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Abstract: Mesoscopic conductance fluctuations were discovered in a weak localization regime of a
strongly disordered two-dimensional HgTe-based semimetal. These fluctuations exist in macroscopic
samples with characteristic sizes of 100µm and exhibit anomalous dependences on the gate voltage,
magnetic field, and temperature. They are absent in the regime of electron metal (at positive gate
voltages) and strongly depend on the level of disorder in the system. All the experimental facts lead
us to the conclusion that the origin of the fluctuations is a special collective state in which the current
is conducted through the percolation network of electron resistances. We suppose that the network is
formed by fluctuation potential whose amplitude is higher than the Fermi level of electrons due to
their very low density.

Keywords: quantum wells; universal conductance fluctuations; two-dimensional semimetal

1. Introduction

Universal conductance fluctuations (UCF) are one of the most fundamental phenom-
ena representing the quantum nature of the electron. Their discovery has led to the birth
of the Mesoscopics [1–5]. One of their greatest properties is that their amplitude in the
regime of weak localization is close to the quantum of conductivity (< ∆G2 >1/2≈ e2/h)
in a sample with the characteristic length L < LT . At the finite temperature < ∆G2 >1/2≈
(e2/h)LT/L, where LT = (Dh̄/T)1/2 is the coherence length and D is the diffusion coef-
ficient. In most cases, LT = (0.1− 1)µm at T ≤ 1 K, and thus the UCF usually require
metallic conductivity and microscopic sizes of samples to be observed. This means that
any conductor of smaller micron sizes with metallic conductivity should demonstrate UCF.
At the present time, there are a lot of papers concerning different properties of the UCF
in ordinary mesoscopic metals, semiconductors, superconductors and hybrid mesostruc-
tures on the basis of them [6–20], in graphene-like structures [21–30], and in mesoscopic
topological systems [31–41].

In this paper, we report the observation of the mesoscopic conductance fluctuations
in a strongly disordered semimetal implemented in the samples of macroscopical sizes
(L ≥ 100µm) with significantly different behavior compared to the UCF. It is suggested
that the fluctuations are caused by the collective state in the unbalanced semimetal (relation
of the hole and electron concentrations Ps/Ns ≥ 102) where the current passes through the
electron percolation network created by screening the fluctuation potential by heavy holes.

2. Samples

The studied samples are the field-effect transistors (their topology and distances are
depicted in Figure 1d) based on HgTe (013) quantum wells (QW) 14 nm width with TiAu
gates. Let us notice that this two-dimensional semimetal has an overlap of the conduction
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and valence bands of the same order as in the well-studied 18–22 nm HgTe QW, but
with lower mobilities of electrons and holes. Its detailed study is given in [42,43]. The
measurements were carried out in the temperature range from 0.08 K–4 K and in magnetic
fields up to 2 T with the standard lock-in technique in the frequencies from 0.3 to 12 Hz and
the current 0.1–10 nA depending on the state of the system.

102

103

104

r x
x 
(W

)
 Sample A (190319 1PAIR6)
 Sample B (190319 1PAIR3)
 Sample C (190319 4PAIR2)

T = 4K

3 2 1 0 1
0

5

10

15

20

25

m e
,m

h (
10

4  c
m

2 /V
s)

Vg
eff (V)

Holes

Electrons

3 2 1 0 1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Vg
eff  (V)

(a)

(b) (c)

(d)

Holes

N
s,P

s (
10

11
 c

m
-2

)

Electrons3 2 1
0
1
2
3
4

N
s (

10
9  c

m
-2

)

Vg
eff  (V)

Figure 1. (a) Gate voltage dependences of resistivity at T = 4 K in samples A, B, and C. Vg is shifted
for VCNP—the position of the charge neutrality point (CNP) is different for each sample. (b) Gate
voltage dependence of the electrons (Ns) and holes (Ps) density in sample A derived from the fitting of
magnetotransport by the Drude model. (c) Gate voltage dependence of the mobilities of electrons µe

and holes µh in sample A derived from the fitting of magnetotransport by the Drude model. (d) The
scheme of the ten contact Hall bar. The width of the channel is 50µm, the distances between contacts
are 100 and 250µm. The area covered by the gate is represented by the golden rectangle.

