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Abstract: The progressive influx of engineered nanoparticles (ENPs) into the soil matrix catalyses a
fundamental transformation in the equilibrium dynamics between the soil and the edaphic solution.
This all-encompassing investigation is geared towards unravelling the implications of an array of ENP
types, diverse dosages and varying incubation durations on the kinetics governing Cd2+ sorption
within Ultisol soils. These soils have been subjected to detailed characterizations probing their textural
and physicochemical attributes in conjunction with an exhaustive exploration of ENP composition,
structure and morphology. To decipher the intricate nuances of kinetics, discrete segments of Ultisol
soils were subjected to isolated systems involving ENP dosages of 20 and 500 mg ENPs·kg−1 (AgNPs,
CuNPs and FeNPs) across intervals of 1, 3 and 6 months. The comprehensive kinetic parameters were
unveiled by applying the pseudo-first-order and pseudo-second-order models. At the same time,
the underlying sorption mechanisms were studied via the intra-particle diffusion model. This study
underscores the substantial impact of this substrate on the kinetic behaviours of contaminants such
as Cd, emphasizing the need for its consideration in soil-linked economic activities and regulatory
frameworks to optimize resource management.

Keywords: metallic nanoparticles; dose-dependent effects; incubation time; volcanic soils; cadmium

1. Introduction

Soil has become the final destination for multiple pollutants from human activity,
which have varied according to the new needs of society [1–3]. Depending on their nature,
they can affect the balance of different biogeochemical cycles (C, N, P and trace elements,
among others), altering the activities that take place in the soil [4,5].

The input of different substrates and contaminants for agricultural use in soils is
especially relevant, since these soils are vital for obtaining food for human and animal
consumption [6,7]. An example of this is the sustained increase in the use of nanotechnology
in the agricultural sector, which has meant significant advances, mainly in crop pest control,
fertilization and remediation [8–10]. For these reasons, in addition to the action of other
economic sectors that are not directly linked to agriculture (mainly water treatment, health,
and industry), the presence and quantity of engineered nanoparticles (ENPs) in the soil is
becoming more abundant every year, causing changes, even as yet unknown ones, in the
different dynamics occurring in this matrix [11–13].

Examples of this “nanotechnological irruption” in this productive sector and other related
sectors can be exemplified by the use of three metallic nanoparticles, which are copper, silver
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and iron nanoparticles (hereafter CuNPs, AgNPs and FeNPs), where the physicochemical,
structural and surface characteristics, such as their size, high surface/volume ratio and
the presence of highly reactive surface active groups, cause them to interact with the soil
components, be it the inorganic fraction, organic matter, or the soil solution, altering the
existing equilibrium in the soil [14–16].

In the case of CuNPs, their use in agriculture as fungicidal and bactericidal agents is
constantly increasing [17,18] due to their use in the prevention and elimination of pests
such as Botrytis cinerea and Staphylococcus aureus [19–21]. However, its application is highly
inefficient (90% reaches the soil) [22] and, depending on the physicochemical properties of
the soil, CuNPs can dissolve or aggregate, causing changes in the dynamics of this metal in
soils [23]. Another example to consider is that of AgNPs, whose main entry into the soil is
due to external factors.

The origin of AgNPs in soil is due to their presence in various household products [13,24],
which after their useful life inevitably reach soils through irrigation water [25], as well as
through the application of sludge from sewage treatment plants, where the retention processes
of this type of nanometric substrates are inefficient or non-existent [26]. Due to their more
significant toxic effect than CuNPs on different microorganisms, the presence of AgNPs in
soils can cause imbalances in the biota of this matrix. These consequences can involve severe
environmental risks to agricultural soils [27,28]. Finally, nanoscale zero-valent iron (nZVI) is
the most representative example of an FeNP [29,30]. These ENPs have been widely used in
the remediation of soils and waters contaminated with organic and inorganic agents [31–33].
Their reactivity is strongly conditioned by environmental factors, such as reaction time, O2
levels, composition and concentration of ions in the matrix and microbial activity, which
favour the passivation or dissolution of nZVI [33]. These phenomena occurring in free nZVI
and those interacting with different organic and inorganic soil fractions can cause variability
in the disposition of immobilized ions in this new matrix [34].

