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Abstract: Aromatic amines are important chemical intermediates that hold an irreplaceable signifi-
cance for synthesizing many chemical products. However, they may react with substances excreted
from human bodies to generate blood poisoning, skin eczema, and dermatitis disease and even
induce cancer-causing high risks to human health and the environment. Metal tungstates have been
proven to be highly efficient materials for developing various toxic gases or chemical detection sensor
systems. However, the major factors of the sensors, such as sensitivity, selectivity, stability, response,
and recovery times, still need to be optimized for practical technological applications. In this work,
Ni-doped ZnWO4 mixed metal tungstate nanocomposite material was synthesized by the hydrother-
mal method and explored as a sensor for the fluorometric determination of p-nitroaniline (p-NA).
Transmission electron microscopy (TEM) was used for the elucidation of the optimized particle
diameter. Scanning electron microscopy (SEM) was employed to observe the surface morphological
changes in the material during the solid-state reactions. The vibration modes of as-prepared samples
were analyzed using Fourier-transform infrared spectroscopy (FTIR). The chemical bonding and
oxidation states of individual elements involved in material synthesis were observed using X-ray
photoelectron spectroscopy (XPS). The PL activities of the metal tungstate nanoparticles were investi-
gated for the sensing of p-nitroaniline (p-NA). The obtained results demonstrated that ZnNiWO4 was
more effective in sensing p-NA than the other precursors were by using the quenching effect. The
material showed remarkably high sensitivity towards p-NA in a concentration range of 25–1000 µM,
and the limit of detection (LOD) value was found to be 1.93 × 10−8 M for ZnWO4, 2.17 × 10−8 M for
NiWO4, and 2.98 × 10−8 M for ZnNiWO4, respectively.

Keywords: nitroaromatics; fluorescence; metal tungstate nanoparticles; sensors; quenching

1. Introduction

Depending upon the demand of the developing society, chemical industries are pro-
ducing nitroaromatic compounds in large scale; these are further utilized in the processing
of pharmaceuticals, dyes, and pesticides [1,2]. Among the various nitroaromatic com-
pounds, p-nitroaniline (p-NA) has been recognized as a key intermediate compound that
is widely used in explosives, rubber, dyes, pesticides, and pharmaceutical products [3].
During chemical processing, p-NA can easily sneak into the environment as industrial
waste and may contaminate the soil and surface water. Since p-NA has good solubility
in water, it can be easily accumulated in humans as well as in aquatic animals and may
produce toxic, mutagenic, and carcinogenic effects such as liver injury, skin eczema, diar-
rhea, methemoglobinemia, and anemia [4,5]. Thus, in view of its poor biodegradability
and longtime, persistent nature, environmental protection agencies have categorized this
as a priority pollutant. Therefore, there is a need for fast, robust, economical, and sensi-
tive methods that can detect the minimum level of p-NA concentration in water. There
are various methods reported in the literature for the selective and sensitive detection
of various toxic nitroaromatic compounds such as UV–VIS spectrophotometry [6], elec-
troanalytical [7], liquid chromatography [8], and fluorescent probes [9,10]. Out of these
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methods, the fluorescence detection method has attracted much attention due to its simple
operation, rapid response, and high sensitivity as well as it being more cost effective and
highly efficient [11,12].

