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Abstract: In the present study, the structural, mechanical, electronic and optical properties of all-
inorganic vacancy-ordered double perovskites A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) are explored
by density functional theory. The structural and thermodynamic stabilities are confirmed by the
tolerance factor and negative formation energy. Moreover, by doping Ti ions into vacancy-ordered
double perovskite A2SnY6, the effect of Ti doping on the electronic and optical properties was in-
vestigated in detail. Then, according to the requirement of practical applications in photovoltaics,
the optimal concentration of Ti ions and the most suitable halide element are determined to screen
the right compositions. In addition, the mechanical, electronic and optical properties of the selected
compositions are discussed, exhibiting the maximum optical absorption both in the visible and
ultraviolet energy ranges; thus, the selected compositions can be considered as promising mate-
rials for application in solar photovoltaics. The results suggest a great potential of A2Sn1−xTixY6

(A = K, Rb, Cs; Y = Cl, Br, I) for further theoretical research as well as experimental research on the
photovoltaic performance of stable and toxic-free perovskite solar cells.

Keywords: vacancy-ordered; double perovskite; density functional theory; toxic-free; solar photovoltaics

1. Introduction

The global energy demand keeps increasing owning to the development of the inter-
national economy, and this motivates researchers to seek alternatives to conventional fossil
fuels, which are currently the main energy source but with limited reserves. Among the
alternatives, solar energy is both clean and endless, but most importantly, it is conveniently
available whenever and wherever possible. Therefore, it is considered as the long-term
and economic substitute for fossil fuel. As the leading source of renewable energy, the
performance of materials that are employed to use this energy source depends mostly
on their band gap and feasibility of application. In this regard, considerable efforts have
been made to find environmentally friendly and cost-effective technological systems and
utilize the energy spectrum for solar cells and thermoelectric generators [1–4]. At present,
the critical challenge is to find suitable materials, and much research has already been
conducted to exploit their capability in energy conversion [5–7].

Hybrid organic–inorganic materials, methylammonium lead halides [8,9], in per-
ovskite structures have proved successful as light absorbers in perovskite solar cells (PSCs)
due to their unique optical and electronic properties, such as strong optical absorption, tun-
able band gap and large carrier diffusion length. The efficiency of single-junction PSCs were
increased noticeably from 3.8% in 2009 [5] to 25.5% in 2022 [10,11], which exceeded that of
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many conventional semiconductor absorbers. Moreover, Catchpole et al. reported an effi-
ciency of 26.4% of solar cells by the tandem of PSCs and silicon-based solar cells [12], while
the predicted theoretical photoelectric conversion efficiency(PCE) of PSCs is 31.4% [13].
Although hybrid organic–inorganic perovskite-based optoelectronic devices have been
extensively researched, they are still far from commercialization since two critical problems
still exist and are urgent to be overcome. One is the intrinsic toxicity of lead possibly
leading to environmental pollution. The other is the poor structural stability of the volatile
and hygroscopic organic cations to ambient environments, such as oxygen [14,15], humid-
ity [16–18], light [19,20], temperature or thermal stress [21,22]. As a result, it is important to
find all-inorganic lead-free perovskite materials for photovoltaics and other optoelectronic
applications [23–26], and concerted efforts have been made to design new lead-free and
stable halide perovskite for solar cells as well as other optoelectronic applications [27–29].

Among the suitable alternatives, the all-inorganic vacancy-ordered double perovskites
of type A2BX6 have attracted much attention for application in photovoltaic technology
due to their long-term stability and environmentally friendly properties [30,31]. They are a
family of defect-ordered structural derivatives of the archetypal perovskite structure, and
their structure is obtained by doubling the conventional perovskite ABX3 unit cell along
the three different crystallographic axes and then removing every other B-site cation. The
remaining B-site cations form an ordered face-centered cubic arrangement. Since the [BX6]
octahedrons are not connected by alternating B-X bonds, and each anion is coordinated to
only one B-site cation, this structure can also be considered as an antifluorite arrangement
of anionic isolated [BX6] octahedrons bridged by A-site cations, to which these materials
are often referred. Compared with the conventional ABX3 structure, the vacancy-ordered
double perovskite A2BX6 structure has a tetravalent B-cation, instead of a bivalent B-
cation in ABX3, which endows it with enhanced air and moisture stability under ambient
conditions [23,30]. Although vacancy-ordered double perovskite materials have been
studied in the literature, previous research almost exclusively focused on their structural
and dynamic behaviors. Their properties relevant to specific potential applications in
photovoltaics and other optoelectronics have been seldom studied systematically.