Depending on the physicochemical properties, such as chemical composition, redox
potential, size, morphology, surface area and surface charge, ENPs interact with soil compo-
nents such as organic matter, clays, Fe oxides and ions that compose the soil solution. In this
sense, they participate in, favouring or inhibiting, aggregation, dissolution, sedimentation
and element transport processes [35–38], which can have direct or indirect consequences on
soil fertility parameters [22]. Research carried out by Gao et al. determined that parameters
such as pH and organic matter (OM) modify the dissolution rate of CuNPs incorporated in
Lufa soils but not the soil moisture [23], with the possible consequence that different metals
of agricultural importance are displaced by the greater availability of Cu2+ [39]. AgNPs
have a higher mobility than Ag+, which varies depending on the type of OM and mineral
fraction of the soil. It has been observed that in clay soils AgNPs are mobilized at depth, but
this behaviour changes if the percentage of organic matter is higher, and an upper retention
and subsequent dissolution of these materials was observed [13,40]. On the other hand, the
high reactivity of nZVI is characterized by their marked redox properties [41–43], where,
together with functional groups present in OM such as quinones [44,45], they can oxidize
or reduce elements present in the soil, altering their availability. In this context, research has
shown that these nanoparticles can interact differentially with the fractions that constitute
this matrix, causing changes in the existing equilibrium between these components and
other ions of agricultural and environmental importance [5,23,46].

Another factor to consider is the agronomic management of soils, which in almost all
cases involves the application of fertilizers and, depending on the type of crop and/or soil,
can be applied several times throughout the year [47]. For example, volcanic soils, such
as Ultisols, which, given their physicochemical characteristics, such as acidic pH, low OM
content and a stable inorganic fraction, have a high P retention that is often remedied with
the application of phosphate fertilizers, mainly triple super phosphate (TPS). Depending on
the origin of the TPS, it can present a variable content of heavy metals, where Cd stands out
for its high concentration [48], leading to an increase in the accumulation of heavy metals
in the soil [49–51]. In particular, Cd is responsible for a number of pathologies affecting
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humans, such as bone damage, cancer and the itai-itai disease [52]. In addition, it has been
determined that this metal, either uncomplexed or complexed, induces the formation of
reactive oxygen species (ROS) that produce damage at the root level in crops, affecting their
productivity. Consequently, due to the constant applications of phosphate fertilizers, the
presence of Cd in soils should be considered from an environmental point of view [53,54].

In this context, an eventual higher Cd content and the presence of ENPs in acid soils,
such as Ultisols, either by natural or anthropogenic action, is an environmental issue that
should be evaluated [32,55–57]. This research aims to determine the changes in Cd (the most
abundant heavy metal in phosphate fertilizers) sorption in two acidic soils of volcanic origin
(Ultisol) for agricultural use. Incubation periods of 1, 3 and 6 months with the presence of
different types of nanoparticles and two doses of nanoparticles, 20 mg ENPs·kg−1 (low dose)
and 500 mg ENPs·kg−1 (high dose), were evaluated, where the latter would correspond to a
high-risk environmental scenario. The information obtained could help to evaluate the impact
of the dose and residence time of ENPs in soils of volcanic origin, and these data could be
inputs to consider the development of regulations aimed at the better control of the use of
soils and the products that are applied.

2. Materials and Methods
2.1. Chemical and Nanoparticle Synthesis

The chemical reagents used in the studies were analytical grade AgNO3, Cu(NO3)2·3H2O,
FeCl3·6H2O, NaBH4, NaCl, HCl, NaOH and Cd in water 1000 mg·L−1 (Titrisol) supplied by
Merck (Darmstadt, Germany).

2.2. Nanoparticles Synthesis

For the synthesis of the different nanoparticles (CuNPs, AgNPs and FeNPs), proce-
dures described in the literature were used [58,59].