Although, due to the presence of an electron-withdrawing group NO2, many of the
nitroaromatic compounds are not intrinsically fluorescent [2]. Therefore, in this regard,
fluorescence-based sensors have been proven to be very promising materials for the se-
lective detection of nitroaromatic compounds even at trace levels [13]. One of the boons
of nanotechnology is to provide advanced techniques to fabricate new materials that can
detect, with enhanced efficiency and high sensitivity, nitroaromatic compounds [4,14]. The
high sensitivity of these materials is attributed to the small size of the particles associated
with nano dimensions and tailored morphology [15]. In recent times, metal tungstate-based
nanomaterials have attracted the attention of researchers because of their robust application
as scintillation detectors, photovoltaic electrochemical cells, humidity sensors, catalysts,
and photoluminescent devices [16–19]. Zinc tungstate (ZnWO4) nanoparticles (NPs) have
been recognized as one of the key important materials of the metal tungstate family be-
cause of high chemical stability, molecular and electronic versatility, and higher catalytic
activity [20–22]. Owing to their crystallite structure (monoclinic wolframite) and low band
gap (Eg = 3.2 eV), they have been utilized in various fields such as the magnetic, photo
electrocatalytic, photocatalytic, and luminescent fields [22,23]. However fast they may
be, the rate of electron hole recombination somehow restricts their photocatalytic as well
as luminescent activity. To enhance this activity, a proper ion doping method was taken
into consideration; this affected the band structure without mitigating the actual crystal
structure [24–26]. The dopant in the material formed various doping levels, which could
trap an electron hole pair, thus reducing the recombination rate and creating a new active
site, which increased the redox activities of the nanomaterial [27]. Here, in the present
study, Ni2+ was introduced in the crystal lattice of ZnWO4, which was attributable to
small differences in their ionic radii such as Ni2+ (0.072 nm) and Zn2+ (0.074 nm) [28]. The
resultant material, ZnNiWO4, was found to have small particle (16.68 nm) and monoclinic
morphology, which reflected the high sensing efficiency as compared to the precursors,
ZnWO4 and NiWO4.

In this work, the hydrothermal synthesis of ZnWO4, NiWO4, and ZnNiWO4 NPs was
performed at 300 ◦C for 12 h. The nanoparticles were characterized by FTIR, XRD, SEM-
EDS mapping, TEM-SAED, and XPS. The nanoparticles were explored for the fluorometric
detection of nitroaromatic compounds from water. A comparative study among ZnWO4,
NiWO4, and ZnNiWO4 was executed to determine whether to observe the effect of doping
of Ni2+ ions on ZnWO4 fluorescence activity and crystal structure.

2. Methods and Material
2.1. Chemicals and Reagents

Sodium tungstate dehydrate (Na2WO4·2H2O, 98%) was purchased from Loba Chemie,
Mumbai, India. Zinc nitrate hexahydrate (Ni (NO3)2·6H2O, 98%), nickel nitrate hexahy-
drate (Ni (NO3)2·6H2O, 98%), and p-nitroaniline (p-NA, 99%) were purchased from Merck
(Darmstadt, Germany). The ammonia solution (25%) was purchased from Otto Chemie
(Mumbai, India). All the chemicals were used without further refinement, and distilled
water was used for the preparation of the solutions.

2.2. Synthesis of Nanoparticles
2.2.1. Synthesis of ZnWO4 Nanoparticles

The ZnWO4 nanoparticles were synthesized by using a standard hydrothermal method,
reported elsewhere [22]. A total of 3 mmol each of sodium tungstate dihydrate and zinc
nitrate hexahydrate were dissolved separately in 25 mL of distilled water and stirred for
15 min by a magnetic stirrer. After 15 min, 10 mL of 25% liquor ammonia was added
dropwise in a way to maintain the pH of the mixture as 8–9. The mixture was transferred
to a Teflon-lined steel autoclave and heated in a convection oven at 180 ◦C for 12 h at a
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heating rate of 5 ◦C/min. After the completion of the reaction, the as-synthesized ZnWO4
NPs were collected through centrifugation, washed several times with distilled water and
absolute ethanol to remove any impurities, dried in a vacuum oven at 80 ◦C, and calcined
at 600 ◦C for 4 h.

2.2.2. Synthesis of NiWO4 Nanoparticles

The NiWO4 nanoparticles were synthesized by using a standard hydrothermal method,
reported elsewhere [22]. A total of 3 mmol each of sodium tungstate dihydrate and nickel
nitrate hexahydrate were dissolved separately in 25 mL of distilled water and stirred for
15 min by a magnetic stirrer. After 15 min, 10 mL of 25% liquor ammonia was added
dropwise in a way to maintain the pH of the mixture as 8–9. The mixture was transferred
to a Teflon-lined steel autoclave and heated in a convection oven at 180 ◦C for 12 h at a
heating rate of 5 ◦C/min. After the completion of the reaction, the as-synthesized NiWO4
NPs were collected through centrifugation, washed several times with distilled water and
absolute ethanol to remove any impurities, dried in a vacuum oven at 80 ◦C, and calcined
at 600 ◦C for 4 h.

