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Abstract: An approach for filtering the fundamental mode in an integrated optical modulator with
multimode waveguides based on etched thin lithium niobate nanofilms is presented. It is shown
that metal electrodes can be used as a modal filter to suppress high-order modes in wide multimode
ridge waveguides and, consequently, to provide their quasi-single-mode regime of operation. The
influence of the gap between the electrodes and its displacement relative to the waveguide symmetry
axis is analyzed for various configurations of waveguides. The conditions for quasi-single-mode
light propagation with suppression of high-order modes of more than 90 dB/cm are found. The
influence of fabrication errors on the efficiency of modal filtering is discussed. Efficient electro-
optical modulation with an equivalent voltage-length product of 4 V·cm has been experimentally
demonstrated on integrated optical phase modulator samples fabricated using conventional contact
photolithography. The proposed topological solution can be further used for the fast and cheap
fabrication of TFLN modulators by conventional contact photolithography. The proposed modal
filtering can also be used in other waveguide topologies and in more complex waveguide devices.

Keywords: integrated photonics; thin-film lithium niobate; optical waveguide; modulators; mode filtering

1. Introduction

Lithium niobate (LN, LiNbO3) has been one of the most attractive materials in inte-
grated photonics for several decades [1–3] due to its large transparency window and its
electro-optical and non-linear optical properties enabling fast light control and switching.
Widespread commercially available broadband LN modulators are based on optical waveg-
uides fabricated using titanium diffusion or proton exchange [1,2], with relatively weak
light localization and large transverse mode sizes of about 10 µm.

With the commercialization of lithium-niobate-on-insulator (LNOI) wafers [4,5] op-
tical waveguides can be fabricated on thin (≈300–700 nm) nanofilms of lithium niobate
(TFLN—thin-film lithium niobate), which increases the transverse localization of light to
the submicron level due to high refractive index contrast [6–9]. This new nanomaterial has
greatly advanced integrated LN photonics. Significantly higher light localization than in
conventional diffused LN waveguides provides high integration density, higher perfor-
mance, lower cost, and new functionality of integrated optical devices that are compelling
advantages in applications ranging from optical communications and sensors to microwave
and quantum photonics.

At present, a wide variety of integrated optical devices based on the TFLN platform have
been developed, such as electro-optical modulators [10,11], tunable interleavers [12,13], ring
cavities [14,15], tunable Bragg filter gratings [16,17], wavelength converters and parametric
amplifiers [18,19], lasers [20,21], nonclassical generators of light and entangled photon
pairs [22,23], and many others. Most of them demonstrate sizes and performance unattain-
able for conventional integrated optical devices based on bulk lithium niobate substrates.
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The efficient operation of integrated optical devices requires single-mode propagation
of light through waveguides, which can be achieved if the transverse size of the waveguide
is small enough. While the localization of light in TFLN waveguides is determined by
the height of the etched ridge in the vertical dimension, the localization in the horizontal
dimension is limited by the width of the waveguide and, hence, by the resolution of
the lithography.

Most of the demonstrated TFLN integrated optical devices have been realized by
employing electron-beam lithography, which provides the necessary resolution and is
very effective for device prototyping but is a serial patterning technique that requires a
prohibitively long write time, which is a major challenge for scaling. As was recently
demonstrated, deep ultraviolet (DUV) lithography solves this problem and can be used for
the fabrication of photonic integrated schemes (PICs) on 4- and 6-inch LNOI wafers [24].
However, DUV lithography has a high cost of ownership due to expensive resistive materi-
als and laser maintenance, so its use is only reasonable for mass production. At present,
the total volume of production of TFLN-integrated optical devices is quite small; therefore,
the possibility of using traditional contact photolithography, which is used to manufacture
integrated optical devices on substrates of bulk crystalline lithium niobate, looks very
attractive. Some steps in this direction have been made earlier [25,26].