2.3. Characterization of ENPs

A characterization of the ENPs was performed, taking into account morphological and
surface aspects and using analysis techniques such as scanning electron microscopy (SEM)
and electrophoretic mobility (EM). Scanning electron microscopy (SEM) was undertaken
using FEI Nova Nano SEM 200 equipment, and particle sizes were observed using the com-
mercial software ImageJ (https://imagej.net/). To recognize the samples, we performed an
XRD analysis on a Shimadzu XRD-6000 diffractometer with graphite monochromator and
CuKα radiation.

The isoelectric point (IEP) was established by analysing the zeta potential (ZP) via
constant stirring of suspensions on a Zeta Meter 4.0 apparatus (Zeta-Meter Inc., Stauton,
VA, USA). An amount of 1.0 g of each sample was suspended in 200 mL of a solution with
an ionic strength of 1.0 mM (KNO3). The IEP was taken from the ZP (mV) vs. pH graph as
the pH at which ZP = 0.

2.4. Soil Material

Samples were collected from two soils of volcanic origin (Ulitisols) from south–central
Chile, located in Collipulli (36◦58′ S, 72◦09′W) and Metrenco (38◦34′ S, 72◦22′W). The samples
were extracted from uncultivated, unfertilized areas to a depth of 15 cm (A horizon). The
samples were air-dried, homogenized and sieved (<2 mm) and stored in plastic containers
in the dark at 4 ◦C before physicochemical characterization. The pH was measured and the
organic carbon (OC), IEP and cation exchange capacity (CEC) values were obtained for both
soils [60]. The total Cd2+ content present in the soils was determined by inductively coupled
plasma-optical emission spectrometry (ICP-OES, Perkin Elmer Optima 3000) after the samples
were dissolved using a microwave digestion process described in the literature [49]. Once
the soils were characterized, samples of 500 g of dry soil were incubated, homogenized and
maintained in a humid condition at field capacity. The samples were incubated in perforated
plastic bags at 20 ◦C under aerobic conditions in the presence of different types of nanoparticles
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(CuNPs, AgNPs and FeNPs), considering two doses of 20 and 500 mg ENPs·kg−1 throughout
periods of 1, 3 and 6 months. To achieve a homogeneous application of the ENPs to the
soils, 10 or 250 mg ENPs (according to the dose) were introduced in 100 mL beakers and
diluted in distilled water up to approximately 50 mL. They were subsequently sonicated for
20 min to obtain the total dispersion of the ENPs. Finally, the solutions were added to the soil,
homogenizing the sample until reaching its field capacity. Once the incubation period was
over, sorption tests began.

2.5. Sorption Experiments

The Cd2+ sorption was investigated through kinetic analysis using 0.01 M KNO3 to
control the ionic strength of the systems. Samples of 1.00 ± 0.05 g of dry soil, considering
the different incubation times (1, 3 and 6 months), were kept in 50 mL centrifuge tubes, and
20 mL of an equilibrating solution of Cd2+ de 200 mg·L−1 was placed into each tube. The
suspensions were then stirred constantly at room temperature (25± 2 ◦C) and kept within the
characteristic pH conditions of each soil, which were adjusted with 0.1 M KOH or HNO3 using
an Orion (model 250 A) pH meter. Once the soil solution suspensions were obtained from the
sorption kinetics, they were centrifuged at 2750× g for 20 min. The analytical samples were
extracted from the suspension at different adsorption times (0–180 min). The supernatants
were filtered (0.22 µm hydrophilic PVDF membrane filters) and the concentration of Cd2+ in
the solution was assessed via ICP-OES (Perkin Elmer Optima 3000). All experiments were
undertaken in triplicate.

3. Results and Discussion
3.1. Nanoparticle Characterization

In general, the morphology observed in the three types of ENPs was spherical (Figure 1),
with a high aggregation in the case of FeNPs; a phenomenon frequently reported in the
literature as a consequence of the oxidation processes and magnetic properties that characterize
these nanoparticles [16].
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Figure 1. SEM images (a) FeNPs, (b) CuNPs (c) AgNPs and (d) zeta potential (mV) versus the pH
curves of ENPs.