2.2.3. Synthesis of ZnNiWO4 Nanocomposite

The mixed metal tungstate nanocrystals were synthesized by taking equimolar amounts
(5 mmol) of each, Zn (NO3)2·6H2O, Ni (NO3)2·6H2O, and Na2WO4·2H2O, separately, dis-
solved in 25 mL of distilled water. The solutions were mixed and stirred by a magnetic
stirrer for 15 min followed by the addition of 20 mL of 25% liquor ammonia to maintain the
pH of the mixture up to 8–9. The mixture was transferred to a Teflon-lined steel autoclave
and heated in a convection oven at 180 ◦C for 12 h at a heating rate of 5 ◦C/min. After
the completion of the reaction, the as-synthesized ZnNiWO4 NPs were collected through
centrifugation, washed several times with distilled water and absolute ethanol to remove
any impurities, dried in vacuum oven at 80 ◦C, and calcined at 600 ◦C for 4 h.

2.3. Characterization of the Synthesized Materials

The M–O- and W–O-type bonds in the synthesized nanoparticles were evaluated by
Fourier-transform infrared spectroscopy (FTIR) in the range of 4000–400 cm−1 by using a
Perkin Elmer Spectrum 2 ATR (GOPRO Inc., San Mateo, CA, USA). The crystalline structure,
crystallite size, and lattice phase of the synthesized nanoparticles were determined by
using a Rigaku Ultima 1 V XRD diffractometer (Rigaku, Austin, TX, USA). The surface
morphology of the material was studied using SEM integrated with EDX (SEM; JEOL
GSM 6510LV, Tokyo, Japan) to obtain information about the elemental composition along
with both the chemical composition and homogeneity of the synthesized ZnNiWO4 NPs.
The particle size and their distributions were observed through a transmission electron
microscope (TEM, TEM: JEM 2100, Tokyo, Japan). The chemical composition and elemental
status of ZnNiWO4 NPs were evaluated by an X-ray photoelectron spectrophotometer (XPS,
PHI 5000 Versa Probe III, Physical Electronics, Chanhassen, MN, USA). The fluorescence
studies of the synthesized nanoparticles towards nitroaromatic compounds were observed
through a fluorescence spectrometer, LS 55, PerkinElmer (Akron, OH, USA).

2.4. Sensing Experiment

Photoluminescence (PL) investigations of ZnWO4, NiWO4, and ZnNiWO4 NPs were
performed at room temperature utilizing the Perkin Elmer LS55 fluorescence spectropho-
tometer. The as-synthesized 2 mg of nanoparticles were dispersed in 3 mL of methanol,
and the photoluminescence spectra were recorded at various excitation wavelengths
(360–410 nm) with a regular gap of 10 nm. The successive addition of a specific amount of
p-NA was to evaluate the fluorometric detection capability of the as-synthesized nanopar-
ticles. All the injected solutions were sonicated for 5 min before fluorometric detection.
The λmax was observed at 390 nm before the analyte (p-nitroaniline) was added in the
methanol suspension of as-synthesized nanoparticles. Then photoluminescence intensity
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of the of ZnWO4, NiWO4, and ZnNiWO4 NPs was recorded with the successive addition
of a 25 µM solution of p-nitroaniline at a 320 nm excitation wavelength.

3. Results and Discussion
3.1. Material Characterization

Figure 1 shows the FTIR spectrum of the synthesized metals and the mixed metal
tungstate (AWO4) nanoparticles measured in the range of 400–4000 cm−1. This spectrum
was used to identify both the fingerprint and functional group regions in the sample.
In the case of ZnWO4, 815–890 cm−1 belonged to the Zn–W–O vibrations, 720 cm−1

belonged to the stretching vibrations of the W–O bond, and 635 cm−1 belonged to the
bending vibration of the W–O bond in WO6