The low resolution of standard contact photolithography makes it impossible to fabri-
cate single-mode waveguides on LNOI substrates that support only the fundamental mode.
Waveguides which are easy to fabricate using standard contact photolithography have
rather large widths (>1 µm) and, as a result, are multimode [27]. However, fundamental
mode filtering can be implemented, given that it must be more localized in the waveguide
than high-order modes.

Different waveguide structures can be potentially used for selective influence on
optical modes and, in particular, for suppression of high-order modes in multimode waveg-
uides. The typical approach for the induction of losses in optical dielectric waveguides is
placing conducting layers near waveguides [28]. In general, the presence of conducting
layers in waveguide devices can be effectively used for controlling light propagation. For
example, conducting layers can be used for polarization filtering in optical waveguides or
waveguide attenuators [28,29]. Moreover, conducting layers can provide isolation between
waveguiding layers [30].

The goal of this work was to investigate the possibility of using metal electrodes of
an electro-optical integrated optical phase modulator fabricated on an LNOI substrate
using traditional contact photolithography for filtering the fundamental mode and the
suppression of high-order modes.

2. Influence of Electrodes on Light Propagating in an Optical Waveguide
2.1. Considered Configuration

The basic element of an optical modulator is a phase shifter, which has the configura-
tion of a straight waveguide surrounded by electrodes (Figure 1). In the case of an LNOI, a
ridge waveguide is usually formed by etching to a depth h of a thin-film layer of lithium
niobate (TFLN) lying on an intermediate silicon dioxide (SiO2) bonding layer (LNOI wafers
from NanoLN). A typical cross-section profile has a sidewall angle α, which depends on
the etching technology and mask material.

For the theoretical analysis, the following ridge cross-section was chosen: the thickness
of the TFLN was 700 nm, the thickness of the silicon dioxide (SiO2) bonding layer was
2 µm, the waveguide ridge height h was varied in the range of 200 ÷ 400 nm, and the
sidewall angle α = 25◦ corresponds to the chromium (Cr) mask and the inductively coupled
plasma (ICP) dry etching process [31]. TFLN was considered in an x-cut orientation, which
is usually used for the fabrication of electro-optical modulators. Aurum with a complex
refractive index (1.5785–15.658 i [32]) was chosen as the electrode material. The analysis
was performed at the wavelength of λ = 1550 nm for the TE modes which can experience
the highest electro-optic coefficient in the considered crystal orientation. The influence of
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the ridge width W and the interelectrode gap on the mode composition of the waveguide
was analyzed.
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Figure 1. Waveguide phase shifter cross-section.

The mode composition of the waveguide was analyzed numerically using the finite-
element method in the COMSOL Multiphysics software package. To reduce computational
complexity, we neglected the interaction and transformation of two orthogonal polarization
modes (TE and TM); therefore, a birefringent crystal was considered as an isotropic material
with an extraordinary refractive index ne = 2.14 for TE modes and the ordinary refractive
index no = 2.21 for TM modes [2].

2.2. Waveguide Mode Filtering

Three ridge widths W were considered: 1.5, 2, and 3 µm, which can be easily produced
using contact photolithography, but they certainly support the propagation of high-order
modes [27]. The field of modes is not confined to the ridge and penetrates the surrounding
TFLN layer (Figure 2). High-order modes penetrate the TFLN layer to a greater extent and,
therefore, experience additional optical losses due to their interaction with metal electrodes.
In this regard, using electrodes was proposed for filtering the fundamental mode which
is more strongly localized within the ridge waveguide. The interelectrode gap (G) is a
parameter that determines the filtration efficiency. In turn, the height of electrodes hel
(for values of hel larger than 100 nm required for low ohmic losses) does not affect the
filtration efficiency since it significantly exceeds the depth of light penetration into the
metal. Therefore, the interelectrode gap size (G) was varied and the height of electrodes
hel = 200 nm was fixed.

