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Abstract: The low ionic conductivity, narrow electrochemical window, poor interfacial stability with
lithium metal, and non-degradability of raw materials are the main problems of solid polymer
electrolytes, restricting the development of lithium solid-state batteries. In this paper, a biodegradable
poly (2,3-butanediol/1,3-propanediol/succinic acid/sebacic acid/itaconic acid) ester was designed
and used as a substrate to prepare biodegradable polyester solid polymer electrolytes for solid-state
lithium batteries using a simple solution-casting method. A large number of ester-based polar
groups in the amorphous polymer become a high-speed channel for carrying lithium ions as a
weak coordination site. The biodegradable polyester solid polymer electrolyte exhibits a wide
electrochemical window of 5.08 V (vs. Li/Li+), high ionic conductivity of 1.03 mS cm−1 (25 ◦C), and a
large Li+ transference number of 0.56. The electrolyte exhibits good interfacial stability with lithium,
with stable Li plating/stripping behavior at room temperature over 2100 h. This design strategy for
biodegradable polyester solid polymer electrolytes offers new possibilities for the development of
matrix materials for environmentally friendly lithium metal solid-state batteries.

Keywords: lithium metal batteries; solid polymer electrolyte; polyester polymers; biodegradable

1. Introduction

Liquid organic electrolytes used in commercial lithium rechargeable batteries are
severely limited by their high flammability, potential leakage, and non-degradability [1–4].
The discovery of solid electrolytes offers new ideas for improving the safety of batteries
because they are less flammable, do not leak, and are safer than liquid electrolytes. All-solid
electrolytes can be classified into solid polymer electrolytes (SPEs) and inorganic solid
electrolytes (ISEs) [5,6]. Despite the advantages of ISEs, complicated preparation processes
and large interfacial independence with the electrode severely limit their development [7,8].
Compared with ISEs, SPEs exhibit superior flexibility, lower interface resistance, and inti-
mate contact with electrodes. Although SPEs have made significant progress in recent years,
they still have problems in ionic conductivity, electrochemical window and sustainability,
and environmental compatibility.

Polyethylene oxide (PEO) is the most widely studied structure because the ether bonds
inside PEO can form a stable complex with lithium ions for their transport [9–12]. However,
PEO-based solid electrolytes exhibit low ionic conductivity at room temperature (mainly
related to the high crystallinity of the polymer matrix) and have a narrow electrochemical
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window (<3.9 V), restricting their practical application [13–17]. Polyester polymer is a
polymer electrolyte matrix newly developed in recent years. Like the ether–oxygen bond in
PEO, the ester group contained in the polyester polymer matrix can serve as a coordination
site for lithium ions. Strong coordination occurs between the ether–oxygen bond and
the lithium-ion PEO-based solid electrolyte; thus, the migration speed of lithium ions is
slowed down. Meanwhile, the complexation between the ester or the ketone group and
lithium ions is weak, and each coordination point of the ester group carries a lithium
ion. Fast ion channeling is conducive to the migration of lithium ions [4,18–21]. However,
the low concentration of the polar group C=O cannot effectively solvate the cation, the
Tg value and crystallinity are usually high, the movement of the polymer segment is
restricted, and the LUMO and HOMO energy levels do not satisfy the interfacial stability
of the anode/cathode, resulting in the low ionic conductivity and narrow electrochemical
window of polyester-based solid electrolytes [22–24]. Millions of tons of lithium batteries
will be retired in the next few years, and most polymer matrices are usually difficult to
degrade, which poses challenges for the recycling of lithium batteries; thus, they have a
negative impact on the environment.

Many efforts have been made to overcome this predicament. Shriver and Wei [25]
used the strategy of increasing the number of ester groups and disrupting the polymer
order and successfully synthesized polyethylene carbonate (PVIC) and its derivatives, poly
(1,3-dioxolan-2-one-4,5-diyl oxalate) (PVICOX), for the first time. Ionic conductivity can
reach 0.1 mS cm−1 at ambient temperature. Zhang and coworkers [26] reported a poly
(allyl acetoacetate) (PAAA)-based polymer electrolyte using UV curing technology; ionic
conductivity at 30 ◦C reached 0.11 mS cm−1 and the electrochemical window reached
4.8 V. Thus, good interface compatibility with LiFePO4 and Li1.2Ni0.2Mn0.6O2 high-voltage
cathode is exhibited. However, due to the reverse migration of the TFSI anion at room
temperature, the ion migration number of the PAAA polymer electrolyte can only reach 0.37.
Cui et al. [7] prepared a PVCA (poly (vinylene carbonate)) polymer electrolyte using in situ
synthesis, which yielded a high electrochemical window (4.5 V) and low ionic activation
energy (0.03 eV). However, the excessive regularity of the PVCA chain segment limited
its mobility, resulting in low ionic conductivity (0.0982 mS cm−1 at 50 ◦C). Mindemark
et al. [27] synthesized poly (trimethylene carbonate) (PTMC), and the Tg value and ionic
conductivity were optimized by adjusting the ratio of trimethylene carbonate (TMC) and e-
caprolactone (CL); it was found to have a Tg of−26 ◦C and a conductivity of 0.016 mS cm−1

at 60 ◦C. To further improve ionic conductivity, electrochemical window, ion transference
number, efficient recovery, and utilization performance of polyester-based solid electrolytes,
it is necessary to optimize the polymer segment structure; inhibit crystallization; and use
renewable, degradable, and low-toxicity monomer sources.

