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Abstract: Analyzing acetone in the exhaled breath as a biomarker has proved to be a non-invasive
method to detect diabetes in humans with good accuracy. In this work, a Bi-gallate MOF doped into
a chitosan (CS) matrix containing an ionic liquid (IL) was fabricated to detect acetone gas with a low
detection limit of 10 ppm at an operating temperature of 60 ◦C and 5 V operating bias. The sensor
recorded the highest response to acetone in comparison to other test gases, proving its high selectivity
along with long-term stability and repeatability. The sensor also exhibited ultra-fast response and
recovery times of 15 ± 0.25 s and 3 ± 0.1 s, respectively. Moreover, the sensor membrane also exhibited
flexibility and ease of fabrication, making it ideal to be employed as a real-time breath analyzer.

Keywords: acetone sensor; breath analyzer; Bi-gallate MOF; chitosan

1. Introduction

As the world advances in technology and industries, this has also caused pollution of
the environment to accelerate. The polluted environment harbors diseases that affect the
pace of human existence. Focusing on one form of pollution, in line with the advancement
in technology, there has been an exponential decline in the quality of the air we breathe.
Low quality of the air has adverse effects on our health and lifestyle. In response to this
scenario, the diagnosis of diseases triggered by this poor air quality at early stages greatly
increases the chances of early treatment and the betterment of the individual’s health.

Amazingly, the human breath incorporates a lot of gases that can divulge information
on the health state, but only if we have a way to decipher the data. Hence, sensors that
can detect and distinguish these gases in real-time offer an inexpensive, non-invasive
approach to gaining diagnostic information on the diseases people may have developed
from inhaling polluted air. The gases that are exhaled by humans mostly contain a mixture
of CO2, N2, H2O, O2, and trace levels of other volatile organic compounds (VOCs) such as
ethane or acetone, to name a few. These gases assist as biomarkers in the detection of many
diseases such as diabetes, lung cancer, etc. [1–5]. Acetone is a product of a biological process
between the human and the invading micro-organisms. It then infuses into the bloodstream
and is transported to the lungs. From here, it becomes a key component in the exhaled
breath [6], enabling us to detect its concentration, based on which we can non-invasively
distinguish numerous diseases. According to the World Health Organization (WHO), the
level of acetone in a healthy human is supposed to be 0.2–1.8 ppm, in contrast to a diabetic
patient, in whom it is between 1.25 and 2.5 ppm [7]. Determining the concentrations in
terms of parts per billion (ppb) has proved to be quite a challenge, but there have been a
few materials [8,9] that have been up for the task.

Researchers have not only been making groundbreaking advances in materials with
the potential for acetone detection, but they have also been using acetone as a cleaning
agent and solvent for their experimentations [10,11]. However, it has been demonstrated
that prolonged exposure to acetone vapors exceeding 173 ppm can cause long-term health
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issues such as central nervous system anesthesia, skin and eye irritation, narcosis, nausea,
headaches, and dizziness [12–16]. It is also flammable and explosive, with lower and upper
explosive limits of 2.6% and 12.8%, respectively [17].

Metal–organic frameworks (MOFs) have been demonstrated to be a key component
in developing devices that can detect hazardous gases evolving due to various processes.
MOFs consist of metal cations lined by organic ligand molecules [18,19]. With properties
like high porosity and tunable surface area diversity in structures, they have various
applications such as gas separation and storage [20], catalysis [21], and energy applications
and as sensing materials [22–25]. However, there is one obstacle for some of them, which is
related to their high electrical resistance. As standalone materials, they would not serve the
purpose of their designs, but when they are combined into an organic–inorganic matrix
with ionic liquids (ILs), they can exhibit changes in their properties that can be recorded
and evaluated.