In order to further optimize the properties of materials, substitutional alloying or dop-
ing has been demonstrated to be a very effective strategy. Doping is at present an important
method to improve the properties of perovskite materials, and vacancy-ordered double
perovskite can be readily doped with different ions at all three sites to obtain the desired
electronic and optical properties, especially in the sixfold coordinated tetravalent cation
site. In addition, there are a large variety of tetravalent ions that may be introduced into
the structure; thus, the compositional modification at the B-site of vacancy-ordered double
perovskite A2BX6 may cause the largest flexibility in optical and electronic properties.

As the typical representation of vacancy-ordered double perovskite A2SnY6, Cs2SnI6
was initially applied as a hole transport material for solar cells and attained ~8% effi-
ciency [24]. After that, much attention has been paid to its research. Recent research on
A2SnY6 has provided new prospects for a stabilized and environmentally friendly solar
cell material [32,33]. Cs2SnCl6, Cs2SnBr6 and Cs2SnI6 exhibit stable crystal structures at
ambient temperature with a direct band gap semiconducting character and were found
suitable for dye-sensitized solar cells [23]. However, there is still much room for improve-
ment in the future; therefore, researchers are seeking different variants by compositional
engineering to further enhance the power conversion efficiency of A2SnY6 perovskites.

In this work, we doped Ti ions into the B-site of a vacancy-ordered A2SnY6 double
perovskite structure, and then explored the structural, electronic and optical properties of
all-inorganic vacancy-ordered double perovskites A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I)
by density functional theory. The effect of Ti doping on the electronic and optical properties
is investigated and the optimal concentration of Ti ions and the most suitable halide element
are determined to screen the right compositions for practical applications in photovoltaics.
The mechanical, electronic and optical properties of the selected compositions are discussed



Nanomaterials 2023, 13, 2744 3 of 12

in detail. Our results are expected to provide a theoretical basis for the development of
stable and toxic-free perovskite solar cells.

2. Computational Methods

All the calculations in this work were performed using the Vienna ab initio simulation
package (VASP). The projector-augmented wave (PAW) method was applied to describe
the interactions between the core and valence electrons. The electronic exchange and
correlation energy was evaluated by using the generalized gradient approximation (GGA)
in the form of Perdew–Burke–Ernzerhof (PBE) functional. The cut-off energy of 550 eV was
used. The convergence criterion was set to 10−5 eV in energy, and all atomic positions and
crystal structures involved in this work were fully relaxed with the force convergence at
0.01 eV/Å. During the optimizing geometry and static energy calculations, the Monkhorst–
Pack k-point was chosen as 4 × 4 × 4. The elastic constants Cij were calculated by the
strain–stress relationship with finite differences implemented in the VASP code.

3. Results and Discussions
3.1. Structural Properties of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I)

The structural and thermodynamic stabilities of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl,
Br, I) are necessary for energy devices. Doping concentrations of Ti4+ by face-center
substitution with x = 0, 0.25, 0.5, 0.75 and 1 were considered in order to investigate the
effect of Ti4+ doping. The optimized crystal parameters of A2Sn1−xTixY6 (A = K, Rb, Cs;
Y = Cl, Br, I) are listed in Table S1 and the optimized crystal structures are plotted in Figure 1.
According to Table S1, the lattice parameter and cell volume increase gradually with the
increase in the atomic radius of A-site for the same B-site cation and Y-site anion. For the
same A-site and B-site cations, the lattice parameter and cell volume increase gradually
with the increase in the atomic radius of Y-site. When the A-site cation and Y-site anion are
fixed, the lattice parameter and cell volume decrease monotonously with the increase in the
concentration of Ti4+, which indicates the contraction of the cell. Among all A2Sn1−xTixY6
perovskites, K2TiCl6 has the lowest lattice parameter, at 10.025 Å, and Cs2SnI6 has the
highest lattice parameter, at 12.056 Å, which is very close to the reported values of 9.79 and
12.04 Å, respectively [34,35].
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The Goldschmidt tolerance factor t is used to evaluate whether the cation can be
replaced in a perovskite material and predict the structural stability of perovskite materials,
which is expressed by the following equation:

t =
rA + rY√

2(rSn/Ti + rY)
(1)

where rA and rY are the Shannon’s radii of A and Y atoms, respectively, and

rSn/Ti = (1− x)rSn + xrTi (2)
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When the Goldschmidt’s tolerance factor is in the range of 0.8–1.1, the structure of
the materials is generally formed [36,37]. Our calculated results of the tolerance factor
are shown in Figure 2, and it can be observed that the tolerance factor of A2Sn1−xTixY6
increases monotonously with the Ti content when the A-site cation and Y-site anion are
fixed. When the Ti content and the A-site are fixed, the tolerance factor increases with the
decrease in the atomic radius of the Y-site anion. When the Ti content and the Y-site are
fixed, the tolerance factor increases with the increase in the atomic radius of the A-site
cation. However, the tolerance factor is in the range of 0.96–1.08 for all A2Sn1−xTixY6
perovskites, which ensures their structural stability.
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In addition, in order to further study the thermodynamic stability of A2Sn1−xTixY6
perovskite materials, the formation energies Ef are obtained by the following formula [36]:

Ef =
[
EA2Sn1−xTixY6 − 2EA − (1− x)ESn − xETi − 6EY

]
/36 (3)

where EA2Sn1−xTixY6 is the total energy of the primitive cell; and EA, ESn, ETi and EY are the
energies of the A, Sn, Ti and Y atoms, respectively. According to Table 1, the formation
energy decreases gradually in the order of K > Rb > Cs for the same B-site cation and Y-site
anion. For the same A-site and B-site cations, the formation energy increases gradually
in the order of Cl < Br < I. When the A-site cation and Y-site anion are fixed, the forma-
tion energy decreases monotonously with the increase in the concentration of Ti4+. All
A2Sn1−xTixY6 perovskites exhibit negative values of formation energies, confirming that
they are thermodynamically favorable, where Cs2TiCl6 has the lowest formation energy of
−3.70 eV and K2SnI6 has the maximum formation energy of −2.19 eV.

Table 1. The formation energy of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I).

x 0 0.25 0.5 0.75 1

KSn1−xTixCl6 −2.99 −3.16 −3.34 −3.51 −3.68
KSn1−xTixBr6 −2.61 −2.77 −2.93 −3.09 −3.26
KSn1−xTixI6 −2.19 −2.34 −2.49 −2.64 −2.79

RbSn1−xTixCl6 −3.00 −3.17 −3.34 −3.51 −3.69
RbSn1−xTixBr6 −2.62 −2.78 −2.94 −3.10 −3.26
RbSn1−xTixI6 −2.20 −2.35 −2.50 −2.65 −2.80

CsSn1−xTixCl6 −3.01 −3.19 −3.36 −3.53 −3.70
CsSn1−xTixBr6 −2.64 −2.80 −2.96 −3.12 −3.29
CsSn1−xTixI6 −2.24 −2.39 −2.53 −2.68 −2.83