6− octahedron, respectively [22]. The peaks
at 470 and 535 cm−1 were assigned to uniform deformation modes of Zn–O and W–O
bonds in ZnO6 and WO6 octahedrons, respectively [29]. In addition, the bands of the O–H
stretch and H–O–H bending vibrations were located at 3432 and 1632 cm−1, which revealed
that the synthesized samples contained a notable amount of some structural water and
surface-adsorbed water [30,31]. In the fingerprint region, the absorption bands at 535 cm−1

corresponded to the NiO6 polyhedral in the crystal structure of NiWO4, 880 and 830 cm−1

were due to the vibration of the WO2 entity present in W2O8 group, and 710 and 615 cm−1

were due to the typical two oxygen bridge (W2O8)− asymmetric stretching units [32]. The
FTIR of the mixed metal tungstate ZnNiWO4 NPs represented all the peaks pertaining
to ZnWO4 and NiWO4 considering 530 cm−1 as the Zn–O and 465 cm−1 as the Ni–O
molecular vibrations [33].
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Figure 1. FTIR spectra of ZnWO4 (black line), NiWO4 (red line), and ZnNiWO4 (blue line).

Figure 2 shows the XRD pattern of the ZnWO4, NiWO4, and ZnNiWO4 prepared
by the hydrothermal method at 180 ◦C for 12 h. The XRD spectra of ZnWO4 showed
characteristic peaks at 2θ value of 15.43◦, 19.03◦, 23.77◦, 24.50◦, 30.50◦, 36.46◦, 38.45◦,
41.20◦, 48.68◦, 51.61◦, 53.70◦, 61.76◦, and 64.90◦, which belonged to the Miller Indices (010),
(100), (011), (110), (111), (021), (200), (121), (022), (130), (221), (113), and (132), respectively
(JCPDs card no. 96-210-1675). All the diffraction peaks were readily indexed to a pure
wolframite-type monoclinic phase. Then, NiWO4 showed characteristic peaks at 2θ value
of 15◦, 19.30◦, 23.95◦, 24.99◦, 30.96◦, 36.65◦, 39.21◦, 41.76◦, 44.89◦, 46.52◦, 49.16◦, 52.47◦,
54.74◦, 62.41◦, 65.92◦, 69.10◦, and 72.70◦, which belonged to the Miller Indices (010), (100),
(011), (110), (111), (002), (200), (102), (112), (211), (022), (130), (202), (113), (311), (041), and
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(321), respectively (JCPDS card no. 96-591-0278), which represented a standard monoclinic
structure. Finally, the XRD pattern of the ZnNiWO4 NPs showed peaks ascribed to the
ZnWO4 at 41.39◦ (121) and 54.17◦ (221) and peaks ascribed to the NiWO4 at 36.37◦ (022),
44.45◦ (112), 46.13◦ (211), 65.16◦ (311), 68.39◦ (041), and 71.90◦ (321), respectively, which
suggested that Ni was successfully doped in the solid matrix of the ZnWO4. The structure
resulted as monoclinic but with reduced peak intensity due to the superposition of Ni in
the crystal structure [20,22]. Further information about the crystallite size and dislocation
density and the Scherrer equation was taken into consideration [34].

D =
0.9 × λ

β × Cosθ
(1)

Dislocation density (δ) =
1

D2 (2)

Interlayer spacing (d 111) =
nλ

2Sinθ
(3)

%Crystallinity =
Area under the crystalline peaks

Total area
× 100 (4)

where D is the crystallite size, λ is the characteristic wavelength of the X-ray, β represents
the angular width in radian at an intensity equal to half of its maximum of the peak, and θ is
the diffraction angle. The average particle sizes of the ZnWO4, NiWO4, and ZnNiWO4 NPs
were 14.43, 15.81, and 13.67 nm, respectively; they were calculated by using Equation (1)
and are given in Table 1.
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Figure 2. X-ray diffraction pattern of ZnWO4, NiWO4, and ZnNiWO4. 
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Table 1. XRD parameters of the synthesized ZnWO4, NiWO4, and ZnNiWO4 NPs.