Sensors based on these materials tend to operate under various principles such as
impedance sensing [26], chemicapacitive sensing [27], chemiresistive sensing, Kelvin
probe [28], capacitive sensing [29], field effect transistors [30,31], optical sensing, fluo-
rescence sensing for the detection of various materials such as volatile gases, hazardous
gases, and explosive compounds [32–34], ion sensing [35], biosensing [36,37], humidity
sensing [38–40], pH sensing [41,42], and temperature sensing [43]. There are rapid photo-
physical, electrical, or mechanical changes in the properties of the material, with various
circumstances that influence the behavior depending on the concentration of the ana-
lyte, active materials, ability to bond, electron accepting–donating ability, and hydrogen
bonding, to name a few [44]. From the aforementioned principles, one of the simplest is
chemiresistive sensing, which measures the change in resistance of the sensing material
when exposed to the target gas. The mechanism of sensing in these materials is attributed
to the transfer of electrons or holes, which results in an interaction between the surface
of the sensing material and the target gas molecules via adsorption or surface reactions.
Other advantages that these chemiresistive sensors have to offer are low cost of fabrication,
easy integration with other electronic components for commercial devices, low operational
costs, and ease of miniaturization [23,45,46]. In addition, the ability to detect trace-level
analytes with efficiency and accuracy enables them to be successfully commercialized.

The change in resistance in these sensing materials is dependent on the type of material.
With the diversity in the MOF and MOF-based materials, the sensing mechanism can also
be altered. The interaction of the test gas on the surface can either donate an electron to the
material or deprive it of one, thereby causing a change in resistance [47]. The linkers or the
active functional organic groups that are used in the synthesis of these materials serve as
effective adsorption sites that facilitate the transfer of charges within the system. Depending
on the test gas, the reduction or oxidization reaction [48], due to its interaction with the
material, can also be the cause for the change in the resistance of the material. Another
parameter is the change in volume of the MOF on interaction with the gas modulating
the number of electrons that are transferred during the interaction [49]. Depending on the
concentration of the gas, the response of the sensor is recorded. As the synthesis methods of
the materials advance, the MOFs show enhanced conductivities and porosities that increase
the sensitivities multifold.

Bismuth-based materials have been traditionally used for cosmetics and drug deliv-
ery. Wang et al. [50] reported an elaborate study deciphering the structure of the Bi-MOF.
Furthermore, Z. Wang et al. [51] reported a detailed review of the Bi-based MOFs and
their derivatives, outlining that they have been traditionally used in catalysis applica-
tions [21,52,53], electrocatalysis, sensors [54], CO2 capture [51], electrochemical energy
storage [20,55], biomedical imaging [56], drug delivery, fluorescence sensing [51], absorp-
tion, and separation [52,57]. Mirica et al. [58], meanwhile, reported the synthesis and
characterization of Bi-based MOFs for the detection of VOC compounds such as acetone,
MeOH, and EtOH. They demonstrated that the material can also detect NO and NH3 at
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room temperature. Some of the reported sensors from the literature have been consolidated
in Table 1 for comparison with our work.

Table 1. Sensor performance comparison with literature-reported values.

Sensor/Material Target Gas Optimum Operating
Temperature (◦C) Detection Limit (ppm) Ref.

Bi-gallate MOF/CS/IL membrane Acetone 60 10 This Work

MOF-5/CS/IL membrane H2S RT 1 [59]

ZIF-67 Acetone
220 100 [60]
250 50 [61]

ZIF-67/ZIF-8 Acetone 275 1 [62]

ZnO/ZIF-CoZn Acetone 250 10 [63]

Hierarchical MOF derived ZnO-Co3O4 Acetone 450 5 [64]

Bi(HHTP)

NH3 RT 0.29

[58]
NO RT 0.15

Acetone RT 41.2
MeOH RT 278
EtOH RT 185

Our group has demonstrated that chitosan (CS) polymer incorporation with glycerol,
as an IL [65], can detect H2S gas at 15 ppm operating at 80 ◦C [24]. Conventionally, it has
also been used in combination with MOFs and ZIFs [25,59] to enhance the detection of
H2S at room temperature. To the best of the authors’ knowledge, the Bi-gallate MOF has
not been used as an acetone sensor in combination with an organic matrix. Hence, in this
work, we present the possibility of employing the Bi-gallate MOF in combination with
CS/IL matrix as an acetone sensor with a breath analyzer application for the detection of
diabetic patients.