Figure 1a demonstrates gate voltage dependences of the studied samples’ resistivity
ρxx(V

e f f
g = Vg −VCNP), where Ve f f

g is counted from the charge neutrality point (CNP), at
the temperature T = 4 K.The CNP gate voltages VCNP are −0.5 V, −0.2 V and −1.2 V for
samples A, B, and C, respectively. As one can see, the curves have maxima at Ve f f

g ≈ −0.1 V,
with resistivity equal 32, 17 and 9 kΩ/�. Since the samples were fabricated from the same
wafer, and they have different maximum resistivity; we can further use them to analyze
the impact of disorder presented in the system. It is worth noting that at Ve f f

g < −2.7 V,
ρxx ≤ 1 kΩ/�, which means it precisely corresponds to the weak localization regime
(kFl > 20, kF—the wave vector of charge carriers, l—their momentum relaxation length).

The concentrations and mobilities of the electrons and holes in the sample A are
shown in Figure 1b and Figure 1c, respectively. They were determined from magnetotrans-
port measurements (as in [42]). At the gate voltages −3.5 V ≤ Ve f f

g ≤ −1 V the studied
semimetal is strongly unbalanced with the holes concentration Ps being one to two orders
higher than the electron concentration Ns. At the same time, the relation of the mobilities
is the opposite (Figure 1c). Thus, at the considered gate voltages region, the system is a
strongly unbalanced semimetal with metallic conductivity so that the contribution to the
conductivity from a very small amount of light electrons (me ≈ 0.03m0) is comparable to
the one from a high amount of heavy holes (mh ≈ 0.25m0) [44]. Let us also notice that
the semimetallic band structure (studied in Reference [44]) has a small band overlap ∆ of
approximately 5 meV. This allows us to reach such an unbalanced semimetallic state by
applying the gate voltage.

3. Results

In this section, we present the discovered mesoscopic fluctuations and their properties.
We begin with the conductance fluctuations in the gate voltage dependences at different
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magnetic fields, temperatures, and different parts of the sample. Further, we show the
fluctuations in the magnetic field dependences, and finally, we compare the results from
different samples.

The main result is presented in Figure 2a. It shows gate voltage dependences of the
conductivity σxx measured on a short part of the Hall bar (with 100µm distance between
potentiometric contacts) in a short range of gate voltages from −3.46 V to −3.26 V at the
temperature of 0.08 K in the absence of magnetic field (blue curve) and in magnetic field
B = 0.1 T (black curve). It has also been measured on a long part of the sample with 250µm
between contacts (red curve). Conductivity σxx is calculated as ρ−1

xx since ρxy is relatively
small at given magnetic fields.

3.45 3.40 3.35 3.30
0

10

20

30

40

50

60

70

80

s x
x 

(e
2 /h

)

Vg
eff (V)

 L = 100 mm B = 0.1T

 L = 100 mm B = 0T

 L = 250 mm B = 0.1T

T = 80mK

0 50 100 150 200 250 300 350 400

1

2

3

4

5

FF
T 

Am
p.

 (e
2 /h

)

f (1/V)

(a) (b)

DV  20mV

0.0 0.1 0.2 0.3 0.4 0.50
2
4
6
8

10
12

<D
G

2 >1/
2  (e

2 /h
)

B (T)

(c)

Figure 2. (a) Gate voltage dependence of conductivity. (b) The Fourier spectrum of the conductance.
(c) Magnetic field dependence of the average fluctuations amplitude.

One can clearly see the fluctuations with the average period of 20 mV (see the Fourier
spectrum of σxx(Vg) at Figure 2b) and with the amplitude about e2/h, which increases by
an order after applying the magnetic field. Figure 2c shows how the average fluctuations
amplitude depends on the magnetic field: it increases by an order in a range from 0 to 0.03 T,
reaches a maximum at 0.03 T < B < 0.2 T and then falls to zero when the magnetic field
reaches 0.5 T. One may also see that the fluctuations of σxx in the field of 0.1 T measured on
the long part of the sample are much weaker. That means that the observed fluctuations
depend on the size of the conductor, and, in this aspect, their behavior is similar to the
UCF; thus, they could be called mesoscopic. However, all the other features, including
anomalously large sizes of the conductor, a sharp increase with the application of the
magnetic field, and their shutdown after 0.5 T, distinguish them from the UCF.

