50 µm) was obtained from Aladdin Reagent (Shanghai) Co., Ltd.
(Shanghai, China). Deionized water was prepared in the laboratory.

2.2. Synthesis of ZnO/CBC

ZnO was prepared using a simple chemical deposition method. Typically, 0.25 g zinc
acetate dihydrate and 0.5 g microcrystalline cellulose were added into 30 mL DI water
with magnetic stirring for 15 min. Then, a certain amount of ammonia (to make the molar
ratio of Zn2+ to OH− 1:15) was added to the above solution, with magnetic stirring in an
oil bath at 90 ◦C for 1 h. After the reaction, the obtained white solution was washed and
centrifuged several times until the pH was neutral and then dried in a vacuum drying
oven at 60 ◦C to obtain a white powder. The white powder was placed in a tube furnace at
600 ◦C and calcined by N2 for 2 h. The resulting product was marked as ZnO/CBC-60%.
According to the above experimental method, ZnO/CBC-33%, ZnO/CBC-50%, ZnO/CBC-
66%, ZnO/CBC-71%, and CBC were synthesized by changing the mass ratio of zinc acetate
dihydrate and microcrystalline cellulose.
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2.3. Characterization

The morphology and size of the samples were characterized with field-emission scan-
ning electron microscopy (SEM, ZEISS Sigma 300, Germany) and transmission electron
microscopy (TEM, FEI Tecnai F30, USA). The crystal structure of the sample was character-
ized with X-ray diffraction (XRD, Bruker D2 PHASER, Germany) of copper target radiation
at ambient temperatures with 2θ values of 10 to 80 degrees and scanning rates of 5◦/min.
The chemical composition and elements of the samples were characterized with X-ray
photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, USA). Raman spectra were
recorded using a Raman spectrometer (Raman, Horiba LabRAM HR Evolution, Japan) with
a laser wavelength of 532 nm. In situ DRIFT spectroscopy was performed using a VERTEX
80v (Bruker, Germany) infrared spectrometer. ZnO/CBC-60% was exposed to ammonia
and pure nitrogen at room temperature. The Mott–Schottky curves of the samples were
measured with an electrochemical workstation (Chinstruments, CHI660E model, China);
0.5 M sodium sulfate solution was configured, Ag/AgCl was the reference electrode, and
the platinum plate was the counter electrode.

2.4. Fabrication of Gas Sensing Device

In order to measure the electrical and sensing performance, a certain amount of sample
was placed on an agate mortar, and a small amount of deionized water was added to grind
the sample to a sticky state. The grinding liquid was evenly coated on the interdigital
electrode of the ceramic substrate and dried in a drying oven at 100 ◦C. Gas sensing
measurements are carried out using the self-made device shown in Figure 1. The static
liquid–gas distribution method was used to generate ammonia gas environments with
different concentrations. The calculation formula is as follows [29,30]:

C =
22.4 × ∅ × ρ × p × V1

M × V2
× 1000 (1)

where C (ppm) stands for the target gas concentration, Ø stands for the required gas volume
fraction, ρ (g mL−1) stands for the density of the liquid, p stands for the purity of the liquid,
V1 (µL) stands for the volume of liquid, V2 (L) stands for the volume of the chamber, and
M (g mol−1) stands for the molecular weight of the liquid.
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Figure 1. Schematic diagram of gas detection. (1) Syringe, (2) reaction chamber, (3) interdigital
electrode, (4) Victor 8145C TRMS digit multimeter, (5) display screen, and (6) mainframe computer.

The change in resistance of the sensor was measured with a multimeter. The response
of the sensor was defined as follows:

S =
Rg − Ra

Ra
× 100% (2)

where Ra is the resistance of the sensor in the air, and Rg is the resistance of the sensor after
it passes into the target gas.
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3. Results
3.1. Characterization of ZnO/CBC