CuNPs and AgNPs showed a lower aggregation due to the absence of magnetic
strength [61] and their reduction potentials, which have a lower tendency to form oxides
compared with Fe. The average diameters for FeNPs, CuNPs and AgNPs were 46 ± 2,
33 ± 1 and 29± 1 nm, respectively (Figure 1). The IEP values showed significant differences
(Figure 1d). For example, FeNPs had a positive charge up to pH 7.7 ± 0.2, a value where it
was possible to determine its IEP, whereas for CuNPs the IEP value was 3.1 ± 0.3. AgNPs
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did not show an IEP value throughout the pH range measured (2.5 to 9.5), with a ZP value
that ranged from −18.3 to −45.3 mV [61].

3.2. Soil Characterization

The main characteristics of these soils are summarized in Table 1. Both soils can be
classified as clay soils, where the textural properties determined for Collipulli and Metrenco
were 45.6 and 35.3% clay (<0.002 mm), 40.7 and 56.% silt (0.002–0.063 mm), and 13.7 and
8.0% sand (0.063–2.000 mm), respectively [60].

Table 1. Main parameters of the Ultisol soils. Analyses were carried out in triplicate and the standard
error was less than 3%.

Parameter Collipilli Metrenco

Soil Order or Source Ultisol Ultisol

Soil Class
Fine, mixed, Fine,

thermic typic rhodoxeralf mesic paleumult

Sampling Location

Latitude 38◦58′ S 38◦34′ S
Longitude 72◦09′ W 72◦22′ W

Rainfall (m·year−1) 120–400 100–300
Mean annual temperature (◦C) 15.8 14.6
Electrical conductivity (dSm−1) 0.040 ± 0.001 0.050 ± 0.001

Organic carbon (wt%) 2.1 ± 0.2 2.8 ± 0.1
Available P (mg·kg−1) 4.0 ± 0.1 10 ± 0.2

Total P (mg·kg−1) 821 ± 8 807 ±15
Available Cd (mg·kg−1) <0.01 <0.01

Total Cd (mg·kg−1) 0.030 ± 0.01 0.027 ± 0.01
pH (H2O) 6.2 ± 0.1 5.8 ± 0.1

Exchangeable cations (cmol(+)·kg−1) 6.0 ± 0.1 8.0 ± 0.1
Calcium 7.0 ± 0.1 10.8 ± 0.1

Magnesium 3.6 ± 0.1 3.2 ± 0.1
Potassium 0.55 ± 0.0 1.1 ± 0.0

Sodium 0.1 ± 0.0 0.2 ± 0.0
IEP 1.7 ± 0.2 0.18 ± 0.1

Mineralogical composition > 50% Kaolinite Halloysite

The mineralogical composition of these soils stands out for containing α-cristobalite,
goethite, quartz and vermiculite. Kaolinite is the predominant mineral in Collipulli and it
is halloysite in Metrenco [60]. The most abundant Fe oxides in these soils are magnetite
and goethite, and these soils also have a paramagnetic Fe3+ fraction [62]. According to
Table 1, both soils have a low concentration of Cd, which classifies them as low-risk soils
for the general population and crops, as per current legislation [48,49]. These soils were
collected from areas that were neither cultivated nor fertilized, which could explain the
low Cd content. The study simulated a scenario of high Cd contamination, which would
occur due to extended use of phosphate fertilizers in agricultural management.

3.3. Batch Experiment Results
3.3.1. Sorption Kinetics

The dose of 20 mg ENPs·kg−1 applied to the soil is based on the permitted amount
of Ag+ in sludge generated in wastewater treatment plants [24]. In comparison, the dose
of 500 mg ENPs·kg−1 simulates the worst-case environmental scenario in the range of
Ag concentrations from different studies [11,24]. The sorption kinetics of Cd sorption
in the control soils and in the soils treated with the different nanoparticles at a dose of
500 mg ENPs·kg−1 is shown in Figure 2.
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Figure 2. Effect of nanoparticle type and aging time on Cd sorption kinetics in Ultisol soils at a dose
of 500 mg ENPs·kg−1. (a,d) Collipulli and Metrenco at 1 month, (b,e) Collipulli and Metrenco at
3 months and (c,f) Collipulli and Metrenco at 6 months.