Component 2θ FWHM (βhkl)
Interlayer Spacing

(d111) (A◦)
Size of Crystal
(nm) at (111)

Dislocation Density (δ)
× 1019 Lines (m−2)

% Crystallinity
(%)

NiWO4 31.02 0.52 2.88 15.81 1.21 72.83
ZnWO4 30.62 0.57 2.91 14.43 1.18 71.35

ZnNiWO4 30.77 0.60 2.90 13.67 1.19 60.87

The morphology of the ZnWO4, NiWO4, and ZnNiWO4 NPs prepared by the hy-
drothermal method at 180 ◦C was evaluated by a scanning electron microscope (SEM).
Figure 3A represents the SEM image of ZnWO4, in which particle are spherical in shape
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but executed at an agglomerated morphology. The SEM image of NiWO4 in Figure 3B
represents a fluffy morphology with associated flakes in the particulates. The SEM image
of the mixed metal tungstate ZnNiWO4 NPs in Figure 3C exhibited a collective array of
agglomerated spherical-shaped particles with some fluffy appearances due to the mixing of
Ni with ZnWO4. A semi-quantitative elemental analysis was performed on a selected area
by an energy dispersive X-ray spectroscopy technique in an SEM chamber; this confirmed
the presence of Zn (3.25%), Ni (3.17%), W (13.54%), and O (80.04%) elements, given in
Figure 3D. Figure 4 shows the selected area mapping of the ZnNiWO4 NPs showing the
uniform distribution of O, Zn, Ni, and W across the crystal structure.
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ZnNiWO4 represented an agglomerated monoclinic crystallites’ assembly with an average
size of 16.68 nm (Figure 5c), which was also supported by the XRD results (13.67 nm). The
SAED results, given in Figure 5d, also supported the Miller Indices values obtained for the
XRD spectra of the ZnNiWO4 NPs.
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Figure 5. TEM images of ZnNiWO4 NPs at (a) 100 nm, (b) 20 nm magnification, (c) Gaussian
distribution of the particle size, and (d) SAED of ZnNiWO4 NPs.

PL measurements are an effective method to monitor the process of photo-induced
electron recombination and transfer. The PL of the ZnWO4, NiWO4, and ZnNiWO4 NPs
was tested under 320 nm excitation, and the luminescence spectrum (Figure 6) spanned
the range from 400 nm to 700 nm, showing a prominent emission peak at 510 nm. As can
be seen in Figure 6, the PL intensity of the ZnNiWO4 NPs was lower than that of pure
ZnWO4 and NiWO4. Since zinc tungstate has a wolframite monoclinic crystal structure, the
luminescence properties of this crystal were noticeably different from NiWO4. The mixing
of Ni with ZnWO4 resulted in emission associated with the radiative transitions between
tungsten and oxygen within the (WO6)6− molecular complex followed by a charge transfer
from Ni2+ to Zn, which effectively suppressed the recombination of electron hole pairs [35].

To study the chemical status and elemental composition of ZnNiWO4 NPs further,
samples were investigated by X-ray photoelectron spectroscopy (XPS). The survey spectra,
given in Figure 7a, revealed the elemental composition of NPs consisting of Zn, Ni, W, and
O elements. To further evaluate the chemical status of elements in the crystal structure,
high-resolution spectra for W 4f, O 1s, Zn 2p, and Ni 2p of ZnNiWO4 were also recorded
(Figure 7b–e). Figure 7b consists of the W4f spectrum, which shows two spin-orbit doublets
with peaks at 47.30 eV and 63.77 eV, representing the W 4f7/2 and W 4f5/2 belonging
to the W6+ chemical state, respectively [36]. The O1s spectrum in Figure 7c resulted in a
single broad peak at 541.03 eV, representing the oxygen coordination with Zn–O, W–O, and
Ni–O, respectively [37]. Figure 7d displays the two major peaks at 868.95 eV and 890.71 eV,
assigned to Ni 2p3/2 and Ni 2p1/2 spin-orbit peaks with their corresponding shake-up
satellites. The Gaussian deconvolution of the Ni 2p3/2 line belonged to Ni2+ in the Ni



Nanomaterials 2023, 13, 362 8 of 17

(OH)2 peaks, while the Ni 2p1/2 line belonged to the Ni2+ ions, respectively [38]. The Zn
2p spectrum (Figure 7e) of ZnNiWO4 showed two peaks at 984.83 eV and 1006.40 eV, which
were respectively attributed to Zn 2p1/2 and Zn 2p3/2 and suggested the presence of
Zn2+ ions [39].
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Figure 6. Photoluminescence (PL) spectra of ZnWO4, NiWO4, and ZnNiWO4 recorded at 320 nm
excitation wavelength dispersed in methanol.
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3.2. Photoluminescence Studies for Detection of p-Nitroaniline
3.2.1. Effect of Solvent