2. Materials and Methods
2.1. Materials

Bismuth (III) nitrate pentahydrate (Bi(NO3)3·5H2O), gallic acid (3,4,5-trihydroxybenzoic
acid), and anhydrous dimethylformamide (DMF) were bought from Sigma-Aldrich, St.
Louis, MO, USA. Chitosan (MW = 50,000–190,000 Da) (≥75%) and acetic acid were pur-
chased from Polysciences, Warrington, PA, USA. Glycerol, as an ionic liquid (IL) (99.5%),
was purchased from Quarek Corp company, Denver, CO, USA. All chemicals were used
without further purification.

2.2. Synthesis of Bi-Gallate MOF

Bi-gallate MOF was synthesized following a slightly modified version of a previously
published procedure [50]. In a scintillation vial, gallic acid (17 mg, 2 mmol) was dissolved
in 3 mL of deionized water. Then, drops of 4 M NH4OH were added to the solution until
the pH reached 8.5. In a separate scintillation vial, Bi(NO3)3·5H2O (24 mg, 1 mmol) was
dissolved in 1 mL of DMF and then gradually added with continuous stirring to the gallic
acid solution. The vial was sealed and placed in a preheated oven set at 85 ◦C for a duration
of 24 h. After completion of the reaction, the resulting yellow powder was filtered and
successively washed with distilled water and ethanol. Then, the Bi-gallate compound was
subjected to activation in a vacuum oven at 90 ◦C for 24 h to remove any trapped solvent
molecules.

2.3. Fabrication of the Bi-Gallate MOF/CS/IL Membrane

The Bi-gallate MOF/CS/IL membrane was fabricated by dissolving 2 wt% (0.4 g) of
the Bi-gallate MOF with 0.4 g of CS and 5 vol% of IL into 20 mL of 3% acetic acid solution.
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The solution was then stirred for 24 h at room temperature and 1400 RPM on a magnetic
stirrer. The prepared solution was then cast on a Petri dish and dried at 70 ◦C for 18 h
in a drying oven. A flexible and uniform membrane formed, as shown in Figure 1. The
thickness of the membrane was determined to be 0.20 mm using a screw gauge.
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2.4. Characterization

Powder X-ray diffraction (PXRD) was conducted using a Rigaku MiniFlex X-ray
diffractometer (Rigaku, Tokyo, Japan) with a CuKα radiation tube (wavelength = 1.542 Å)
operated at 40 kV. PXRD measurements were taken within a 3◦ to 50◦ 2θ range at a rate
of 2◦ min−1. Scanning electron microscopy (SEM) was performed using JSM-6010LA,
JEOL, Tokyo, Japan, with an operating voltage of 5 keV. The secondary electron imaging
configuration was used to procure the images with a working distance of 14 mm. The sam-
ples were made conductive with a gold sputtering system. The surface area and porosity
were examined using nitrogen sorption analysis at 77 K. The N2 adsorption–desorption
isotherm indicated gas adsorption (cm3 g−1) in relation to relative pressure (P/P0). Here, P
represents N2 equilibrium pressure, and P0 represents saturated vapor pressure at 77 K.
Prior to surface measurements, powder samples were placed in a glass tube and subjected
to vacuum at 353 K for 3 h. Thermogravimetric analysis (TGA) was performed using
a TGA-50 Shimadzu analyzer (Shimadzu, Kyoto, Japan) with an aluminum pan sample
holder. FTIR analysis was carried out using a Shimadzu IRAffinity-1S with a scan range
from 400 to 4000 cm−1.