The XRD patterns of ZnO/CBC and CBC with different ZnO precursor contents are
shown in Figure 2. ZnO/CBC showed sharp diffraction peaks at 2θ = 31.8◦, 34.4◦, 36.3◦,
47.5◦, 56.6◦, 62.9◦, 66.4◦, 67.9◦, 69.1◦, 72.6◦, and 77.0◦, which were by the (100), (002), (101),
(102), (110), (103), (200), (112), (201), (004), and (202) crystal planes, respectively. The
strongest peak occurred on the (101) crystal plane. All diffraction peaks correspond to the
standard hexagonal wurtzite structure (JCPDS-99-0111) [31,32]. No diffraction peaks from
other phases or impurities were observed. These results indicated that pure ZnO structures
were formed through precipitation. Since the amorphous carbon was prepared and its
crystallinity is low, wide peaks with low signal strength appeared near 22◦ and 42◦ [33–35].
The diffraction peak strength was weaker than ZnO, but this could not be shown in the
XRD pattern of ZnO/CBC.
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Figure 3 shows the SEM images of ZnO/CBC and pure carbon with different ZnO
precursor contents. It can be seen from Figure 3b–e that ZnO has been successfully loaded
on CBC. ZnO exhibited a flower-like structure when the precursor content was small. With
the ZnO precursor content increasing, ZnO gradually changed into a rod-like structure;
meanwhile, the aspect ratio also became larger. This was due to the increase in ammonia
solution, which promoted oxidation. Zinc preferentially grew on the C axis [36]. Figure 3a
shows that the surface of CBC was relatively smooth after high-temperature carbonization.
However, after loading ZnO, the surface of CBC becomes rough. EDS was used to conduct
an elemental analysis of ZnO/CBC-60%. It can be seen from Figure S1 that C, O, and Zn
have been evenly distributed on ZnO/CBC-60%, and the atomic ratios of C, O, and Zn were
77.50%, 11.84%, and 10.66%, respectively. Since aluminum foil was used as the substrate,
the Al signal appeared.
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Figure 3. SEM image of (a) CBC, (b) ZnO/CBC-33%, (c) ZnO/CBC-50%, (d) ZnO/CBC-60%,
(e) ZnO/CBC-66%, and (f) ZnO/CBC-71%.

In order to further understand the structure of ZnO/CBC-60%, TEM characterization
was performed. As shown in Figure 4a,b, it was found that there were different lattice
fringes at the boundary of CBC and ZnO. The lattice fringes near 0.136 and 0.282 nm corre-
spond to the (201) and (100) crystal faces of ZnO, respectively [16,37]. The lattice fringes
near 0.202 and 0.350 nm correspond to the (101) and (002) crystal faces of graphite, respec-
tively [38]. The lattice fringes of ZnO and CBC were interwoven, which also confirmed the
construction of heterojunctions between ZnO and CBC.
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As shown in the Raman spectrum in Figure 5a, it can be observed that peak D and peak
G of typical carbon materials were located at 1340 cm−1 and 1584 cm−1, respectively, where
peak D represents the sp3 hybrid carbon of disordered or defective carbon, while peak G
corresponds to the sp2 hybrid carbon of the graphite structure [39]. The relative strength
ratio (ID/IG) of peak D and peak G indicates the degree of graphitization of the material.
The ID/IG values of pure carbon and ZnO/CBC-60% were 0.90 and 0.79, respectively,
which were much higher than the ID/IG values of typical graphite, indicating that the
prepared carbon materials were not highly crystalline and disordered materials exist. This
was consistent with the observation with XRD. Moreover, the addition of ZnO improved
the degree of disorder and defects in the structure of carbon materials [40]. The peaks
at 80 cm−1 and 427 cm−1 in ZnO/CBC-60% correspond to Elow

2 and Ehigh
2 , respectively.
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Elow
2 was affected by the Zn2+ gap defect, and Ehigh

2 was affected by O2− vacancy [41]. The
simultaneous appearance of characteristic peaks of ZnO and carbon materials confirmed the
successful preparation of ZnO/CBC. At the same time, it can be observed from Figure 6b
that the D peaks and G peaks of ZnO/CBC-60% had a certain wave number displacement
relative to pure carbon materials. It can be concluded that the heterojunction constructed
by ZnO and cellulose-based carbon induces charge transfer between them [22].
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In order to verify the elemental composition and surface chemical information of
ZnO/CBC-60%, the materials were characterized with XPS. Figure 6a shows that ZnO/CBC-
60% was mainly composed of Zn, C, and O elements. Figure 6b was the high-resolution
spectrum of Zn2p. In the figure, the peaks of Zn2p1/2 and Zn2p3/2 were 1044.0 eV and
1021.1 eV, respectively, and the binding energy distance before the two peaks was 22.9 eV,
which proved the existence of divalent zinc ions [42]. Figure 6c shows the high-resolution
spectrum of O 1 s. O 1 s can be deconvolved into three peaks centered on 529.5 eV, 531.2 eV,
and 532.2 eV. The peak at 529.5 eV is attributed to the O2− ion in the Zn–O bond in the
ZnO wurtzite structure, and the peak at 531.2 eV is attributed to the Zn–O–C bond and
the adsorbed hydroxyl group or water. The peak at 532.2 eV is attributed to the carbonate
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(C–O/C=O) species [43]. As shown in Figure 6d, three peaks appeared at 283.6 eV, 285.7 eV,
and 288.3 eV which belonged to the Zn-C bond, Zn–O–C bond, and C=O bond, respectively,
indicating that the performance of ZnO/CBC-60% was different from that of pure ZnO [44].