To evaluate the effect of a particulate solvent on the fluorescence intensity of the
ZnNiWO4 NPs, experiments were conducted by immersing 2 mg of NPs in 5 mL of
various solvents such as tetrahydrofuran (THF), methanol (MeOH), dimethyl sulfoxide
(DMSO), deionized water (H2O), toluene (C6H5CH3), ethanol (EtOH), acetonitrile (ACN),
hexane (C6H14), and acetone (CH3COCH3). The results suggested that, with different
solvents, the emission peak intensity of the synthesized mixed NPs was found to be
different. Figure 8 shows that the ZnNiWO4 NPs exhibited a maximum fluorescence
emission intensity at 473 nm at an excitation wavelength of 320 nm with methanol (MeOH)
followed by acetonitrile (ACN) and then DMSO. The high emission intensity belonged to
radiative transitions between tungsten and oxygen within the (WO6)6− molecular complex,
which was influenced by the polarity of the solvent [39,40]. Therefore, based on the
results, the ZnNiWO4 NPs with methanol were chosen as a blank for the detection of
nitroaromatic compounds.
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Figure 8. Solvent selection at which ZnNiWO4 exhibited maximum fluorescence intensity obtained
at 320 nm excitation wavelength.

3.2.2. Selectivity of Nitro-Compound

The fluorescence-sensing properties of ZnWO4, NiWO4, and ZnNiWO4 for NACs,
such as 2-nitrophenol (2-NP), 4-nitrobenzaldehyde (4-NB), m-nitrophenol (m-NP), and
p-nitroaniline (p-NA), were investigated with methanol as a solvent medium. As shown
in Figure 9a–c, strong emission peaks at 473 nm at 320 nm excitation wavelength were ob-
served for p-NA by ZnWO4, NiWO4, and ZnNiWO4 in a methanol environment, which sug-
gested that p-NA was most comprehended by metal tungstate and mixed metal tungstate
nanoparticles. This phenomenon could have been caused by the hydrogen bond and the
strong radiative transitions between tungsten and oxygen within the (WO6)6− molecular
complex [36,41]. The order of detection was found to be p-NA > 2-NP > m-NP > 4-NB.
Therefore, p-NA was chosen for further experimental analysis.
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Figure 9. Effect of various nitroaromatics on the fluorescence spectra of (a) ZnWO4, (b) NiWO4, and
(c) ZnNiWO4, recorded at 320 nm excitation wavelength.

3.2.3. Effect of p-NA Concentration

To explore the fluorometric detection ability of synthesized ZnWO4, NiWO4, and
ZnNiWO4 NPs dispersed in methanol towards p-NA, fluorescence titrations were per-
formed with an incremental concentration of p-NA from 25 µM to 1000 µM. It was
seen (Figure 10a–c) that, with increase in concentration of p-NA, there was a slight de-
crease in the fluorescence intensity of the synthesized nanoparticles, suggesting an effi-
cient quenching effect. The fluorescence quenching efficiency can be calculated by using
[(F0 − F)/F0] × 100%, where F0 is the initial fluorescence intensity of dispersed nanoparti-
cles in methanol and F is the fluorescence intensity in the presence of p-NA. The quench-
ing effects for ZnWO4, NiWO4, and ZnNiWO4 NPs were found to be 93%, 94%, and
98%, respectively. The experiment showed that nitroaromatic compounds exhibited a
stronger quenching effect, which was ascribed to the strong electron-withdrawing NO2
group [2,3,42]. Therefore, the mixed metal tungstate nanoparticles showed an improved
quenching effect towards a higher concentration of p-NA as compared to its precursor.



Nanomaterials 2023, 13, 362 11 of 17

Nanomaterials 2023, 13, x FOR PEER REVIEW 12 of 18 
 

 

The sensitivity of the sensor was evaluated by the Stern–Volmer equation, given by 

Equation (5) [43], 

0
SV

F
=1+K [Q]

F
 (5) 

where Ksv is the Stern–Volmer constant, F0 and F are the fluorescence intensities before 

and after adding an analyte, respectively, and [Q] is the concentration of the p-NA. Figure 

11a–c represents the Stern–Volmer plots for the ZnWO4, NiWO4, and ZnNiWO4 NPs. The 

high value of Ksv with a regression constant, given in Table 2, for ZnNiWO4 (0.018) as 

compared to ZnWO4 (0.015) and NiWO4 (0.016) suggested that the mixed metal tungstate 

nanoparticles were proven to be better sensors for p-NA. The limit of detection (LOD) 

value for p-NA was found to be 1.93 × 10−8 M for ZnWO4, 2.17 × 10−8 M for NiWO4, and 2.98 

× 10−8 M for ZnNiWO4, respectively. 