2.5. Sensor Fabrication and Gas Testing

The sensor prototype was fabricated by sandwiching the active layer between a Cu
plate with dimensions 1.5 cm × 1.5 cm as the bottom electrode and a stainless steel mesh
with a grid size of 250 µm × 250 µm serving as the top electrode [59,66]. The layers
were confined using temperature-resistive Kapton tape. The device was connected to the
sensing system with electrical probes which were housed in a Teflon chamber connected
to Bronkhorst mass flow controllers (MFCs). The setup was sealed to avoid leaking of the
test gas and placed inside the fume hood for safety. The humidity of the chamber was
maintained close to 0% throughout the testing sequences. The gas testing programs were
sequenced to expose the sample to test gas in between cycles of synthetic air to exfoliate
any residual test gas molecules.

3. Results and Discussion
3.1. Structural and Morphological Characterization of Bi-Gallate MOF and Bi-MOF/CS/IL
Membrane

The structural analysis of the Bi-gallate MOF and Bi-gallate MOF/CS/IL membranes
was carried out using the XRD patterns obtained. The XRD pattern in Figure 2 confirmed the
structure and phase purity of the synthesized Bi-gallate MOF. By comparing the resulting
diffraction pattern with the simulated pattern derived from single-crystal data as previously
reported [50], it was confirmed that the Bi-gallate we prepared was successfully and
purely synthesized. The Bi-gallate material exhibited an orthorhombic lattice and unit
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cell dimensions of a = 8.80 Å, b = 4.66 Å, c = 24.09 Å. The XRD pattern of the Bi-gallate
MOF/CS/IL with a broad hump confirmed the incorporation of the Bi-gallate MOF into
the CS matrix, as can be seen in the top pattern in Figure 2. The characteristic peaks
representing the (110), (310), (321), and (421) planes were observed.
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Figure 2. PXRD pattern of the Bi-gallate MOF and the composite membrane.

The FTIR analysis of Bi-gallate MOF and Bi-gallate MOF/CS/IL membrane confirmed
the interaction within the framework of Bi-gallate and confirmed its presence within the
composite, as shown in Figure 3. The disappearance of the hydroxyl group (-OH) band
confirmed the chelation of bismuth metal with the gallic acid linker. Furthermore, a
band was observed around 1671 cm−1, which is attributed to the presence of (C=O) of a
carboxylate (COO−) group. Analyzing the spectra of the Bi-gallate MOF/CS/IL membrane,
a broad band at 3400 cm−1 was observed in the FTIR spectrum, and is attributed to
the NH and OH stretching vibration, as well as the intermolecular hydrogen bonds of
chitosan. Additionally, the bands at 2900 and 3000 cm−1 belong to the symmetric and
asymmetric stretching of the C-H bond of chitosan, respectively. Meanwhile, the C-O
bending and C-O stretching vibrations of chitosan were determined at 1100 and 980 cm−1,
respectively. The presence of Bi-gallate MOF within the chitosan membrane was further
confirmed through the sharp bands at 1700 and 1209 cm−1, which, respectively, belong
to C=O and C-O stretching of the gallate linker. As can be observed in Figure 3, the band
frequencies that are attributed to the carboxylate group (at 1671 cm−1) and the Bi-O group
(at 439 cm−1) remained intact, which also confirms the stability of the MOF framework
within the chitosan membrane.

Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 12 
 

 

 
Figure 3. FTIR curves of the as-synthesized Bi-gallate MOF powder and the composite membrane. 

The thermal analysis of the as-synthesized Bi-gallate MOF was performed using 
TGA under a nitrogen atmosphere (Figure 4). In the temperature range of room temper-
ature to 150 °C, the sample experienced a weight reduction of approximately 10%, cor-
responding to the loss of water molecules. This finding aligned with previously reported 
results [50]. Decomposition of the Bi-gallate commenced in the range of 260–350 °C, and 
is attributed to the breakdown of the gallate linker of the MOF structure. From the TGA 
curves of the Bi-gallate MOF/CS/IL membrane, we can surmise that the first weight loss 
observed would be due to the loss of water molecules from the pores of the framework. 
The drastic loss in weight observed between 150 °C and 225 °C indicates the onset of the 
decomposition of the gallate linker from the matrix, followed by a gradual loss in weight 
due to the continued decomposition of the remaining linkers. 