In this context, a biodegradable poly (2,3-butanediol/1,3-propanediol/succinic acid/
sebacic acid/itaconic acid) ester (BPE) was designed for application in polymer electrolyte
matrices. The design of the BPE is based on the following considerations: (1) In order
to meet the characteristics of low toxicity, renewability, and degradability, all monomers
(2,3-butanediol (2,3-BDO)/1,3-propanediol (1,3-PDO)/succinic acid (SuA)/sebacic acid
(SeA)/itaconic acid (IA)) are derived from renewable biomass available for mass produc-
tion [28]. Therefore, the BPE exhibits good biodegradability. (2) SuA and IA with short
backbones are used in order to introduce more donors of ester bonding (-C=O-) groups
that can form coordinate bonds with Li cations for fast ion transport [29,30]. (3) Random
copolymerization and introducing a methyl side group in the backbone are used as strate-
gies for breaking the regularity of the polymer, increasing the content of the amorphous
region, which is conducive to the rapid transport of lithium ions. (4) The introduction of
long carbon chains is beneficial to the stability of lithium and improves the electrochemi-
cal stability of lithium batteries. Bio-based polymer solid-state electrolytes (BPSPEs) are
prepared by mixing the BPE with LiTFSI using a simple solution-casting method. As the
results confirm, BPSPEs exhibit high ionic conductivity of 1.03 mS cm−1 (25 ◦C), a large Li+

transference number of 0.56, and a wide electrochemical window of 5.08 V (vs. Li/Li+). The
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electrolyte demonstrates good interfacial stability with lithium, exhibiting stable Li plat-
ing/stripping behavior at room temperature over 2100 h. At a current rate of 0.1 C, the solid-
state Li (Ni0.8Co0.1Mn0.1) O2/Li battery exhibits a high initial capacity of 191.7 mAh g−1

at room temperature. After 100 cycles, the capacity exceeds 128.2 mAh g−1. Polyester
solid electrolytes provide good thermodynamic stability and cycling performance, have
simple preparation, and do not exert adverse effects such as pollution or degradation. The
design strategy of BPE provides additional options for the development of new bio-based
degradable functional materials such as lithium-ion conductors.

2. Materials and Methods
2.1. Synthesis of Biodegradable Poly (2,3-Butanediol/1,3-Propanediol/Succinic Acid/Sebacic
Acid/Itaconic Acid) Ester (BPE)

The synthetic procedure for the preparation of BPE is illustrated in Figure 1. The
following reagents were used: 2,3-butanediol (2,3-BDO), 1,3-propanediol (1,3-PDO), se-
lenoacetamide (SeA), sulfonamide (SuA), imidazole acetate (IA), phosphite. These reagents
were obtained from commercial sources, specifically Alfa Aesar (Heysham, UK), Beijing
Chemical Reagent Company (Beijing, China), and Tianjin Light Recovery Reagent Institute
(Tianjin, China). Reactants 2,3-BDO (0.25 mol, 22.50 g), 1,3-PDO (0.25 mol, 19.00 g), SeA
(0.225 mol, 45.45 g), SuA (0.225 mol, 26.55 g), IA (0.05 mol, 6.50 g) were mixed in a 100 mL
three-necked flask equipped with a mechanical stirring device, a recirculating condens-
ing unit and a thermometer. Following four cycles of nitrogen replacement, the reaction
mixture was subjected to heating in an oil bath under a nitrogen atmosphere at 180 ◦C for
a duration of 2 h. Upon the cooling of the reaction mixture to below 100 ◦C, the catalyst
butyl titanate (obtained from Alfa Aesar, Heysham, UK) was introduced. Subsequently, the
reaction mixture was gradually heated to 220 ◦C while the pressure was simultaneously
reduced to a vacuum. The reaction was then sustained for a duration of 4−6 h under these
conditions. Upon the observation of the “Weissenberg” effect in the reaction mixture, the
stirring rate and temperature were gradually decreased. The product was then collected
after the reaction temperature cooled to below 60 ◦C. Subsequently, the reaction product
was dissolved in trichloromethane (obtained from Beijing Chemical Plant, Beijing, China) to
eliminate any unreacted monomer and oligomer. The solution was then precipitated using
an excess of cold methanol (analytically pure, from Beijing Chemical Plant). Finally, the
obtained precipitate was subjected to drying at 60 ◦C until constant weight was attained.
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2.2. Assembly of Solid-State Batteries
2.2.1. Preparation of BPSPE