The results of the numerical calculation of the absorption coefficient for the fundamen-
tal mode and the nearest high-order mode at a fixed ridge height h = 300 nm and different
widths W are shown in Figure 3. At the large interelectrode gap G = 8 um, the fundamental
and high-order modes have low propagation losses. Note that the analysis considered ideal
waveguides without defects and scattering losses, so propagation loss is entirely due to
absorption at the interface with the metal. As the interelectrode gap decreases, propagation
losses increase. The higher the order of modes, the higher the growth of losses.
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The quantitative criterion for modal filtering is the high-order mode extinction ratio
(HOMER), which can be expressed in decibels as the difference between the absorption
coefficients of the nearest high-order mode (αTE10) and the fundamental mode (αTE00):

HOMER = αTE10 − αTE00[dB/cm] (1)

The calculated HOMER depending on the interelectrode gap G is shown in Figure 3b.
Highly efficient mode filtering with HOMER above 90 dB can be achieved at G = 4.5 µm

for a ridge waveguide with h = 300 nm and W = 3 µm. The interelectrode gap in the range
G = 4 ÷ 5 µm is a typical value for broadband modulators [10,11] and provides good veloc-
ity matching with acceptable impedance matching for high frequency modulation.

It was surprising that the waveguide with a wider ridge width W = 3 µm is more
suitable for mode filtering and gives a higher HOMER. We attributed this to the behavior
of the intensity cross-section of the fundamental mode, which is smaller for W = 3 µm than
for 2 µm and 1.5 µm; in addition, the penetration of high-order modes into the surrounding
TFLN layer is significant.

An increase in HOMER is accompanied by a simultaneous increase in losses of the
fundamental mode. In general, losses in TFLN waveguides mainly depend on propagation
losses due to scattering caused by the roughness of the waveguide edges and on coupling
loss between optical waveguides and optical fibers because of modal size mismatch. Scat-
tering leads to additional losses which depend on the overlap between the field of the
waveguide mode and the edges of the waveguide, so they are higher for high-order modes.
Therefore, scattering increases the differential mode losses caused by the metal electrodes
and enhances the mode-filtering effect. However, scattering losses also lead to an increase in
propagation losses of the fundamental waveguide mode, both due to direct scattering and
due to additional losses at the metal electrodes, which has a negative effect on the proposed
method of waveguide mode filtering with metal electrodes. Quantifying the losses caused
by scattering will require additional detailed studies of the structure and morphology of
the ridge waveguide. Just note that additional losses added to the fundamental mode by
electrodes do not exceed typical losses obtained for TFLN waveguides nowadays [16].

Considering the limited resolution of photolithography, it should also be necessary
to consider that a displacement between the interelectrode gap center and the waveguide
symmetry axis can occur. Taking this factor into account, we numerically estimated the
change in propagation losses of fundamental modes and in HOMER due to the possible
displacement. The results obtained are presented in Figure 4. The results of the performed
simulation show that displacement errors will even increase the efficiency of modal filtering.

2.3. Influence on Half-Wave Voltage

Reducing the interelectrode gap (G) not only provides mode filtering but should
also increase the modulation efficiency. The product of the half-wave voltage (Vπ) of the
modulator and the length (L) of its electrodes (VπL) was also analyzed. The VπL parameter
can be calculated as

VπL =
λ

n3
er33

s
EelE

2
optdS

s
E2

optdS

(2)

where r33 = 30 pm/V is the electro-optic coefficient in the waveguide propagating along
the y-axis at the x-cut LNOI substrate and Eel and Eopt are cross-sections of the spatial
distribution of the electric and optical fields, respectively. The values of relative permittivity
εxLN = 35, εzLN = 95, εSiO2 = 3.9 [33] were used in the calculations.