 
Figure 4. TGA curves of the Bi-gallate MOF powder and the composite membrane. 

The SEM analysis of the Bi-gallate MOF powder, shown in Figure 5A, shows that the 
morphology of the as-synthesized powder is comparable to the reported morphologies of 
the same MOF [50]. The SEM micrographs of the Bi-gallate MOF/CS/IL membranes 
shown in Figure 5B displayed the incorporation of the MOFs into the matrix. The 
cross-section of the membrane showed numerous pores, as can be seen in Figure 5C. The 
EDX spectra we recorded of the as-synthesized MOF (Figure 5D) and the composite 
membrane (Figure 5E) showed the homogeneous distribution of the Bi-gallate MOF par-
ticles within the chitosan matrix. 

Figure 3. FTIR curves of the as-synthesized Bi-gallate MOF powder and the composite membrane.



Nanomaterials 2023, 13, 3041 6 of 12

The thermal analysis of the as-synthesized Bi-gallate MOF was performed using TGA
under a nitrogen atmosphere (Figure 4). In the temperature range of room temperature to
150 ◦C, the sample experienced a weight reduction of approximately 10%, corresponding
to the loss of water molecules. This finding aligned with previously reported results [50].
Decomposition of the Bi-gallate commenced in the range of 260–350 ◦C, and is attributed to
the breakdown of the gallate linker of the MOF structure. From the TGA curves of the Bi-
gallate MOF/CS/IL membrane, we can surmise that the first weight loss observed would
be due to the loss of water molecules from the pores of the framework. The drastic loss in
weight observed between 150 ◦C and 225 ◦C indicates the onset of the decomposition of the
gallate linker from the matrix, followed by a gradual loss in weight due to the continued
decomposition of the remaining linkers.
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The SEM analysis of the Bi-gallate MOF powder, shown in Figure 5A, shows that the
morphology of the as-synthesized powder is comparable to the reported morphologies
of the same MOF [50]. The SEM micrographs of the Bi-gallate MOF/CS/IL membranes
shown in Figure 5B displayed the incorporation of the MOFs into the matrix. The cross-
section of the membrane showed numerous pores, as can be seen in Figure 5C. The EDX
spectra we recorded of the as-synthesized MOF (Figure 5D) and the composite membrane
(Figure 5E) showed the homogeneous distribution of the Bi-gallate MOF particles within
the chitosan matrix.
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The as-synthesized Bi-gallate MOF powder was also subjected to N2 adsorption
measurements to evaluate the micro- and macroporosity in the MOF. The recorded loop
shown in Figure 6 follows a type I isotherm with a calculated Brunauer–Emmett–Teller
(BET) surface area of 31.58 m2/g, and shows a maximum pore volume of 0.0135 cm3/g.
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3.2. Gas Sensing Performance

The sensor prototype was set up as detailed in our previous reports [59,66]. The CS/IL
matrix was doped with different concentrations of Bi-gallate MOF. The membranes were
subjected to different test gases at 100 ppm to evaluate their response. It was evaluated
that 2 wt% doping of the Bi-gallate MOF into the CS/IL matrix was most sensitive toward
acetone gas at an operating temperature of 60 ◦C and a bias voltage of 5 V. The response of
the sensor was evaluated using Equation (1):

S (%) =
Rg − Ra

Ra
× 100 =

∆R
Ra

× 100 (1)

where Ra is the resistance of the sensor in synthetic air and Rg is the resistance in the
presence of the test gas.