Another important feature of the fluctuations is their temperature dependence. In
fact, we were quite surprised to observe them because the measurements at relatively
high temperatures (from 1 K to 4 K) showed no signs of such fluctuations. We expected
that, at lower temperatures, we would observe weak localization effects, but instead,
we discovered huge mesoscopic fluctuations. Figure 3a shows σxx(V

e f f
g ) dependences at

different temperatures in range 0.1 K ≤ T ≤ 0.6 K, and Figure 3b shows the temperature
dependence of the fluctuations amplitude. The amplitude of the fluctuations sharply
decreases with the increase in the temperature. In the temperature range from 0.6 K to 0.3 K,
the temperature dependence is exponential with the activation energy of 0.15 meV, but
then, at lower temperatures, it starts saturating. Saturation of this kind could indicate the
existence of a distinct fluctuating regime to which the system switches at low temperatures.
On the other hand, the activation behavior at higher temperatures may indicate a process
that suppresses the fluctuations. Further, we will discuss the temperature dependence in
Section 4.2.
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Figure 3. (a) Conductance fluctuations at different temperatures. The colors of the lines change
depending on the temperature from black (at T = 0.1 K) to blue (at T = 0.6 K). (b) Temperature
dependence of the conductance fluctuations mean amplitude.

These fluctuations are not only observed in the gate voltage dependences of conduc-
tivity but also in their magnetic field dependences. The typical magnetic field dependence
of ρxx at fixed gate voltage is presented in Figure 4a. It demonstrates quasi-periodical
oscillations of ρxx in the fields |B| < 0.5 T. At the fields higher than 0.5 T they are already
absent (what agrees with Figure 2c), and in the fields around 1 T Shubnikov–de Haas os-
cillations of 2D holes take their place. The transition of the system to the Shubnikov–de
Haas regime, where the Landau level quantization becomes important, could be a reason
for the mesoscopic fluctuation shutdown. It is worth noting that these fluctuations exhibit
a perfect symmetry under the sign change of the magnetic field that is similar to the UCF.
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Figure 4. (a) Magnetic field dependence of resistivity at Ve f f
g = −3.5 V. (b) The Fourier spectrum of

low-field oscillations from (a).

The Fourier spectrum of the low-field quasi-periodical oscillations is shown in
Figure 4b. The spectrum lacks a distinct frequency, implying that the oscillations are
not perfectly periodic but rather fluctuating. Nevertheless, we can identify a characteristic
frequency of fmax ≈ 20 T−1 and thus a period of 50 mT. When considering these fluctuations
as Aharonov–Bohm h/2e oscillations for future estimations, we can derive a characteristic
area of the resonator S ≈ 0.04µm2 (or a characteristic size a ≈ 0.2µm).

To determine the nature of the observed mesoscopic fluctuations, it is essential to note
that they occur exclusively in the semimetallic state (at negative gate voltages) but not in
the electron metal state (at positive gate voltages). Figure 5a presents σxx(V

e f f
g ) in both

semimetal and electron metal gate voltage regions at B = 0.1 T and T = 0.1 K. It is clear
that the first one is fluctuating and the second one is smooth. Therefore, we conclude that
the origin of the found fluctuations must be connected to the semimetallic nature of the
studied state.
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samples with different disorders.

All the previous results were presented from sample A, and now we compare the
results across all the samples. Gate voltage dependences σxx(V

e f f
g ) of the three samples

with different levels of disorder are presented in Figure 5b. The samples A, B, and C have
different maximum resistance (see Figure 1a) and thus, different levels of disorder. Sample
A, being the most disordered one, has the highest fluctuations amplitude, and sample C,
being the purest one, has the weakest fluctuations. Additionally, apart from the fluctuations
in the weak localization regime, conductivity does not depend on the disorder as much.

Since sample B also exhibits significant fluctuations, let us present the data and
compare them to sample A. The gate voltage dependences of the conductivity at different
temperatures and magnetic fields are displayed in Figure 6a and Figure 6b, respectively.
The insets in the graphs depict the amplitude of the fluctuations as a function of inverse
temperature and magnetic field. Despite the substantial difference in the amplitude of the
fluctuations between samples A and B, the temperature and magnetic field dependences
appear quite similar. As in Figure 2c, we observe that in a zero magnetic field, there
are some fluctuations. With a small magnetic field of approximately B ≈ 40 mT, the
amplitude significantly increases, reaching its maximum at B ≈ 0.11 T. As in Figure 3b, at
low temperatures, the amplitude tends to saturation, and at higher temperatures, there is an
exponential decrease. Thus, we observe mesoscopic fluctuations in macroscopic samples of
different disorder levels. The amplitudes of the fluctuations in these samples are different,
but they exhibit similar magnetic field and temperature dependences.
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dences of conductance at different magnetic fields. The inset shows the magnetic field dependence of
the fluctuations’ amplitude.
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4. Discussion
4.1. The Nature of Fluctuations