Mott–Schottky curves were used to determine the semiconductor type of the material
to better explain the sensing mechanism of the material. Figure S2 shows the Mott–Schottky
curves of CBC and ZnO/CBC-60% at different frequencies measured at room temperature.
It can be seen from the figure that the slopes of all curves are negative, indicating that
CBC was a p-type semiconductor, and the prepared ZnO/CBC-60% also exhibited p-type
semiconductor properties.

3.2. Results of Sensing Tests

Firstly, the gas sensing response of ZnO/CBC with different contents of CBC and ZnO
precursors to 200 ppm ammonia at room temperature and 60% relative humidity were
tested. When the sensor was in an air environment, the resistance of the sensor was at a
stable value (Ra). When exposed to ammonia, the resistance of the sensor increased and
reached a maximum value (Rg). When the sensor was exposed to air again, the resistance of
the sensor gradually returned to the initial value (Ra). The resistance of CBC and ZnO/CBC
increased gradually in the ammonia environment and decreased gradually in air, which
shows p-type semiconductor behavior. After testing the sensor, Figure 7a shows that
when the ZnO precursor content was 60%, the sensor’s gas sensing response to 200 ppm
ammonia was the highest, reaching 27%. Therefore, zinc acetate/cellulose (wt%) = 150 wt%
was selected as the optimal ratio for preparing the required sensing material. The raw
CBC also showed a certain gas sensing response to an ammonia concentration of 200 ppm.
After the high-temperature carbonization of microcrystalline cellulose, the CBC is a p-type
semiconductor, which also has a good effect on ammonia sensing. This result is consistent
with previously reported [39] biomass-based carbon sensing of ammonia. ZnO and CBC
formed a p-n heterojunction after compounding, in which CBC plays a dominant role.
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In addition, the ZnO/CBC-60% sensor was placed in the environment of methanol,
isopropyl alcohol, ethanol, and formaldehyde at 200 ppm at room temperature to test the
gas sensing performance of the sensor to these gases, to verify the selectivity of the sensor
to ammonia. It can be seen from Figure 7b that the gas sensing response of the sensor to
ammonia is dozens of times that of other gases, indicating that the prepared ZnO/CBC-60%
sensor has good selectivity to ammonia. This may be attributed to the fact that the p-n
heterostructure constructed between ZnO and CBC provided more active sites for the
selective adsorption of ammonia molecules. Good selectivity improves the ZnO/CB-60%
sensor’s anti-interference ability, allowing it to accurately and quickly detect ammonia
concentration in an environment where multiple gases exist.
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In order to further test the gas sensing performance of ZnO/CBC-60% for ammonia,
the sensor was put in the ammonia environment with five concentrations of 25 ppm,
50 ppm, 100 ppm, 150 ppm, and 200 ppm at room temperature for the gas sensing test.
The gas sensing response of the sensor to ammonia with a concentration of 25–200 ppm at
room temperature is shown in Figure 8a. As the ammonia concentration increased, the gas
sensing response of the sensor increased, which was in line with the expected goals of this
experiment. Stability is one of the key parameters of gas sensing. We tested the stability of
the ZnO/CBC-60% sensor by placing the sensor in a 200 ppm ammonia environment for
five rounds of gas sensing tests. As shown in Figure 8b, after five sensing cycles, the gas
sensing performance of the ZnO/CBC-60% sensor had not weakened, indicating that the
sensor had good repeatability.
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The relative humidity is an important factor affecting the performance of the gas
sensor [45]. As shown in Figure 9a, with the increase in relative humidity, the gas sensitivity
of the ZnO/CBC-60% sensor to ammonia was correspondingly weakened, which may be
due to the fact that H2O molecules in the test environment preempted the active sites so
that NH3 molecules could not fully react with the materials, resulting in the decrease in the
gas sensing response [23].
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Stability is one of the important indicators of a gas sensor, which reflects whether
the gas sensing capability of the gas sensor can maintain stability over a period of time to
extend the service life of the equipment. The ZnO/CBC-60% sensor was put in an ammonia
concentration environment of 200 ppm for one week. As can be seen from Figure 9b, the
gas sensing response of the sensor to ammonia had not changed greatly, which indicated
that the sensor had good stability.
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The sensing performance of the as-developed ZnO/CBC and most of the previously
reported ZnO-, WS2-, or TiO2-based ammonia gas sensors are summarized in Table 1.
Compared with previous ammonia sensors, the ammonia sensor constructed with ZnO and
CBC can detect ammonia at room temperature. At the same time, the gas sensing response
has been enhanced to a certain extent, which can mainly be ascribed to the unique chemical
properties of the two substances and the formation of a p-n heterojunction. However, the
response and recovery ability should be further enhanced.