The sensor was evaluated in terms of sensitivity, which showed a response to 10 ppm
of acetone gas at 60 ◦C, as plotted in Figure 7. The inset graph shows the sensor’s response
toward different concentrations of acetone gas. The sensor was further analyzed toward
other test gases at 100 ppm and an operating temperature of 60 ◦C.
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The other aspects of evaluation were repeatability and stability. The tests were per-
formed with exposure to 100 ppm of acetone, with synthetic air flushing in between each
cycle to exfoliate any residual molecules from the previous cycle. The stability response
was calculated as 42.41 ± 1.8%, whereas the repeatability of the sensor was calculated as
39.95 ± 1.4% (Figure 8).
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Figure 8. (A) Repeatability of the sensor. (B) Long-term stability of the Bi-gallate MOF/CS/IL
membrane to 100 ppm of acetone gas at 60 ◦C.

Another aspect of evaluating the sensor’s performance is the response and recovery
times, which can be defined as the time taken from gas exposure for the sensor to reach
90% of its recorded response, and the time taken for the sensor to recover to 10% of its
initial resistance from the shutdown of the gas, respectively. From the results shown in
Figure 9A, the responses recorded were calculated as 15 ± 0.25 s and 3 ± 0.1 s, respectively.
Yet another vital parameter is the selectivity among other test gases. It was recorded that
the sensitivity toward acetone was the highest among other test gases such as H2, H2S,
C2H4, CO, and CO2, as shown in Figure 9B.

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 9. (A) The calculated response and recovery time of the sensor. (B) Selectivity of the sensor 
containing 2 wt% Bi-gallate MOF in comparison to other test gases. (C) Selectivity of the sensor 
containing 0.5 wt% Bi-gallate MOF to H2S and acetone gases. 

3.3. Gas Sensing Mechanism 
The mechanism of the standalone CS–IL membrane was outlined by Hani et al. [24]. The 

functional groups along the chitosan polymeric matrix (-OH and -NH2) interact with the 
highly hydroxylated IL molecules through the formation of a network of H bonding. In the 
presence of hydroxy- and carboxy-functionalized Bi-gallate MOF particles in the matrix, an 
extended network of H bonding is produced, as shown in Figure 10. Compared with slightly 
polar or non-polar gas molecules, H2S and acetone showed adsorption to this H-bonded 
network by taking part in the network through H bonding, as well. This was observed when 
a low proportion of the Bi-gallate MOF (0.5 wt%) was added, as shown in Figure 9C. Upon 
increasing the proportion of Bi-gallate MOF to 2 wt%, a higher tendency of acetone to adsorb 
onto the extensively formed H-bonded network was observed, as shown in Figure 9B. 
Compared with H2S molecules with a dipole moment of 0.95 D, the preferential adsorption 
of acetone molecules is attributed to its higher polarity (with a dipole moment of up to 4.19 
D). It should be mentioned that the highly polar acetone molecules interact with the 
H-bonded network of chitosan containing IL and Bi-gallate through the attraction of its 
highly polar C=O group to the H atoms along the other components of the sensor. Accord-
ingly, an increase in the sensitivity of the composite sensor membrane was observed when 
increasing the Bi-gallate component of the sensor. 

 
Figure 10. Sensing mechanism of the Bi-gallate-doped CS-IL membrane. 

Figure 9. (A) The calculated response and recovery time of the sensor. (B) Selectivity of the sensor
containing 2 wt% Bi-gallate MOF in comparison to other test gases. (C) Selectivity of the sensor
containing 0.5 wt% Bi-gallate MOF to H2S and acetone gases.