After the BPE was dissolved in N-methyl-2-pyrrolidone (NMP) and mixed with LiTFSI,
the proportions of lithium salt to the total mass of the polymer electrolyte were 16.7, 44.4,
58.3, and 61.5 wt.%. The slurry was scraped onto a positive shell of a coin cell, and dried
at 45 ◦C for 2 h and 80 ◦C for 24 h to obtain BPSPEx film (x = 16.7, 44.4, 58.3 and 61.5) for
EIS, LSV testing. The slurry was scraped onto a separator with a thickness of 7 microns,
and dried at 45 ◦C for 2 h and 80 ◦C for 24 h to obtain a separator-supported BPSPE44.4 for
NCM811/BPSPE44.4/Li solid coin cell and a pouch-type stacking full cell.

2.2.2. Coin Cell

For the NCM811/BPSPE44.4/Li solid battery, the active material ratio of the NCM811
(3–4.3 V) (Guangdong Canrd New Energy Technology Co., Ltd., Dongguan, China) conven-
tional cathode electrode was 94.5%. The active material mass loading of the conventional
NCM811 electrode was relatively high at 19.8 mg cm−2. Because there are no solid elec-
trolytes in a conventional NCM811 electrode, a 80 µL liquid electrolyte LB111 (Suzhou
DoDoChem Technology Co., Ltd., Suzhou, China) was dropped onto the conventional
NCM811 electrode to enhance the ion transport of lithium ions inside the high-mass loading
cathode. CR 2032 coin-type cells were assembled in an Ar-filled glovebox with Li metal
foils as the anode, separator-supported BPSPE44.4, and a high-mass loading conventional
NCM811 electrode as cathode.

2.2.3. Pouch-Type Stacking Full Cell

The LiCoO2 (4.5 V) cathode was composed of an 80 wt.% LiCoO2, a 10 wt.% Super P,
and a 10 wt.% binder (BPSPE44.4). The mass loading of active materials was approximately
15 mg cm−2. The graphite anode was composed of an 80 wt.% graphite, a 10 wt.% SP,
a 10 wt.% binder (BPSPE44.4). After stacking the LiCoO2 (4.5 V) cathode, the graphite
anode, and the separator-supported BPSPE44.4, the positive and negative electrode ears
were welded, and the cell was sealed with aluminum plastic film.

2.3. Materials Characterization

The thermogravimetric analysis curve of BPE was obtained by the con increasing the
temperature from 25 ◦C to 800 ◦C at a rate of 10 ◦C /min in a nitrogen atmosphere. The
degradation performance of BPE was tested by placing the sample in a phosphoric acid
buffer solution at 37 ◦C, taking the sample out every five days and weighing it to constant
weight in a vacuum oven at 40 ◦C. Sample degradation performance was calculated using
Equation (1):

Weight loss (%) =
W0−W1

W0
× 100%. (1)

The test conditions of XRD diffraction were in the angle range of 5–50◦ at a temperature
of 25 ◦C. Rigaku Ultima IV (Tokyo, Japan). The infrared spectra of BPSPEx (x = 16.7, 44.4,
58.3 and 61.5) solid electrolyte were obtained using an infrared spectrometer (Merryfield
IN10, Thermo Fisher Scientific, Waltham, USA). The differential scanning calorimetry (DSC)
curve was recorded using a differential scanning calorimetric analyzer (DSC 200F3, Netzsch,
Selb, Bavaria, Germany) within a temperature range of −70 ◦C–70 ◦C and a heating rate of
10 ◦C/min. The nuclear magnetic resonance (NMR) carbon spectrum was measured by
an NMR spectrometer (JNM-ECZ, JEOL Co., Ltd., Tokyo, Japan), and the solvent used to
dissolve the sample was CDCl3.

2.4. Electrochemical Characterization

The ionic conductivity of the solid electrolyte from room temperature to 80 ◦C was
characterized by electrochemical impedance spectroscopy (EIS) in stainless steel (SS) /BP-
SPEx (x = 16.7, 44.4, 58.3 and 61.5)/SS blocking battery in an electrochemical workstation
(VersaSTAT3F, Princeton Applied Research, Oak Ridge, TN, USA) within a frequency range
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of 0.01–107 Hz and an AC amplitude of 50 mV. The ionic conductivity was calculated
according to Equation (2), where d is the thickness of the solid electrolyte membrane, R is
the impedance resistance, and S is the effective area of the BPSPE membrane.