Table 1. Comparison of the sensing performance of various gas sensors toward NH3.

Material Conc. Res. a Res./Rec. Time (s) Temp. (◦C) Ref.

TiO2/Ti3C2Tx 10 ppm 3.1% 33/277 RT [5]

WS2 250 ppm 2.5% 200/412 RT [46]

ZnO 3 ppm 44% 15/14 250 [47]

ZnO/rGO 10 ppm 1.2% 78/84 RT [48]

Mn-ZnO 20 ppm 7% 4/10 150 [15]

Y-doped ZnO 150 ppm 66% 58/87 250 [16]

ZnO/CBC 25 ppm 9.2% 154/254 RT This work
a Response defined as (Rgas − Rair)/Rair × 100%.

4. Discussion

In order to prove that the gas sensing response of ZnO/CBC-60% was the result of the
reaction with NH3 molecules, the material was analyzed with in situ DRIFT spectroscopy.
As shown in Figure 10a, after introducing the mixed gas of NH3 and N2, it can be observed
that adsorption peaks of coordinated NH3 species corresponding to Lewis sites appeared
near 929, 964, 1619, and 3334 cm−1 [49–51], and these peaks gradually became stronger
with the increase in adsorption time. Figure 10b shows that the peak value was obviously
weakened after N2 purging. These phenomena show that the adsorption and desorption
of ammonia occurred on the surface of ZnO/CBC-60%, which explained the gas sensing
response of ZnO/CBC-60% to ammonia.
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In the existing literature, the surface charge control model is often used to explain
the sensing mechanism of resistive gas sensors. When the ZnO/CBC-60% sensor was
exposed to air, oxygen molecules in the air stuck to the surface of the material and trapped
electrons to generate O−

2 , which was revealed by Formulas (3) and (4). During this process,
a depletion layer was formed on the surface of the ZnO/CBC-60%. At the same time, it
can be seen from the Mott–Schottky curve that CBC is a p-type semiconductor, while ZnO
is a typical n-type semiconductor. As illuminated in Figure 11, the combination of the
two creates a p-n heterojunction. Due to the difference in the concentration of electrons
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and holes in the two materials, the free electrons from the ZnO conduction band will
diffuse to CBC, and the holes in CBC will diffuse to ZnO until the Fermi level reaches a
new equilibrium [52,53]. This process makes the energy band bend, forming a narrow
depletion layer, an electron accumulation layer on the CBC side, and a hole accumulation
layer on the ZnO side. As shown in Formulas (5) and (6), when the ZnO/CBC sensor
was exposed to ammonia, ammonia molecules reacted with adsorbed oxygen, releasing
electrons that neutralize holes and further expand the depletion layer on the CBC side,
leading to a significant increase [54] in the resistance of the sensor, which was consistent
with the phenomenon in the gas sensing test.

O2(in air) → O2(ads) (3)

O2(ads) + e− → O−
2 (ads) (4)

NH3(in air) → NH3(ads) (5)

4NH3(ads) + 3O−
2 → 2N2 + 6H2O + 3e− (6)
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5. Conclusions

In this experiment, ZnO was loaded on CBC, and the gas sensing response of ZnO/CBC
loaded with different ZnO contents to ammonia at room temperature was studied with
various contents of ZnO precursors. The composites were characterized with SEM, TEM,
XRD, Raman, and XPS. The results showed that ZnO had been successfully loaded on
CBC. Subsequently, the gas sensing performance showed that the ZnO/CBC with 60%
ZnO precursor content had a better gas sensing response to 200 ppm ammonia at room
temperature, reaching 27%. In addition, through five consecutive rounds of gas sensing
response tests in a 200 ppm ammonia environment, it was found that ZnO/CBC-60%
exhibited good stability. At the same time, by comparing the gas sensing performance of
several VOC gases, it was found that the material had good selectivity for ammonia. In
situ DRIFT spectroscopy proved that the sensing material did react with ammonia, and
the ZnO/CBC-60% could provide more active sites for ammonia molecules because of
the construction of a heterojunction between ZnO and CBC. Therefore, compared with
previous ammonia sensors, ZnO/CBC ammonia sensors have improved the gas sensing
performance to a certain extent and overcome the problem that pure ZnO ammonia sen-
sors cannot sense ammonia at room temperature, reducing energy consumption. This
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study provides a new idea for the design and synthesis of biomass carbon–metal oxide
composites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13243151/s1, Figure S1: (a–e) SEM images of the ZnO/CBC-
60% and corresponding mapping images of C, O, and Zn and (f) the EDS analysis of the prepared
ZnO/CBC-60%; Figure S2: Mott–Schottky curves of (a) CBC and (b) ZnO/CBC-60%.
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