3.3. Gas Sensing Mechanism

The mechanism of the standalone CS–IL membrane was outlined by Hani et al. [24].
The functional groups along the chitosan polymeric matrix (-OH and -NH2) interact with
the highly hydroxylated IL molecules through the formation of a network of H bonding.
In the presence of hydroxy- and carboxy-functionalized Bi-gallate MOF particles in the
matrix, an extended network of H bonding is produced, as shown in Figure 10. Compared
with slightly polar or non-polar gas molecules, H2S and acetone showed adsorption to this
H-bonded network by taking part in the network through H bonding, as well. This was
observed when a low proportion of the Bi-gallate MOF (0.5 wt%) was added, as shown in
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Figure 9C. Upon increasing the proportion of Bi-gallate MOF to 2 wt%, a higher tendency
of acetone to adsorb onto the extensively formed H-bonded network was observed, as
shown in Figure 9B. Compared with H2S molecules with a dipole moment of 0.95 D, the
preferential adsorption of acetone molecules is attributed to its higher polarity (with a
dipole moment of up to 4.19 D). It should be mentioned that the highly polar acetone
molecules interact with the H-bonded network of chitosan containing IL and Bi-gallate
through the attraction of its highly polar C=O group to the H atoms along the other
components of the sensor. Accordingly, an increase in the sensitivity of the composite
sensor membrane was observed when increasing the Bi-gallate component of the sensor.

Nanomaterials 2023, 13, x FOR PEER REVIEW 9 of 12 
 

 

 
Figure 9. (A) The calculated response and recovery time of the sensor. (B) Selectivity of the sensor 
containing 2 wt% Bi-gallate MOF in comparison to other test gases. (C) Selectivity of the sensor 
containing 0.5 wt% Bi-gallate MOF to H2S and acetone gases. 

3.3. Gas Sensing Mechanism 
The mechanism of the standalone CS–IL membrane was outlined by Hani et al. [24]. The 

functional groups along the chitosan polymeric matrix (-OH and -NH2) interact with the 
highly hydroxylated IL molecules through the formation of a network of H bonding. In the 
presence of hydroxy- and carboxy-functionalized Bi-gallate MOF particles in the matrix, an 
extended network of H bonding is produced, as shown in Figure 10. Compared with slightly 
polar or non-polar gas molecules, H2S and acetone showed adsorption to this H-bonded 
network by taking part in the network through H bonding, as well. This was observed when 
a low proportion of the Bi-gallate MOF (0.5 wt%) was added, as shown in Figure 9C. Upon 
increasing the proportion of Bi-gallate MOF to 2 wt%, a higher tendency of acetone to adsorb 
onto the extensively formed H-bonded network was observed, as shown in Figure 9B. 
Compared with H2S molecules with a dipole moment of 0.95 D, the preferential adsorption 
of acetone molecules is attributed to its higher polarity (with a dipole moment of up to 4.19 
D). It should be mentioned that the highly polar acetone molecules interact with the 
H-bonded network of chitosan containing IL and Bi-gallate through the attraction of its 
highly polar C=O group to the H atoms along the other components of the sensor. Accord-
ingly, an increase in the sensitivity of the composite sensor membrane was observed when 
increasing the Bi-gallate component of the sensor. 

 
Figure 10. Sensing mechanism of the Bi-gallate-doped CS-IL membrane. Figure 10. Sensing mechanism of the Bi-gallate-doped CS-IL membrane.

4. Conclusions

This study demonstrates the potential of fabricating a fast response and ultra-fast
recovery sensor based on Bi-gallate MOF doped into a chitosan matrix containing IL.
The fabricated membrane was investigated for its sensing performance. Previous studies
conducted by our group demonstrated that CS/IL membranes showed potential for sensing
toward H2S gas, and doping the matrix with 2 wt% Bi-gallate MOF showed sensitivity
toward acetone vapor alone with a 5 V bias. The detection limit of the prototype is 10 ppm
of acetone at 60 ◦C, with ultra-fast response and recovery times of 15 ± 0.25 s and 3 ± 0.1 s,
respectively. The components of the membrane do not cause any harm to the environment,
hence making the prototype highly eco-friendly. The proposed membrane can be used
as an acetone sensor with ultra-fast response and recovery times, which can be used as a
real-time breath analyzer.
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