Σ =
d

RS
. (2)

The lithium-ion transference number (tLi+) value was determined by a combination
of EIS and chronoamperometry (CA) analyses in a Li/BPSPE44.4/Li symmetric cell in an
electrochemical workstation (PARSTAT 4000 A, Princeton Applied Research, Oak Ridge,
TN, USA) and calculated according to Equation (3), where ∆V is the applied voltage during
CA testing (50 mV), I0 and Is are the initial and steady-state current values, respectively, R0
is the bulk resistance before polarization, and Rs is the steady-state bulk resistance after
polarization, as determined by EIS within the frequency range of from 0.01 to 105 Hz.

tLi+ =
IS(∆V − I0R0)

I0(∆V − ISRS)
. (3)

The electrochemical window of the solid electrolyte was measured by linear sweep
voltammetry (LSV) at a sweep rate of 5 mV/s from 0 to 6 V (VersaSTAT3F, Princeton
Applied Research) in the SS/BPSPE44.4/Li unsymmetrical cell. Li/BPSPE44.4/Li and
Li/BPSPE44.4/NCM811 charge and discharge tests were measured in an automatic galvano-
static charge–discharge unit (Land CT 2001A battery test system, Wuhan Land Electronics
Co., Ltd., Wuhan, China).

2.5. Analog Computation Details

A single repeat unit molecular model of the BPE material was constructed to explore
the electrochemical properties of solid electrolyte components. These unit components were
consistent with the experimentally synthesized raw materials. To mitigate the influence of
chain length on electrochemical properties, periodic boundary conditions were applied to
x, y, z directions to simulate the infinitely extended spaces [31]. All of density functional
theory (DFT) calculations were carried out using the QUICKSTEP program of CP2K [32],
which solves the Kohn–Sham equations of DFT by combining a Gaussian basis set for
the wave functions with an auxiliary plane wave basis set. We used the 6-31G* basis set
together with the B3LYP functional. The energy cut-off for the plane wave basis set was
400 Ry. Based on these optimized geometries, the HOMO–LUMO gaps and electrostatic
potential were calculated using the same 6-31G* basis set and B3LYP level. The snapshot
and cube files were obtained using the Multiwfn program [33]. Molecular configurations
were visualized using Visual MD 1.9.1 [34].

3. Results and Discussion

The thermal stability of BPE is characterized by TGA tests under a nitrogen atmosphere.
As shown in Figure 2a, BPE exhibits a one-step decomposition process, i.e., charring of
the main chain occurs at 300 ◦C–600 ◦C, while the final residue is less than 10% after
800 ◦C. The decomposition temperature of BPE is 340 ◦C (Figure 2b), which can meet the
thermal stability requirements of most solid electrolytes [35]. Biodegradation is defined as
degradation caused by biological activity, particularly significant changes in the chemical
structure of a material due to the action of enzymes. The gradual degradation of materials
by microorganisms or certain organisms as a source of nutrients leads to loss of quality, loss
of properties such as physical properties and ultimately to the breakdown of materials into
simpler compounds or monomers. The in vitro degradation property of BPE is depicted in
Figure 2c, illustrating a phase of rapid degradation within the initial ten days, primarily
characterized by the solubilization of the material and the removal of low-molecular-
weight substances. The higher molecular weight segment of BPE exhibits relative stability.
Subsequently, the next stage of BPE degradation is relatively gradual. In a degradation
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process, the ester group of BPE begins to deteriorate, contributing to further degradation
of the material [36]. Utilization of degradable materials in lithium batteries holds great
significance for battery recycling and environmental protection. The stress–strain curve
of the tensile test of BPE film is shown in Figure 2d. The stress and strain exhibit linearity
during the initial phase, representing the elastic deformation stage of BPE. BPE exhibits a
tensile strength of 1.76 MPa and an elongation at break of 170.26%, meeting the performance
requirements of a solid electrolyte matrix.
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Ion transfer in polymers encompasses a series of processes, including the dissociation
of solvated salts, coordination of cations to polar groups, and interchain transfer of ions.
To investigate the conduction mechanism of lithium ions in BPE, BPSPEx (x = 16.7, 44.4,
58.3, 61.5) were synthesized using a straightforward solvent pouring method. Comparative
infrared spectra of BPSPEx (x = 16.7, 44.4, 58.3, 61.5) with varying LiTFSI concentrations
elucidate the interaction process of lithium salts in BPE [37]. The functional groups of BPE
and BPSPEx (x = 16.7, 44.4, 58.3, 61.5) are shown in Figure 3a, the “*” symbol denotes
the group that interacts with lithium ion and experiences chemical shifts. The addition of
lithium salt minimally influences the band position of the IR characteristic bands of BPE.
With the gradual increase in lithium salt content, the intensity of the characteristic band of
the ester carbonyl group at 1730 cm−1 decreases, suggesting a partial reaction between the
ester and the lithium salt. This reaction leads to a shifting in the band position [38]. It was
observed that the band intensity of the ester carbonyls in BPSPE58.3 and BPSPE61.5 remained
relatively constant. This finding suggests that the interaction between lithium ions and the
ester carbonyl group reached a state of saturation, whereby further increases in lithium-ion
concentration would not significantly enhance the complexation. It was observed that a
portion of the ester carbonyl group at 1170 cm−1 was still not redshifted due to the spatial
site barrier effect of the double bond, making it challenging for the lithium salt to interact
with the ester carbonyl group at this location.