As expected, the half-wave voltage decreases as the interelectrode gap decreases. A
slight decrease in VπL for the increased ridge width W = 3 µm provides additional merit
besides the high-order mode filtering (Figure 5).
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3. Experimental Investigations
3.1. Experimental Samples

To prove the proposed concept, samples of phase shifters (integrated optical modu-
lators) were fabricated using contact photolithography. The configuration of the samples
copied the configuration considered in the numerical simulation. Commercially available
LNOI substrates from NanoLN with a TFLN layer thickness of 700 nm were used. Ridge
waveguides were produced using the inductively coupled plasma (ICP) setup (“STE ICP
200e” from SemiTEq, Saint Petersburg, Russian) through a 150 nm thick chromium (Cr)
mask. The etching rate was 25 nm/min. The width of the ridges was repeated in the same
way as in the numerical model (1.5, 2, and 3 µm). The etching depth h = 300 nm was chosen
based on the results of the numerical analysis. Low-frequency planar 200 nm thick gold
electrodes with a chromium adhesive sublayer (10 nm) were deposited with DC magnetron
sputtering on each side of the ridge waveguides. The interelectrode gap G was 5 µm. The
length of the electrodes L was 12 mm.

The electron microscopy image of one of the samples is shown in Figure 6. The
rough sidewalls of the ridge indicate imperfect etching conditions which require further
elaboration. Therefore, the optical losses of the samples were quite high—around 30 dB on
the sample 20 mm in length—including input/output coupling losses with lensed optical
fibers. Note that sidewall roughness could add a contribution to the mode filtering which
has not been taken into account in the theoretical analysis.
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excited high-order TE modes).

3.2. Observation of High-Order Mode Suppression

To observe the waveguide modes, the setup shown in Figure 6 was used. A distributed
feedback laser diode (DFB LD) with an output power of 20 mW with single-mode fiber
output was used as a light source at the wavelength λ = 1550 nm. The TE polarization
of light at the input of the waveguide was set by a fiber-optic polarization controller. A
lensed optical fiber (with spot diameter of 2 µm and working distance of 12 µm) was used
to launch light into ridge waveguides. The near-field image of the intensity distribution at
the output of the waveguides was formed in an IR CCD camera (SPIRICON SP-503U-1550)
with the help of a 60× micro-objective. The rather low resolution of the system did not
allow a quantitative characterization of HOMER but gave a qualitative assessment of the
presence or absence of high-order modes.

The presence of high-order modes manifests itself in a change in the intensity dis-
tribution when the tip of the lensed optical fiber is displaced relative to the input of the
ridge waveguide, which is detected with IR CCD (see Figure 6). This change is the result
of a change in the efficiency of high-order mode excitation, which transforms the interfer-
ence pattern of the waveguide modes at the output. An evident presence of high-order
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modes was observed for experimental samples with waveguides without electrodes. Only
a decrease in intensity without a change in the spatial distribution was observed for waveg-
uides surrounded by electrodes with G = 5 µm, which indicates an efficient suppression of
high-order modes.

3.3. Half-Wave Voltage Measurement

The efficiency of the electro-optical modulation was then tested. The phase modulator
was inserted into one of the arms of a Mach–Zehnder interferometer based on polarization-
maintaining (PM) fibers (Figure 7).
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Since the lensed fibers used for light coupling at the input and at the output of
the fabricated samples were not polarization-maintaining, two fiber optic polarization
controllers at the input and output of the modulator were used. The first controller was
used to set linear TE polarization of light at the input of the waveguide; the second one
oriented linear polarization at the output in accordance with the slow axis of the PM
fiber. Triangular signal at a frequency of 1 kHz was applied to the modulator electrodes.
In the second arm of the interferometer, a polarization-maintaining optical attenuator
was used to adjust the interferogram contrast to a maximum. The interferogram had a
regular sinusoidal shape, which is additional evidence for the effective suppression of
high-order modes.

It is difficult to conduct a rigorous statistical analysis because only a few samples were
produced due to the complexity of the fabrication process. However, experimental tests of
the samples showed reproducible results.

The results of the measurements of half-wave voltages are in good agreement with the
predictions of the numerical simulation. A slight decrease in the half-wave voltage was
also observed with an increase in the width (W) (Figure 5).