The soils treated with 20 mg ENPs·kg−1, displayed a similar behaviour to the control
soils, with a slight increase in sorption capacity (qe) for those soils treated with FeNPs of
close to 7%. This behaviour was maintained without significant variations in the different
incubation times (Figure S1). The sorption rate (k2) and sorption capacity (qe) increased
significantly in soils treated with 500 ENPs·kg−1 (Table 2) compared with the control
soils and those treated with 20 mg ENPs·kg−1 (Table S1). The following decreasing order
was observed Soil-FeNPs >> Soil-CuNPs > Soil-AgNPs > Soil for both parameters, which
were also sensitive to the incubation process (Figure 2). This suggest that the different
ENPs undergo mainly superficial transformations that cause an increase in the amount of
reactive sites capable of retaining more Cd2+ [63,64]. Similar behaviour has been observed
in systems such as those described in this study, where nZVIs significantly increase their
As(III) removal capacity with contact time [65]. In the case of AgNPs and CuNPs, contact
time has also been found to alter the reactivity of these substrates but to a lesser extent
than FeNPs, as reported in different soils [40,66,67]. The Cd sorption percentages for the
studied soils, considering the dose of 500 mg ENPs·kg−1 were an average of 60 and 85%
for CuNPs and FeNPs, respectively. For soils that were treated with AgNPs, only a slight
increase of about 10% was observed in comparison with the values reported for the control
soils. This result can be attributed to the lower contribution of reactive sites delivered by
this nanoparticle as a consequence of its slower oxidation or sulfidation process [63,64].

The Cd2+ sorption equilibrium in both Ultisols was responsive to the applied treat-
ments, primarily due to variations in the reactivity of the studied nanoparticles. In control
soils, the sorption equilibrium was achieved within 200 min for Collipulli soil, whereas
it was achieved in less than 30 min for Metrenco. These differences can be attributed to
variations in organic matter content, as illustrated in Table 1. Both the introduction of
ENPs and the duration of soil incubation led to a reduction in these equilibrium times.
This effect was especially pronounced in the Collipulli treatments, where soils treated with
FeNPs exhibited the most significant sensitivity to these factors. One plausible explanation
for these behaviours is that ENPs, especially FeNPs, may accumulate in areas of higher
accessibility, facilitating the faster sorption of Cd2+, as shown in Figure 2.
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Table 2. Kinetic parameters predicted from the pseudo-second-order model for control soils and soils
treated with 500 mg ENPs-kg−1.

Collipulli

1 Month 3 Month 6 Month
Treatment Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs

qexp

(mg·g−1)
1.7 ± 0.1 2.2 ± 0.1 2.6 ± 0.1 3.5 ± 0.3 2.0 ± 0.1 2.3 ± 0.1 2.7 ± 0.3 3.9 ± 0.3 2.1 ± 0.3 2.6 ± 0.4 3.1 ± 0.3 3.9 ± 0.1

qexp
(%)

44.2 ±
2.4

54.9 ±
3.2

65.1 ±
4.1

87.4 ±
1.3

49.8 ±
3.5

56.4 ±
4.6

68.4 ±
4.3

97.0 ±
2.6

52.2 ±
2.5

63.7 ±
3.5

77.3 ±
4.6

95.0 ± 3.7

Parameters 1 Month 3 Month 6 Month

qe
(mg·g−1)

1.8 ± 0.1 2.3 ± 0.1 2.7 ± 0.1 3.3 ± 0.1 2.0 ± 0.0 2.4 ± 0.1 2.9 ± 0.1 4.2 ± 0.1 2.1 ± 0.1 2.8 ± 0.1 3.3 ± 0.1 4.0 ± 0.1

k2
(×10−4

g·mg−1 ·min−1)
0.2 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.1± 0.0 0.1 ± 0.0 0.0 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.0 ± 0.0

h
(mg·g−1 ·min−1)