Nanomaterials 2023, 13, 3027 7 of 14

Nanomaterials 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

transition temperature (−60.2 °C) is highly favorable for the transport kinetics of lithium 
ions in the polymer. Figure 3c shows the XRD spectra of BPE and BPSPEx (x = 16.7, 44.4, 
58.3, 61.5), which do not show sharp diffraction peaks, indicating that both BPE and 
BPSPEx (x = 16.7, 44.4, 58.3, 61.5) exhibit amorphous structures, consistent with DSC re-
sults. 

 
Figure 3. (a) Infrared spectra of BPE and BPSPEx (x = 16.7, 44.4, 58.3, 61.5), (b) differential scanning 
calorimetry curves of BPE and BPSPEx (x = 16.7, 44.4, 58.3, 61.5), (c) X-ray diffraction curves of BPE 
and BPSPEx (x = 16.7, 44.4, 58.3, 61.5). 

Ionic conductivity and ion mobility number are key criteria for evaluating the per-
formance of solid-state electrolytes [39]. The temperature dependent ionic conductivity 
behavior of BPSPE can be described by fitting it to the Vogel–Tammann–Fulcher (VTF) 
curve in (Figure 4a), which is described by Equation (4):  

σ(T) = AT1/2exp ( ( )), (4)

where A is the pre-exponential factor, Ea is activation energy, T is the absolute tempera-
ture, T0 is the glass transition temperature in thermodynamic equilibrium statues (T0 = Tg 

− 50), and R is the ideal gas constant [40]. The activation energy of BPSPEx (x = 16.7, 44.4, 
58.3, 61.5) was determined by fitting the VTF curve (as shown in Table S1). BPSPE44.4 
showed the lowest activation energy of 0.496 KJ/mol, and the low ion activation makes the 
movement of the segments easier. The low ionic conductivity of BPSPE16.9 is attributed to 
the low content of lithium ions in BPE. With the increase in lithium salt, BPSPE44.4 exhib-
ited a high ionic conductivity, reaching a point where the dissociation of lithium salt was 
at its maximum. As the lithium salt continued to increase, a polymer electrolyte of the 
polymer-in-salt system was formed, leading to changes in electrolyte properties. The in-
hibition of lithium salt dissociation resulted in a decrease in ionic conductivity [41]. The 
impedance spectra of the blocking electrode/BPSPE44.4/blocking electrode system at differ-
ent temperatures, as illustrated in Figure S1, displayed linear behavior, suggesting the 
semi-infinite diffusion of lithium ions in BPSPE44.4. The intersection of the impedance 
curve with the Z′ axis represents the total impedance value of the electrolyte sample. The 
ionic conductivity of BPSPE44.4 reached 1.03 mS cm−1 at 25 °C.  

The number of ion migrations can characterize the contribution of the charge carriers 
in the electrolyte to the overall migration of the battery charge. The lithium-ion transfer-
ence number (tLi+) value was determined using Equation (3), and the tLi+ of BPSPE44.4 was 
as high as 0.56, effectively reducing the concentration polarization during charge and dis-
charge. 

To access the electrochemical stability of the material, Li/BPSPE44.4/SS cells were as-
sembled, and the linear sweep voltammograms (LSV) are shown in Figure 4c. No anodic 
reaction current peaks were observed up to 5.08 V (vs Li/Li+), indicating that BPSPE44.4 
exhibits excellent electrochemical stability and is compatible with most high-voltage 

Figure 3. (a) Infrared spectra of BPE and BPSPEx (x = 16.7, 44.4, 58.3, 61.5), (b) differential scanning
calorimetry curves of BPE and BPSPEx (x = 16.7, 44.4, 58.3, 61.5), (c) X-ray diffraction curves of BPE
and BPSPEx (x = 16.7, 44.4, 58.3, 61.5).