Nanomaterials 2023, 13, 2744 5 of 12

3.2. Screening of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) for Photovoltaic Applications

The band gap is an intrinsic property of materials that can not only influence the
performance of the materials directly, but also provides information about the possible
maximum theoretical efficiency of the materials. Thus, a critical factor for evaluating the
performance of solar cells is the electronic band gap of the light absorber. The ideal band
gap should be in the range of 0.9–1.6 eV [38] to obtain a theoretical efficiency higher than
25%. Especially when the band gap is around 1.3 eV, a maximum PCE in a single-junction
solar cell can be achieved according to the Shockley–Queisser limit [39]. The electronic band
structures of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) were calculated, and the compounds
all displayed semiconductor characteristic. The band structures are shown in Figures S1–S3;
Figure S1 shows the band structures of K2Sn1−xTixY6, Figure S2 shows the band structures
of Rb2Sn1−xTixY6 and Figure S3 shows the band structures of Cs2Sn1−xTixY6. Figure 3a–c
show the variation in band gap with the content of Ti in A2Sn1−xTixY6 (A = K, Rb, Cs;
Y = Cl, Br, I). The band gap decreases gradually in the order of Cl > Br > I for the same
A-site and B-site cations, which is in agreement with the trend of band gap in MAPbX3
(X = Cl, Br, I) halide perovskites [40]. With the increase in the A-site cation radius, the band
gap also increases for the same B-site cation and Y-site anion, indicating that the tilting of
the BY6 (B = Sn, Ti) octahedron dictated by the A-site cation can influence the electronic
structures of the material. Note that, when the Y-site is a Cl atom, the band gaps all decrease
monotonically with the increase in Ti content. When the Y-site is a Br atom, the band gaps
increase firstly and reach their maximum value at x = 0.5 before decreasing a little. When
the Y-site is an I atom, the band gaps increase monotonically with the increase in Ti content.
Based on the above calculation results, it can be observed that Ti doping plays a role in
adjusting the band gap of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I). In addition, we found
that the band gaps of A2Sn1−xTixBr6 (A = K, Rb, Cs) are all in the range of 1.2–1.6 eV and
are very close to that of MAPbI3 [41–43], according to which the most suitable candidate
for the Y-site is Br; thus, A2Sn1−xTixBr6 (A = K, Rb, Cs) can be considered as a promising
material for photovoltaic applications.

Since the most significant role of lead-free halide double perovskite in solar cells and
various opto-electronic applications is to act as a light-absorbing material, our primary
focus was to find out its application in the visible and ultraviolet light absorption spectrum.
The optical absorption is considered as an important property that can determine whether
the material is suitable for photovoltaic applications. The absorption coefficient shows the
light energy absorbed by the material, demonstrating direct transitions from the valence
band maximum (VBM) to the conduction band minimum (CBM) owning to the absorption
of the appropriate incident photon energies. For the sake of obtaining the optimal Ti doping
concentration, Figure 3d–f show the optical adsorption spectra of A2Sn1−xTixBr6 (A = K, Rb,
Cs) in a photon energy range from 0 to 4.5 eV. According to Figure 3d–f, the main optical
absorption occurs in two energy ranges of 1.5–3.1 eV and 3.1–4.5 eV, which are mainly
in the visible region and ultraviolet region, respectively. In both ranges, the replacement
of the A-site cation shows a slight influence on the optical absorption, while the optical
absorption intensity of A2Sn1−xTixBr6 (A = K, Rb, Cs) seems to be obviously influenced
by the presence of the Ti dopant. With the increase in Ti content, the optical absorption
coefficient increases monotonously, and when the Ti content x = 1, the optical absorption
coefficient reaches a maximum value.

Moreover, in the range of 1.5–3.1 eV, the maximum optical absorption coefficient
reaches 2.7 × 105, 2.7 × 105 and 2.9 × 105 cm−1 for A = K, Rb and Cs, respectively,
indicating a strong optical absorption ability in the visible light region. In the range of
3.1–4.5 eV, the Ti dopant results in a significant absorption peak in the ultraviolet region.
When the Ti content is x = 0.25, the peak value is approximately the same as that in the
visible region. However, the peak value is even larger than that in the visible region with the
further increase in Ti content x, and the peak position shifts to the higher energy direction.
The maximum optical absorption coefficients of A2Sn1−xTixBr6 (A = K, Rb, Cs) are as high
as 4.9 × 105, 4.8 × 105 and 4.7 × 105 cm−1 for A = K, Rb and Cs, respectively, indicating
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their significant potential to be used in ultraviolet-light-based devices. These favorable
absorption properties render A2TiBr6 (A = K, Rb, Cs) the most promising candidates for
photovoltaic applications. Therefore, we only focused on the properties of A2TiBr6 (A = K,
Rb, Cs) hereafter in this work.
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3.3. Mechanical, Electronic and Optical Properties of A2TiBr6 (A = K, Rb, Cs)