0.7 ± 0.0 0.4 ± 0.0 0.6 ± 0.0 0.4 ± 0.0 1.0 ± 0.1 0.4 ± 0.0 0.7 ± 0.0 0.5 ± 0.0 1.0 ± 0.0 0.5 ± 0.0 0.7 ± 0.0 0.5 ± 0.0

r2 0.999 0.975 0.917 0.994 0.999 0.977 0.925 0.996 0.983 0.942 0.948 0.991
χ2 0.019 0.115 0.072 0.013 0.015 0.098 0.087 0.012 0.01 0.071 0.479 0.115

Metrenco

Treatment Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs

qexp

(mg·g−1)
2.1 ± 0.2 2.3 ± 0.4 2.6 ± 0.4 3.6 ± 0.3 2.3 ± 0.4 2.5 ± 0.3 2.7 ± 0.2 4.1 ± 0.1 2.5 ± 0.3 3.0 ± 0.4 3.5 ± 0.3 4.1 ± 0.5

qexp
(%)

57.3 ±
2.4

56.8 ±
1.9

65.3 ±
4.3

89.8 ±
7.5

58.4 ±
5.1

61.9 ±
3.9

67.9 ±
4.4

96.5 ±
4.9

62.5 ±
4.2

74.7 ±
4.9

88.3 ±
7.7

97.8 ± 2.1

Parameters 1 Month 3 Month 6 Month

qe
(mg·g−1)

2.2 ± 0.1 2.5 ± 0.1 2.8 ± 0.1 3.7 ± 0.1 2.4 ± 0.1 2.5 ± 0.1 2.8 ± 0.3 4.2 ± 0.1 2.6 ± 0.1 3.1 ± 0.1 3.5 ± 0.2 4.3 ± 0.1

k2
(×10−4

g·mg−1 ·min−1)
0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

0.02 ±
0.00

0.02 ±
0.00

0.01 ±
0.00

0.1 ± 0.0
0.02 ±

0.00
0.02 ±

0.00
0.01 ±

0.00
0.1 ± 0.0

h
(mg·g−1 ·min−1)

0.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 1.2 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 1.4 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 1.5 ± 0.0

r2 0.983 0.971 0.948 0.972 0.97 0.982 0.968 0.975 0.971 0.988 0.941 0.949
χ2 0.095 0.048 0.045 0.012 0.021 0.052 0.035 0.017 0.023 0.083 0.054 0.029

3.3.2. Kinetic Modelling: Pseudo-First-Order (PFO) and Pseudo-Second-Order
(PSO) Models

To describe the sorption kinetics of the experimental data, the PFO and PSO models
were applied (Figures 3 and 4). Based on the values of the correlation coefficient (r2) and
reduced chi-square statistic (χ2), the PSO model showed a better fit to the experimental
data (Table 2), suggesting that, on the surface of the soil and the soil treated with the ENPs,
Cd is preferentially adsorbed by a chemisorption [68,69]. The better fit of the PSO model
could be explained by the boundary conditions that describe this model and were discussed
in detail by Azizian 2004 [70]. From the theoretical point of view, in the mathematical
derivation of both models the term θ appears, which represents the difference between
the initial concentration and the equilibrium concentration (C0–Ce), and θ is the value
of the equilibrium coverage fraction. Both terms depend strongly on the experimental
conditions [69].

It has been determined that when the initial solute concentration is high, the term
θ can be ignored from the general kinetics expression, resulting in the expression of the
PFO model [70,71]. However, with the incorporation of ENPs into soils, an increase in Cd
retention was observed that was attributed to the presence of new sorption sites from the
nanoparticles in addition to those already existing in the soil.