Figure 3b presents the differential scanning calorimetry curves of BPE and BPSPEX
(x = 16.7, 44.4, 58.3, 61.5) within the temperature range of −70 ◦C to 70 ◦C. It is noted
that BPE and BPSPEX (x = 16.7, 44.4, 58.3, 61.5) exhibit amorphous features, indicat-
ing that the random copolymerization effectively inhibits the crystallization of BPE. The
low glass transition temperature (−60.2 ◦C) is highly favorable for the transport kinetics
of lithium ions in the polymer. Figure 3c shows the XRD spectra of BPE and BPSPEx
(x = 16.7, 44.4, 58.3, 61.5), which do not show sharp diffraction peaks, indicating that both
BPE and BPSPEx (x = 16.7, 44.4, 58.3, 61.5) exhibit amorphous structures, consistent with
DSC results.

Ionic conductivity and ion mobility number are key criteria for evaluating the per-
formance of solid-state electrolytes [39]. The temperature dependent ionic conductivity
behavior of BPSPE can be described by fitting it to the Vogel–Tammann–Fulcher (VTF)
curve in (Figure 4a), which is described by Equation (4):

σ(T) = AT1/2 exp
(

−Ea

R(T − T0)

)
, (4)

where A is the pre-exponential factor, Ea is activation energy, T is the absolute temperature,
T0 is the glass transition temperature in thermodynamic equilibrium statues (T0 = Tg − 50),
and R is the ideal gas constant [40]. The activation energy of BPSPEx (x = 16.7, 44.4,
58.3, 61.5) was determined by fitting the VTF curve (as shown in Table S1). BPSPE44.4
showed the lowest activation energy of 0.496 KJ/mol, and the low ion activation makes
the movement of the segments easier. The low ionic conductivity of BPSPE16.9 is attributed
to the low content of lithium ions in BPE. With the increase in lithium salt, BPSPE44.4
exhibited a high ionic conductivity, reaching a point where the dissociation of lithium
salt was at its maximum. As the lithium salt continued to increase, a polymer electrolyte
of the polymer-in-salt system was formed, leading to changes in electrolyte properties.
The inhibition of lithium salt dissociation resulted in a decrease in ionic conductivity [41].
The impedance spectra of the blocking electrode/BPSPE44.4/blocking electrode system at
different temperatures, as illustrated in Figure S1, displayed linear behavior, suggesting
the semi-infinite diffusion of lithium ions in BPSPE44.4. The intersection of the impedance
curve with the Z′ axis represents the total impedance value of the electrolyte sample. The
ionic conductivity of BPSPE44.4 reached 1.03 mS cm−1 at 25 ◦C.
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Figure 4. (a) VTF curve of BPSPEx (x = 16.7, 44.4, 58.3, 61.5), (b) the polarization curve of
Li/BPSPE44.4/Li symmetrical batteries at room temperature and the energy–quits curve before
and after polarization, (c) electrochemical windows of BPSPE44.4 electrolyte, (d) Li/BPSPE44.4/Li
cells at room temperature at the current density of 0.01 mA cm−2 and 0.01 mAh cm−2, 0.1 mA cm−2

and 0.1 mAh cm−2.

The number of ion migrations can characterize the contribution of the charge carriers
in the electrolyte to the overall migration of the battery charge. The lithium-ion transfer-
ence number (tLi+) value was determined using Equation (3), and the tLi+ of BPSPE44.4
was as high as 0.56, effectively reducing the concentration polarization during charge
and discharge.

To access the electrochemical stability of the material, Li/BPSPE44.4/SS cells were
assembled, and the linear sweep voltammograms (LSV) are shown in Figure 4c. No anodic
reaction current peaks were observed up to 5.08 V (vs Li/Li+), indicating that BPSPE44.4 ex-
hibits excellent electrochemical stability and is compatible with most high-voltage cathode
materials. In order to analyze the electroplating stripping behavior of lithium metal [42,43]
in BPSPE44.4, we conducted an experimental investigation using Li/BPSPE44.4/Li batteries,
as illustrated in Figure 4d. The experimental protocol involved subjecting the batter-
ies to cycling conditions of 0.01 mA·cm−2 and 0.01 mAh·cm−2 for 1626 h, followed by
0.1 mA·cm−2 and 0.1 mAh·cm−2 for additional 476 h at room temperature. This result
indicates that the symmetrical cell based on BPSPE44.4 displays exceptional overpotential
cycling performance, as evidenced by the absence of significant fluctuations after more
than 1600 h of operation, and a smaller and flatter voltage hysteresis of approximately
18 mV (at 0.01 mA·cm−2 and 0.01 mAh·cm−2). Moreover, the cell exhibited stable voltage
hysteresis of 105 mV over a period of 476 h (at 0.1 mA·cm−2 and 0.1 mAh·cm−2).