4. Discussion

We used the simplest topology of an integrated optical modulator (straight waveguide
phase shifter) for a demonstration of the concept of waveguide mode filtering and high-
order modes suppression. The conditions for achieving a quasi-single-mode regime of
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operation in waveguides with a large cross-section and the possibility of its implementation
were analyzed and experimentally demonstrated.

To focus the attention on the losses induced by narrow electrodes, scattering losses
were not considered in the analysis. However, the presence of scattering losses will increase
the propagation losses in addition to the losses induced by metal electrodes. It is well
known that the scattering losses are caused by the roughness of waveguide edges [34], thus
the value of scattering losses depends on the overlap between the optical mode field and the
waveguide edges, which is larger for high-order modes. As a consequence, scattering losses
will increase the differential modal losses caused by metal electrodes and will enhance the
modal filtering effect.

Note that the sidewall angle had a fixed value in the analysis. The technology of
waveguide fabrication requires the etching of thin films of lithium niobate. In turn, the
etching of lithium niobate provides waveguide sidewalls with sufficient slope. It leads to
narrowing the gap between electrode edges and waveguide edges. An increase in sidewall
angle can be interpreted as a decrease in the effective width of the waveguide ridge and
vice versa, which was analyzed in this manuscript.

It should be mentioned that, for practical implementation, possible errors in waveg-
uide topology should be taken into account, in particular, deviations of waveguide ridge
width, interelectrode gap, and displacement between the waveguide symmetry axis and
the center of the interelectrode gap. The efficiency of mode filtering depends on these
parameters which cannot be precisely controlled in the case of contact photolithography
with a rather low resolution. However, the calculated dependences show that efficient
suppression of high-order modes is possible, even assuming possible errors.

The waveguide topology analyzed in this paper had a narrow interelectrode gap and a
wider waveguide ridge width than in standard topologies used in integrated optical TFLN
modulators. The choice of fabrication methods was typical for standard integrated optical
devices based on TFLN. Aurum, which was considered in this manuscript as the electrode
material, is being used for the fabrication of electrodes not only on thin lithium niobate
films but also on bulk lithium niobate substrates. Moreover, aurum electrodes are being
used in commercially available electro-optic modulators on lithium niobate substrates [35].
Thus, the considered waveguide device has no potential technological problems, and there
is no need for additional testing under temperature and environmental conditions. As
expected, the stability parameters of the device with the proposed topology will be the
same as those for standard integrated optical TFLN modulators.

It should be pointed out that the investigation was devoted to the induction of losses
in waveguide modes and a planar electrode configuration which is not suitable for high-
frequency modulation was considered. However, the proposed topology is compatible
with high-frequency modulator topologies. The interelectrode gap value G = 5 µm which
was chosen for the experimental samples is typical for coplanar electrodes optimized for
high-frequency optical modulators based on TFLN. The height of high-frequency electrodes
is also usually higher than that in fabricated samples (≈1–2 µm in contrast to hel = 200 nm
used in this work), and, as mentioned earlier, the considered effect is not dependent on
electrodes’ heights since it significantly exceeds the depth of light penetration into the metal.

In general, the presented method of mode filtering was considered for the simplest
waveguide topology but it has great potential for further investigations of its applicability
in various more complicated structures. The influence of metal electrodes on mode filtering
can be considered for other integrated optical devices like ring resonators, power splitters,
filters, etc.