This phenomenon indicates that the concentration of Cd2+ to be lower than the number
of sites available in these treatments (soil-ENPs) with respect to the control soils. So, the
term βθ cannot be ignored, a condition described in the PSO model [70]. This phenomenon
is readily evident in soils treated with FeNPs, as illustrated in Figure 4. FeNPs demonstrate
heightened reactivity and increased vulnerability to environmental conditions. This be-
haviour has been well documented in soils contaminated with As, Cd, Pb and Zn, where
the presence of Fe nanoparticles enhances the stability of these pollutants [16,32,72]. The
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pseudo-second-order model also allows for the calculation of the initial adsorption rate,
as qt/t approaches 0 is defined as h = k·qe

2. The values of this parameter for Metrenco
soil treated with FeNPs were 10 times higher than the control soils (Table 2, Figure 4).
This could be dependent on the higher percentage OM that these soils possess, making
the nanoparticles more prone to surface transformations, such as the formation of oxides,
oxyhydroxides or sulphides, which increased with longer incubation times [59,73].
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Figure 3. PFO kinetics for the sorption of Cd in Ultisol soils with a dose of 500 mg ENPs·kg−1.
(a,d) Collipulli and Metrenco at1 month, (b,e) Collipulli and Metrenco at 3 months and (c,f) Collipulli
and Metrenco at 6 months.
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Figure 4. PSO kinetics for the sorption of Cd in Ultisol soils with a dose of 500 mg ENPs·kg−1.
(a,d) Collipulli and Metrenco at 1 month, (b,e) Collipulli and Metrenco at 3 months and (c,f) Collipulli
and Metrenco at 6 months.

3.3.3. Solute Transport Mechanism: Intraparticle Diffusion Kinetic Model

The intraparticle diffusion model was applied to the experimental data in order to
interpret the different Cd2+ sorption processes from a mechanistic point of view in the
studied soils and to analyse how the presence of different ENPs and incubation times altered
Cd2+ removal in both Ultisols [68,74] (Table 3 and Table S2). The initial segment signifies
surface diffusion (Step I), followed by the intraparticle diffusion mechanism denoted by
the second linear phase (Step II). The third stage (Step III) elucidates the migration from
macropores to micropores within the systems under examination [69]. Cd2+ sorption in all
treatments occurs by the three processes described by the Weber–Morris model (Figure 5),
where the first sorption process of this model represents surface or film diffusion [75,76].
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Table 3. Kinetic parameters forecasted from the linear evaluation of the intraparticle diffusion kinetic
model for the soils studied.

Treatment Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs Control AgNPs CuNPs FeNPs

Parameters 1 Month 3 Month 6 Month

qe -2 (mg·g−1) 1.6 ± 0.3 2.0 ± 0.2 2.4 ± 0.1 2.6 ± 0.4 1.8 ± 0.2 2.0 ± 0.3 2.6 ± 0.1 3.1 ± 0.2 1.9 ± 0.2 2.4 ± 0.1 3.1 ± 0.1 3.6 ± 0.1
kint-2

(mg·g−1·min1/2) 0.2 ± 0.0 0.5 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.2 ± 0.0 0.5 ± 0.0 0.7 ± 0.0 0.7 ± 0.0 0.2 ± 0.0 0.6 ± 0.0 0.8 ± 0.0 0.9 ± 0.0

C2 (mg·g−1) 0.9 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 1.1 ± 0.0 0.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 1.2 ± 0.1 0.0 ± 0.0 0.0 ± 0.0 0.1 ± 0.0
r2 0.964 0.859 0.819 0.922 0.941 0.883 0.799 0.922 0.94 0.859 0.915 0.948

Metrenco

Parameters 1 Month 3 Month 6 Month

qe-2 (mg·g−1) 1.1 ± 0.1 1.1 ± 0.1 1.4 ± 0.0 3.4 ± 0.3 1.1 ± 0.0 1.2 ± 0.1 1.5 ± 0.0 3.7 ± 0.1 1.2 ± 0.1 1.4 ± 0.0 1.7 ± 0.0 4.0 ± 0.0
kint -2

(mg·g−1·min1/2) 0.2 ± 0.0 0.1 ± 0.0 0.2 ± 0.0 0.6 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 0.3 ± 0.0 0.6 ± 0.0 0.2 ± 0.0 0.1 ± 0.0 0.3 ± 0.0 0.8 ± 0.0