In order to assess the mechanical stability of the materials, it is necessary to de-
termine the elastic constants under applied stress. The elastic constants Cij of A2TiBr6
(A = K, Rb, Cs) were calculated by the strain–stress relationship with finite differences
implemented in the VASP code. Three independent elastic constants C11, C12 and C44 were
obtained for each compound of cubic A2TiBr6 (A = K, Rb, Cs). According to Born stability
conditions, all the structures of A2TiBr6 (A = K, Rb, Cs) are mechanically stable. Other
mechanical constants, such as the bulk modulus, shear modulus, Young’s modulus and
Poisson’s ratio, were also calculated to investigate the mechanical behavior of A2TiBr6
(A = K, Rb, Cs) by the Voigt–Reuss–Hill (VRH) approximation for polycrystals with Cij.
Figure 4 shows the three-dimensional Young’s modulus and Possion’s ratio of A2TiBr6
(A = K, Rb, Cs). Both the Young’s modulus and Possion’s ratio decrease with the increase
in the A-site ionic radius.
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Figure 5 shows the mechanical properties of A2TiBr6 (A = K, Rb, Cs). It can be found
that the elastic constants C11, C12 and C44 decrease monotonously with the increase in the
ionic radius of the A-site. K2TiBr6 has the highest Cij and Cs2TiBr6 has the lowest Cij. The
increase in the ionic radius of the A site plays a more important role in decreasing the
bulk modulus B and Young’s modulus E than in decreasing the shear modulus G. The
Pugh’s ratio B/G and Poisson’s ratio are two indicators that are usually used to evaluate
the ductile or brittle behavior of solid materials. If the Pugh’s ratio is lower than 1.75, the
material is considered to be brittle; otherwise, it is ductile. For the Possion’s ratio, if its
value is higher than 0.26, the material is considered to be ductile; otherwise, it is brittle.
From Figure 5, it can be seen that the A2TiBr6 (A = K, Rb, Cs) perovskites are all ductile
materials; thus, they are candidates of flexible photovoltaic devices. Since lower Pugh’s
ratio and Possion’s ratio values mean a higher hardness and vice versa, the hardness of
A2TiBr6 (A = K, Rb, Cs) is in the order of K2TiBr6 < Rb2TiBr6 < Cs2TiBr6.
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Figure 6 shows the band structures and the density of states of A2TiBr6 (A = K, Rb, Cs).
It can be observed that the band gap slightly increases with the increase in the A-site cation
radius, which is 1.38, 1.43 and 1.52 eV, for K2TiBr6, Rb2TiBr6 and Cs2TiBr6, respectively. In
order to better understand the origin of the conduction band and valence band, the density
of states (DOS) and partial DOS of A2TiBr6 (A = K, Rb, Cs) were plotted. It can be seen
that the Br-4p orbitals mainly contribute to the VBM, while the CBM receives its primary
contribution from the Ti-3d orbital and a very small amount from the Br-4p orbital. The
A-site cations in A2TiBr6 (A = K, Rb, Cs) contribute little to the band edges, indicating no
direct influence on the band gaps.
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In order to further check the orbital contribution, the decomposed charge density
distribution of VBM and CBM were calculated and are plotted in Figure 7. It can be seen
that the charge density of VBM is distributed on all Br atoms composed of antibonding state
of Br-4p and Br-4p, while the charge density of CBM is mainly distributed on Ti atoms. Both
the partial DOS and the decomposed charge density confirm the negligible contribution of
the A-site to the band edge and, as a result, there is no direct influence on the band gap.
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To confirm the possible application of A2TiBr6 (A = K, Rb, Cs) as a photovoltaic
material, the various optical parameters of A2TiBr6 (A = K, Rb, Cs) were calculated for the
incident energy range of 0–25 eV, as shown in Figure 8. The dielectric constant is the most
important parameter to illustrate the optical behavior of the material and it can be used
to calculate several parameters. The real part of the dielectric constant ε1(ω) shows the
polarization and dispersion of impinging light, and the static dielectric constant ε1(0) is 3.67,
3.44 and 3.17 for K2TiBr6, Rb2TiBr6 and Cs2TiBr6, respectively, according to Figure 8a, which
are inversely related to the respective band gaps. The imaginary part ε2(ω) demonstrates
the light absorption with the maximum absorption peaks at around 1.9–2.0 eV for A2TiBr6
(A = K, Rb, Cs), as shown in Figure 8b. The absorption coefficient measures the ability of the
materials to absorb light energy per centimeter. Figure 8c shows the absorption spectrum
of A2TiBr6 (A = K, Rb, Cs), in which the absorption edges are very important to indicate the
critical points after which the absorption linearly increases, and for A2TiBr6 (A = K, Rb, Cs),
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the absorption edges are all in the infrared energy range. In the visible energy range
(1.77–3.18 eV), the dominant absorption peak shifts to a higher energy direction when A is
from K to Cs. The refractive index is the ratio of the speed of light in vacuum to the speed
of light in the material, often used to measure the transparency of materials and it provides
details similar to the real part of the dielectric constant; thus, both curves display similar
trends. The calculated static refractive index n(0) for A2TiBr6 (A = K, Rb, Cs) was 1.91, 1.85
and 1.78, respectively, as shown in Figure 8d. Since the calculated static dielectric constant
is 3.67, 3.44 and 3.17, it is evident that these two parameters follow the following relation:

n(ω) =
√

ε1(ω) (4)
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The reflectivity shows the ability of the material to reflect the incident energies to
its surface, and the static reflectivity R(0) of A2TiBr6 (A = K, Rb, Cs) is 9.8, 9.0 and 7.9%,
respectively, according to Figure 8e, which can be used to evaluate the surface quality. The
maximum reflectivity is obtained as 31.9, 25.1 and 30.8% at 8.9, 9.2 and 7.4 eV, respectively.
The loss factor L(ω) shows the energy loss due to the dispersion and scattering of light, usu-
ally representing the interband, intraband and plasmonic interactions, which is displayed
in Figure 8f. The energy loss occurs when electrons move at a high speed through the
material and scatter, and reaches its maximum value when the energy of the incident light
is approximately 9 eV. Since the band gaps of A2TiBr6 (A = K, Rb, Cs) are well below the
energies where electron energy losses are maximum, A2TiBr6 (A = K, Rb, Cs) are potential
materials for photovoltaic applications.

4. Conclusions

In summary, we predicted a series of vacancy-ordered, lead-free, Ti-based all-inorganic
double perovskites for photovoltaic applications by density functional theory. The com-
prehensive theoretical investigation of the structural stability, mechanical, electronic and
optical properties of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) was performed. The
calculated tolerance factors of A2Sn1−xTixY6 (A = K, Rb, Cs; Y = Cl, Br, I) are in the range
of 0.96–1.08 for all compositions, which ensures their structural stability. The calculated
negative formation energies confirm they are also themodynamically favorable. The band
structure and optical absorption results show that A2Sn1−xTixBr6 (A = K, Rb, Cs) com-
pounds all show semiconductor characteristics with band gaps in the range of 0.9–1.6 eV,
and A2TiBr6 (A = K, Rb, Cs) compounds have the maximum optical absorption both in the
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visible and ultraviolet energy ranges; thus, they can be considered as promising materials
for photovoltaic applications. For A2TiBr6 (A = K, Rb, Cs) compounds, they are all ductile
perovskites with mechanically stable structures. The VBM of A2TiBr6 (A = K, Rb, Cs)
receives its mainly contribution from the Br-4p orbitals and the charge density of VBM
is distributed on all Br atoms composed of the antibonding state of Br-4p and Br-4p. The
CBM of A2TiBr6 (A = K, Rb, Cs) receives its primary contribution from the Ti-3d orbital
and a very small amount from the Br-4p orbital, and the charge density of CBM is mainly
distributed on Ti atoms. This work can provide theoretical guidance for further theoretical
research as well as experimental research on the application of A2TiBr6 (A = K, Rb, Cs) in
photovoltaic and other optoelectronic applications.
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www.mdpi.com/article/10.3390/nano13202744/s1. Figure S1: Band structures of K2Sn1−xTixY6 all-
inorganic double perovskites; Figure S2: Band structures of Rb2Sn1−xTixY6 all-inorganic double per-
ovskites; Figure S3: Band structures of Cs2Sn1−xTixY6 all-inorganic double perovskites; Table S1: The
optimized lattice parameters of A2TiBr6 (A = K, Rb, Cs) all-inorganic double perovskites.
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