To investigate the migration mechanism of lithium ions in BPSPE44.4, we employed 13C
NMR carbon spectrum for characterization. Figure 5 shows 13C NMR carbon spectra of BPE
and BPSPE44.4, respectively. According to the chemical displacement, it can be divided into
the following four regions: the alkyl region around the ester group (20–40 ppm), the alkyl
region around the end chain hydroxyl group (50–70 ppm), the olefin group region around
the ester group (70–130 ppm), and the ester group region (150–180 ppm) [44]. As shown
in Figure 5a, both samples exhibited identical peak positions at Positions 1 (24.8 ppm),
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2 (25.3 ppm), 3 (27.9 ppm), 4 (29.1 ppm), 5 (29.6 ppm) and 7 (34.3 ppm), corresponding
to the chemical structure of BPE. The appearance of Peak 6 and the increase in the area of
Peak 5 indicated that the complexation of ester groups with LiTFSI caused a chemical shift
of adjacent carbon sites to the right. In Figure 5b, Peaks 8–11 corresponded to the structure
of the BPE end group. After the addition of LiTFSI, there were no significant changes in
Peak 8 and Peaks 9–11; they showed slight area fluctuations. This reflects that the hydroxyl
group at the end interacts with TFSI−, which is beneficial for the dissociation of LiTFSI and
facilitates the migration of lithium ions. The appearance of Peak 12 in Figure 5c indicates
that we successfully introduced double bonds: the two samples have less difference in
area at this peak, and it is inferred that due to the steric hindrance effect, lithium ions bind
less to the ester group at this place. The dynamic process of binding ester-based carbon
atoms to lithium ions is shown in Figure 5d. The addition of LiTFSI significantly weakened
the characteristic peak of the ester carbon atom, and a new characteristic peak appeared
in 175.7 ppm. This indicates that the complexation of the ester group and lithium ions
altered the surrounding environment of the ester carbon atoms and increased its chemical
displacement. The changes in the chemical environment surrounding the carbon elements
in the BPE after the addition of LiTFSI were quantitatively analyzed in Table S2. It is worth
noting that while the area of different peaks varies significantly before and after mixing
with lithium salts, the total area of peaks remains constant. This indicates that the addition
of lithium salts only alters the chemical displacement without masking the signal.
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(a) 20–40 ppm, (b) 50–70 ppm, (c) 70–130 ppm, (d) 150–180 ppm EIS curves of SS/BPSPE44.4/SS
batteries at different temperatures.

The frontier molecular orbitals, specifically the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO), can provide valuable insights
into the electronegativity of polymers [45]. To examine the electronegativity of the polymer
electrolyte and explore the relationship between the interface energy and lithium metal,
the HOMO–LUMO energy levels (Figure 6a) of BPE were determined through simulation
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calculations [46]. The interface between lithium metal and BPE was analyzed using en-
ergy band theory [47]. The LUMO and HOMO levels of BPE were 0.309 and −6.663 eV,
respectively. The wide energy gap of 6.972 eV indicates that BPE is an insulator without the
characteristic of electron conduction [48]. Figure 6c and d show the interface energy of BPE
and lithium metal based on the Schottky–Mott model. According to the Schottky–Mott
model theory, lithium and BPE share the same vacuum energy level. However, BPE, serving
as an organic material that acts as a lithium-ion transport layer (shown by its high ion
conductivity), is categorized as a polar molecule. On the lithium metal and BPE interface, a
dipole is inevitably generated as shown in Figure 6d; the vacuum level of original interface
damage is observed. The interface of the dipole potential barrier ∆ and the dipole barrier
is related to the work function of lithium metal, which is 2.9 eV, indicating the ease of
providing electrons. According to the Koopmans theorem, the electronegativity of BPE
is 3.177 eV [47], which is a strong electron-deficient compound. And the contact between
the compound and the metal creates a large negative dipole. Additionally, as shown in
Figure 6d, a charge transfer complex (highlighted in orange) is generated after the charge
transfer between lithium and BPE in the ground state at the interface. When charge transfer
complex reaches equilibrium, the Fermi energy level (EF