C2 (mg·g−1) 0.1 ± 0.0 0.4 ± 0.0 0.3 ± 0.0 0.9 ± 0.1 0.2 ± 0.0 0.7 ± 0.0 0.4 ± 0.0 1.0 ± 0.1 0.2 ± 0.0 0.8 ± 0.0 0.4 ± 0.0 1.2 ± 0.0
r2 0.905 0.89 0.994 0.922 0.81 0.953 0.994 0.922 0.811 0.993 0.975 0.996
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This sorption mechanism is the one that predominates in all the treatments studied
and is more significant in those soils treated with FeNPs and CuNPs, suggesting that these
nanoparticles could be retained in easily accessible areas and cause Cd2+ to be retained in
the soil and nanoparticle sites [76]. The second section of these graphs (Figure 5) describes
the intraparticle diffusion, which is the limiting step. In this stage, no major variations were
observed, indicating that the type of nanoparticles or the incubation time do not cause a
major impact on this process. The intraparticle diffusion model allows for the calculation
of the thickness of the limiting layer (C) associated with instantaneous adsorption [75,77].
It was observed that the aging time of ENPs alters the C2 values, where it was determined
that this parameter possesses the following decreasing sequence Soil-FeNPs >> Soil-CuNPs
≥ Soil-AgNPs ≥ Soil, where the larger intersections suggest that surface diffusion plays an
important role as a rate-limiting step for Cd in Soil-FeNPs [75,77].

3.4. Cadmium Sorption: Role of Metallic Nanoparticles

The results obtained in this study allowed us to determine the role of ENPs in the
sorption of Cd2+ in volcanic soils with acidic characteristics, where the reactivity of these
substrates generates changes in the chemical environments of the soil, causing the sorption
of this heavy metal to be greater in those ENPs that are more reactive in these types of
soils [55]. The surface factors, such as the nature of the ENPs’ active sites, chemical hardness
and surface charge, have a determining influence on their capacity to interact with Cd2+ and
the soil components [11,28,75]. For example, Fe nanoparticles, given their redox character,
can alter groups that are part of the soil organic matter, such as quinones, carboxyl acids
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and phenols, mainly causing this soil fraction to have a higher sorption capacity [37,38,44].
However, the sorption of Cd2+ and probably of other heavy metals decreases when the soil
interacts with less reactive ENPs that have less or no redox properties, such as Cu and Ag,
since these substrates only provide functional groups as a sorption mechanism and their
interactions with Cd2+ are weaker [5,11,17].

4. Conclusions

The type of engineered nanoparticles (ENPs) proved to be the most crucial factor
influencing the sorption of Cd2+ in soils of volcanic origin, surpassing the impact of ENP
dose and incubation time. The FeNPs resulted in faster and higher Cd retention in all
studied soils and treatments, which was attributed to the high reactivity of these substrates.
The soil conditions further facilitated surface transformations of the FeNPs. However,
kinetic equations describing solute transport indicated that Cd removal occurred in more
energetic sites in the Soil-AgNPs and Soil-CuNPs treatments.

The results provide a preliminary understanding of how these nanoparticles modify
the sorption kinetics of heavy metals, specifically Cd. The differences in behaviour could be
explained by the varying chemical environments in which the nanoparticles are submerged
in soils and influenced by factors such as the type and content of organic matter and the
characteristics of the inorganic fraction. These factors trigger distinct responses in the
reactivity of the ENPs associated with redox reactions.

These data and their analyses offer valuable insights for managing contaminated
soil or soil with potential loads of ENPs and heavy metals. This information enables the
projection of an appropriate strategy for agricultural use.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano13243115/s1, Figure S1: Effect of nanoparticle type and aging
time on Cd sorption kinetics in Ultisol soils at a dose of 20 mg ENPs·kg−1. Figure S1a,d: Collipulli
and Metrenco at 1 month, Figure S1b,e: Collipulli and Metrenco at 3 months and S1c,f: Collipulli and
Metrenco at 6 months; Table S1: Kinetic parameters predicted from the pseudo-second-order model
for control soils and soils treated with 20 mg ENPs·kg−1; Table S2: Kinetic parameters forecasted
from the linear evaluation of the intraparticle diffusion kinetic model for the soils studied.
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