545 550 555 560 565 570 575
0

1000

2000

3000

4000

5000

6000

7000

8000

I
n

te
s
n

it
y

 (
c
o

u
n

ts
)

Wavelength (nm)

 Blank

 25 mM

 50 mM

 100 mM

 250 mM

 500 mM

 1000 mM

(a)
Z

n
W

O
4
+

 p
-

N
it

ro
a
n

il
in

e

 

545 550 555 560 565 570 575

0

2,000

4,000

6,000

8,000

10,000

12,000
 Blank

 25 mM

 50 mM

 100 mM

 250 mM

 500 mM

 1000 mM

I
n

te
s
n

it
y

 (
c
o

u
n

ts
)

Wavelength (nm)

N
iW

O
4
+

 p
-

N
it

ro
a
n

il
in

e

(b)

 

545 550 555 560 565 570 575

0

1000

2000

3000

4000

5000

6000
 Blank

 25 mM

 50 mM

 100 mM

 250 mM

 500 mM

 1000 mM

Z
n
N

iW
O

4
+

 p
-

N
it

ro
a
n
il

in
e

(c)

I
n

te
s
n

it
y
 (

c
o
u

n
ts

)

Wavelength (nm)  

 

Figure 10. Effect of varying p-NA concentrations on fluorescence intensity of (a) ZnWO4, (b) NiWO4, 

and (c) ZnNiWO4, recorded at 320 nm excitation wavelength. 
Figure 10. Effect of varying p-NA concentrations on fluorescence intensity of (a) ZnWO4, (b) NiWO4,
and (c) ZnNiWO4, recorded at 320 nm excitation wavelength.

The sensitivity of the sensor was evaluated by the Stern–Volmer equation, given by
Equation (5) [43],

F0

F
= 1 + KSV[Q] (5)

where Ksv is the Stern–Volmer constant, F0 and F are the fluorescence intensities before and
after adding an analyte, respectively, and [Q] is the concentration of the p-NA. Figure 11a–c
represents the Stern–Volmer plots for the ZnWO4, NiWO4, and ZnNiWO4 NPs. The
high value of Ksv with a regression constant, given in Table 2, for ZnNiWO4 (0.018) as
compared to ZnWO4 (0.015) and NiWO4 (0.016) suggested that the mixed metal tungstate
nanoparticles were proven to be better sensors for p-NA. The limit of detection (LOD)
value for p-NA was found to be 1.93 × 10−8 M for ZnWO4, 2.17 × 10−8 M for NiWO4, and
2.98 × 10−8 M for ZnNiWO4, respectively.
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Table 2. Stern–Volmer parameters calculated for ZnWO4, NiWO4, and ZnNiWO4 NPs.

Material KSV R2 LOD (M)

ZnWO4 0.015 0.98 1.93 × 10−8

NiWO4 0.016 0.98 2.17 × 10−8

ZnNiWO4 0.018 0.97 2.98 × 10−8

3.3. Anti-Interference Test

The anti-interference capability of the synthesized nanocomposite sensor ZnNiWO4
was tested by comparing the PL intensities with p-NA and its analogs such as m-nitroaniline,
o-nitroaniline, nitrobenzene, p-nitrotoluene, o-nitrotoluene, and p-chloronitrobenzene. The
obtained results are given in Figure 12, in which the first column represents the PL intensity
of the interfering agent (25 µM) with ZnNiWO4 and the second column represents the PL
intensity of the interfering agent (25 µM), p-NA (50 µM) with ZnNiWO4 in a methanol
environment. It can be seen from the results that the presence of interfering agents had
no effect on the sensing capability of ZnNiWO4 towards p-NA, which suggested that the
synthesized nanomaterial had a very good selectivity and sensitivity for p-NA.
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Figure 12. Anti-interference test for ZnNiWO4 for p-NA in presence of its analog.