Despite some similarities to the UCF, the discovered fluctuations are vastly different.
The largest difference is that they occur in macroscopical samples when the characteristic
sizes of the sample are much larger than the coherence length (L� LT) and only in a highly
unbalanced semimetallic state as the hole density is much higher (Ps/Ns ≈ 102) than the
electron density. Their amplitude strongly depends on the magnetic field, and in the range
of magnetic fields between 0.03 T and 0.15 T, it exceeds e2/h by an order. Their temperature
dependence is abnormal (strongly exponential rather than weak linear), and their existence
crucially depends on the disorder level.

It seems like the nature of the observed fluctuations, as in the case of the UCF, is also
the quantum interference. The difference is that in our case, despite the fact that the sample
is large, there is no averaging of the fluctuations. This is similar to the case of interfering
squared network of metal conductors [45–47].

This analogy with the squared electron network leads us to a possible explanation
of the observed fluctuations. We suppose that such a small concentration of electrons
(see Figure 1b) with a high level of disorder in the system can result in the formation of
the electron network. The qualitative impurity potential fluctuations representation and
current channels map of highly unbalanced semimetal including fluctuational potential
with amplitude less than the hole’s Fermi level but higher than the electron Fermi level are
shown in Figure 7.

Holes

Electrons

EvEv

Ec

EF

E

x x

y

Electron network

Bulk holes

Figure 7. Schematic band diagram and the map of current channels in the presence of fluctuations.

One can see that while for holes we have small relative density fluctuations (∆Ps < Ps),
for electrons, there are even areas with zero density and areas with Ns > 0, i.e., the
actual percolation network of electron resistances. The only difference from an ordinary
percolation network is that there are hole “lakes” between electron “rivers” rather than
“mountains”.

The requirements for the mesoscopic fluctuations to appear in such a percolation
network are significantly simpler than in a usual 2D electron system. The decoherence
length of an electron needs to be comparable not to the length of the sample but rather
to the characteristic size of the network’s element. This size is estimated from the period
of magnetoresistance oscillations (see Figure 4) as a ≈ 200 nm, which is by three orders
of magnitude smaller than the sample’s characteristic size. These estimations allow us to
propose that in strongly unbalanced and disordered 2D semimetal in HgTe QW forms a
collective state of an electronic percolation network inside of the hole liquid.
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4.2. Qualitative Model of the Transport

Given the complexity of the system under study, which includes impurities, heavy
holes, light electrons, and potentially even 2D topological insulator states, we do not attempt
to propose a comprehensive theory for the observed fluctuations. In this subsection, we
present a qualitative model that does not perfectly describe the experiment but provides
some explanations for the experimental observations and ideas for future microscopic
theories. Here are the main assumptions of our model:

• Firstly, as has already been discussed, we assume that in the presence of impurities
and heavy holes, the electron subsystem forms a percolation network. It could be
similar to the squared network of electrons from References [45–47], but much less
ordered. The fact that the formation of the percolation network crucially depends on a
random potential of impurities explains the difference in the fluctuations amplitudes
of samples A, B, and C with different levels of disorder. The question of how such a
network actually forms we will leave to future theoretical studies;

• Secondly, we make the assumption that at low temperatures, the electron and hole
subsystems are independent, while at higher temperatures, they exhibit strong inter-
actions. Indeed, the electron-hole scattering is present in HgTe semimetals, resulting
in a resistivity increase proportional to T2 [48]. It also appears that direct transi-
tions of an electron between the conduction and valence bands, which could even be
present at zero temperature, are suppressed due to the significant distance between
the electron and hole subbands in the momentum space. Conversely, electron-hole
scattering occurs as an electron and a hole undergo momentum changes within their
own subbands;

• Thirdly, we assume that the potentiometric contacts are connected to the electron
subsystem. As illustrated in Figure 1d, the gate covers the sample, but the contacts are
only partially covered. This implies that the Fermi energy in the areas not under the
gate corresponds to a gate voltage of zero, which, for all three samples, corresponds to
the electron band scenario. Since the contacts contain only electrons, and given that at
low temperatures, the electron and hole subsystems do not interact, the potentiometric
contacts provide potentials of exclusively electron subsystems. Furthermore, since the
current contacts have a larger area than the potentiometric contacts (see Figure 1d),
we can also assume that the potentials of the subsystems would be balanced, allowing
the current to be carried by both electrons and holes.