*) on the Li/BPE interface remains
stable and is lower than the LUMO level. Both the hole and electron barrier decrease,
which is beneficial for interface stability. Figure 6b presents the AC impedance spectra
of the Li/BPSPE44.4/Li electrochemical cell over different days of operation. The results
illustrate that the impedance progressively increases during the initial four days, indicating
an interfacial wetting process between BPE and lithium metal. After 4 days of operation, the
impedance becomes relatively stable, indicating the gradual formation of a stable complex
at the interface following the contact between lithium metal and BPE. This observation
is consistent with the simulation results. The molecular electrostatic potential (MEP) is
primarily employed to identify molecular interactions and predict the relative positions
of nucleophilic and electrophilic attacks. The negative region of the MEP is associated
with the attraction of lithium ions due to the density of electrons clustered in the molecule
(pink shading) and is the preferred site for nucleophilicity. According to Figure 6e, it is
evident that in the BPE unit, the negatively charged regions are located on the oxygen
atoms distributed between the long carbon chains. This corresponds to the high ionic
conductivity and high electrochemical stability of BPE [49].
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Figure 6. (a) HOMO and LUMO levels of BPE, (b) Li/BPSPE44.4/Li cell AC impedance spectrum
at different number of days of standing, (c–d) energy relationship between BPE and Li metal:
(c) without interface dipole and (d) with interface dipoles, (e) the electrostatic potential of BPE
obtained by simulation calculation.
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Figure 7a displays the electrochemical impedance spectrum of BPSPE44.4 and liquid
cell (80 µL) at room temperature, and it can be seen that the Li/BPSPE44.4/NCM811 cell
exhibits lower impedance values, indicating that BPSPE44.4 provides a lithium-ion transport
channel comparable to that of liquid electrolytes. Figure 7b shows the long cycle diagram
of the NCM811/BPSPE44.4/Li solid cell and the NCM811/Liquid Electrolyte (80 µL)/Li
liquid cell at a 0.1 C current density at room temperature. Evidently, the cut-off voltage
was 3–4.3 V, and the NCM811/Liquid Electrolyte (80 µL)/Li cell exhibited a discharge
capacity of 182.2 mAh g−1. The NCM811/Liquid Electrolyte (80 µL)/Li cell exhibited
a rapid decay rate during cycling. After 100 cycles, the discharge capacity declined to
57.9 mAh g−1, attributed to the poor interface contacts between Li and the limited amount
of electrolyte. The battery equipped with BPSPE44.4 exhibited an initial discharge capacity
of 191.7 mAh g−1. After 100 cycles, the capacity of the NCM811/BPSPE44.4/Li solid battery
exceeded 128.2 mAh g−1, with a Coulomb efficiency over 98%. As shown in Figure S2,
under the same conditions, BPSPE44.4 batteries exhibited higher first charge capacity than
liquid batteries. This indicates that BPSPE44.4 has good contact with the electrode interface
as well as good cycling stability.
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Figure 7. (a) EIS impedance spectra of Li/Liquid electrolyte (80 µL)/NCM811 cells and Li
/BPSPE44.4/NCM811 cells before electrochemical cycling test (at room temperature), (b) long cycling
performance of Li/Liquid electrolyte (80 µL)/NCM811 cells and Li/ BPSPE44.4/NCM811 cells at a
0.1 C in room temperature, (c–e) graphite/BPSPE44.4/LiCoO2 (4.5 V) all solid-state soft pack battery
lighting small bulb experiment: (c) complete soft pack battery, (d) the shearing process of the software
package, (e) defective soft-pack battery.

To further demonstrate the practicality and safety of BPE all-solid-state battery, Graphite/
BPSPE44.4/LiCoO2 all-solid-state flexible package battery was prepared [50,51]. As shown
in Figure 7c–e, the red light-emitting diode (LED) lamp is successfully lighted by the solid-
state pouch cell, even after shearing at room temperature (the battery clipping process is
detailed in Video S1 of Supplementary Materials). This demonstrates the high safety of
Graphite/BPSPE44.4/LiCoO2 solid-state batteries.

4. Conclusions

In this study, we successfully synthesize biobased high-ester-based-density amorphous
state conducting lithium-ion substrates (BPEs) using a random copolymerization method.
The impact of ionic concentration on ionic migration and ionic conductivity of amorphous
molecules with high ester group density is investigated from the perspective of molecular
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structure. BPSPEs achieve high ionic conductivity (1.03 mS cm−1 25 ◦C) and low ionic
activation energy at lithium salt concentrations of up to 44.4 wt.%. Additionally, the long
carbon chain structure enables BPSPE to demonstrate an excellent electrochemical window
(5.08 V, vs. Li/Li+) and long-term cycle stability to lithium metal. NMR carbon spectroscopy
shows that lithium ions preferentially form complexes with sterically unhindered ester
groups. In addition, the stabilization of polymer and lithium metal at the interface is
analyzed from the energy band point of view in conjunction with simulations. This
investigation provides a novel perspective for the advancement of ester polymer electrolytes
as a high-performance electrolyte for lithium batteries.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/nano13233027/s1, Table S1: Comparison of thermody-
namic properties, activation energy, and ionic conductivity of electrolytes with different lithium
concentrations; Figure S1: EIS curves of SS/BPSPE44.4/SS batteries at different temperatures; Table S2:
Area comparison of different samples and different peak positions; Video S1: Graphite/BPSPE44.4/
LiCoO2 (4.5 V) all solid-state soft pack battery shearing process; Figure S2: First charge–discharge
curves for Li/BPSPE44.4/NCM811 cells and Li/Liquid electrolyte /NCM811 cells.
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