Note that the optimal configuration which has been found for straight waveguides
should be optimized for other waveguide devices with a more complicated topology. For
example, wide and consequently multimode waveguides are often being used in ring
resonators for nonlinear optical applications [36]. Modes of curved multimode waveg-
uides have shifted optical modal fields and, consequently, slightly other configuration of
electrodes is necessary in this case.
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It should also be mentioned that methods for selective influence on the modal com-
positions of waveguides can be used not only for the fabrication of quasi-single-mode
waveguides using wide waveguides but also for the control of other parameters of waveg-
uide devices. For example, it can potentially be used for tuning a splitting ratio in power
splitters due to the different light spatial field distributions of symmetric and antisymmetric
modes in directional couplers [37]. In y-branches, where power splitting is performed not
through optical coupling but through wavefront division, the presence of metal layers
deposited near the branching region can potentially lead to the induction or suppression of
the antisymmetric mode and, in turn, to power splitting ratio change [38]. Moreover, the
influence of mode filtering can be investigated not only for etched TFLN waveguides but
also for hybrid waveguides on TFLN and for waveguides based on alternative material
platforms, such as silicon, silicon nitride, or A3B5 waveguides.

5. Conclusions

The results obtained show that filtering of a strongly localized fundamental mode and
effective suppression of weakly localized high-order modes of ridge TFLN waveguides is
possible with closely spaced metal electrodes.

The dependence of losses induced in the optical modes of an etched ridge TFLN
waveguide on the size of the interelectrode gap was calculated and analyzed for different
waveguide ridge widths. The influence of fabrication defects on optical losses and high-
order mode suppression including displacement errors in the proposed topology was
estimated. Additional aspects concerning the choice of materials, electrode configuration,
influence of fabrication errors and scattering losses, ways for optimization, and scientific
perspectives were considered and discussed.

Conditions for the quasi-single-mode operation regime of an optical waveguide were
determined. It was shown that the proposed topology can provide suppression of high-
order modes of more than 90 dB/cm. Experimental samples of integrated optical phase
modulators with the proposed topology were fabricated and tested. The observation
of intensity spatial distribution on the waveguide output confirmed the results of the
performed numerical investigation and proved the possibility of mode filtering by means
of metal electrodes. The performance of the fabricated experimental samples was tested
in a fiber-optic interferometer. The measured voltage-length product of the modulators
was ≈4 V·cm, which corresponds to the typical values known from the literature on phase
modulators based on TFLN [31].

Thus, the possibility of fabricating TFLN modulators with multimode waveguides
initially and subsequent mode filtering is demonstrated. Moreover, it was shown that, in
contrast to the conventional approach which requires the fabrication of narrow waveguides
using high-resolution electron-beam lithography or deep-ultraviolet photolithography,
the approach based on mode filtering in wide and initially multimode waveguides can
be considered as an alternative simple and cost-effective fabrication technique. Its po-
tential for efficient mode filtering and high-order mode suppression was shown to be
not only valuable for lower technological requirements but also sufficiently tolerant of
fabrication errors.

Note that the proposed method is potentially applicable in other waveguide topologies
and in more complex waveguide devices.

The considered topological solutions can be further used for the fast and cheap fabri-
cation of TFLN modulators using conventional contact photolithography. The proposed
mode filtering can be further used in other waveguide topologies and in more complex
waveguide devices.
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structured thin-film lithium niobate waveguides. Opt. Express 2017, 25, 6963. [CrossRef]

20. Li, T.; Wu, K.; Cai, M.; Xiao, Z.; Zhang, H.; Li, C.; Xiang, J.; Huang, Y.; Chen, J. A single-frequency single-resonator laser on
erbium-doped lithium niobate on insulator. APL Photonics 2021, 6, 101301. [CrossRef]

21. Xiao, Z.; Wu, K.; Cai, M.; Li, T.; Chen, J. Single-frequency integrated laser on erbium-doped lithium niobate on insulator. Opt. Lett.
2021, 46, 4128. [CrossRef]

22. Zhao, J.; Ma, C.; Rüsing, M.; Mookherjea, S. High quality entangled photon pair generation in periodically poled thin-film lithium
niobate waveguides. Phys. Rev. Lett. 2020, 124, 163603. [CrossRef]

23. Nehra, R.; Sekine, R.; Ledezma, L.; Guo, Q.; Gray, R.M.; Roy, A.; Marandi, A. Few-cycle vacuum squeezing in nanophotonics.
Science 2022, 377, 1333. [CrossRef]
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