All of these considerations lead us to a qualitative understanding of the transport in
the system. At low temperatures, the electron network and the sea of holes (see Figure 7)
interact weakly, allowing the potentials of the subsystems to differ. Since the potentiometric
contacts are connected to the electron subsystem, while the current flows through both, we
can treat the sea of holes as a shunt resistance. Therefore, the measured conductivity at the
lowest temperature (see Figure 2a) with significant fluctuations represents the conductivity
of the electron network, which is renormalized by the shunting conductivity of the holes.
To estimate the ratio of their conductivities, we take the mobilities ratio µe/µh ≈ 10 and
the concentrations ratio Ns/Ps ≈ 10−2 (see Figure 1), which results into the one order
difference. Hence, the actual fluctuation amplitude of the electron network’s conductivity,
according to our considerations, is approximately one order of magnitude lower than what
is shown in Figure 2c. Thus, the maximum value of the fluctuations amplitude would be
around e2/h, which appears to be more plausible than the measured 10 e2/h (see Figure 2c).

Then, we need to describe the magnetic field dependences of the fluctuations from
Figure 2c and inset in Figure 6b. Since the measured fluctuating conductivity at low temper-
atures is considered to be just a rescaled conductivity of the electron percolation network,
the magnetic field dependences of the fluctuations amplitude have to be described only by
the properties of the electron percolation network. Firstly, at zero magnetic field, we observe
some fluctuations, but they are relatively weak. The gate voltage variation changes the
average concentration of the electrons, thus changing the picture of the percolation ways in
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the network by filling or emptying different connections. Secondly, with the magnetic field
B, all the different closed electron circuits (or blobs) receive an additional phase of eBS/h̄,
where S is the area of the blob, which was estimated as 0.04µm2 from the oscillations-like
behavior from Figure 4. When the phase shift is comparable to π, all the resistances of
the blobs become very sensitive to any variations of the network’s geometry, and thus,
the fluctuations’ amplitude dramatically increases. This happens at the magnetic fields
around 50 mT, that agrees with the experiment where the amplitude at this field is already
large. Thirdly, at the fields higher than 0.5 T, the fluctuations vanish. This aspect cannot
be explained by our independent electron percolation network model alone. One possible
reason for this shutdown is the transition of the hole subsystem to the Shubnikov–de Haas
regime, which may somehow disrupt the percolation network. However, this idea should
be supported by a specific mechanism within a microscopic theory that accounts for the
contribution of holes to the formation of the electron percolation network.

Finally, we come to the temperature dependence. At higher temperatures, electron-
hole scattering occurs, resulting in the intermixing of the electron and hole subsystem
potentials. Given that the hole liquid continues to be the primary conductor of the system,
the fluctuating potential of the electron network bounds to the classical potential of the holes,
consequently causing a reduction in the amplitude of the fluctuations and simultaneously
preserving the average conductivity. This consideration is supported by the temperature
dependence of the fluctuations’ amplitude from Figure 3b and the inset in Figure 6a, where,
at low temperatures, the amplitude saturates to a finite value, but at higher temperatures,
it exponentially decreases. Apart from the intermixing of the electron and hole subsystems,
the phase decoherence length also shortens with the temperature increase due to the
inelastic scattering, which can be a second possible mechanism of the fluctuation shutdown.

5. Conclusions

In conclusion, this work reports the first observation and study of unusual mesoscopic
conductance fluctuations in HgTe-based two-dimensional semimetal in a weak localization
regime. These fluctuations exist in macroscopic samples with characteristic sizes higher
than 100µm. They have an anomalously high amplitude (≈10 e2/h) and anomalous gate
voltage, magnetic field (quasiperiodicity and suppression at B ≈ 0.5 T), and temperature
(exponentially strong) dependences. Also, their amplitude critically depends on the degree
of disorder. Moreover, it was found that at the same conductivity value (about 1 kΩ/�),
they are completely absent in the electron metal state realized in the same sample.

We propose a qualitative model of an electronic percolation network that explains
why mesoscopic conductance fluctuations are possible to observe in macroscopic samples
and why they could be that large. Nevertheless, some aspects of the theory require further
theoretical validation. Since the theory mostly provides qualitative results, the development
of a comprehensive theory that both offers a microscopic description of such a percolation
network’s formation and explains all the main experimental properties of discovered
mesoscopic conductance fluctuations is an intriguing challenge for the theory of two-
dimensional correlated systems.
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