3.4. Recyclability Test

In order to evaluate the sensing capacity of a sensor, the recyclable usability is an
important property of the material. Fluorescence titration experiments were performed
for ZnNiWO4 towards p-NA (50 µM) in a repeated mode. After cycle 1, the material
was washed with methanol three to four times, dried in an oven, and then dispersed in
methanol to observe the fluorescence intensity. Then, for cycle 2, the material was again
tested for the sensing of p-NA, filtered, and then washed. This procedure was recorded
until six cycles of reusability, and the obtained results are given in Figure 13. The black
column bar represents the fluorescence intensity of ZnNiWO4 with p-NA, while the red
column bar represents the fluorescence intensity of ZnNiWO4 without the p-NA. It can be
seen from the results that, for up to six repeatable cycles of use, there was no appreciable
change in the fluorescence intensity of the synthesized material, which suggested that
the material was highly stable towards the sensing of p-NA; this was supported by XRD
analysis. The XRD spectra of the material after six cycles of use are given in Figure 13b,
which shows no change in the structure of the material.
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Table 3 compares the LOD values for p-NA-associated sensor materials, by various
methods, with the outcomes of present study. It was concluded, based on the data, that
the synthesized ZnNiWO4 NPs had high sensitivity and LOD values as compared to other
methods or materials reported in the literature.

Table 3. Comparison of LOD with the literature.

Sensors Methods LOD (M) Reference

Zn (II)-MOF Fluorescence 4.7 × 10−5 [44]
ZnO NRs/fluorine-doped tin oxide Electrochemical 0.5 × 10−6 [45]

Copper nanoparticles-embedded chitosan Electrochemical 0.37 × 10−6 [46]
1,2,3-triazolyl PTPTB Fluorescence 4.2 × 10−6 [47]

Au-on-Pd NP Voltametric 0.17 × 10−6 [48]
Cucurbituril-modified CdTe quantum

dots (CB@QDs) Fluorescence 6 × 10−8 [49]

Chitosan-Ag NPs/CPE Voltametric 0.86 × 10−6 [50]
ZnNiWO4 NPs Fluorescence 2.98 × 10−8 Present Study

4. Conclusions

In the present study, ZnWO4, NiWO4, and mixed metal ZnNiWO4 NPs were synthe-
sized through a hydrothermal process at 180 ◦C for 12 h. The synthesized nanoparticles
were characterized by FTIR, XRD, SEM–EDX mapping, TEM, XPS, and PL spectroscopic
techniques. The FTIR results well explained the formation of Zn–O–Ni and W–O types of
bonding in mixed metal ZnNiWO4 NPs. The XRD results revealed a distorted monoclinic
structure of the mixed metal ZnNiWO4 NPs with a reduced intensity due to the superposi-
tion of Ni in the crystal structure and 13.67 nm as crystallite size at d111 peak, which was
also supported by TEM analysis. The as-synthesized ZnWO4, NiWO4, and mixed metal
ZnNiWO4 NPs exhibited maximum fluorescence emission with methanol as a solvent
and were most sensitive towards p-nitroaniline among various nitroaromatic compounds.
The order of detection was found to be p-NA > 2-NP > m-NP > 4-NB. With an increase
in the concentration of p-NA from 25 µM to 1000 µM, there was a slight decrease in the
fluorescence intensity of the synthesized nanoparticles, suggesting an efficient quenching
effect. The quenching effects for ZnWO4, NiWO4, and ZnNiWO4 NPs were found to be
93%, 94%, and 98%, respectively. The high value of the Stern–Volmer constant Ksv with
regression constant, given in Table 2, for ZnNiWO4 (0.018) as compared to ZnWO4 (0.015)
and NiWO4 (0.016) suggested that mixed metal tungstate nanoparticles were proven to
be better sensors for p-NA. The limit of detection (LOD) value for p-NA was found to be
1.93 × 10−8 M for ZnWO4, 2.17 × 10−8 M for NiWO4, and 2.98 × 10−8 M for ZnNiWO4,
respectively. This work provides a suitable means to develop a new class of potential
metal-doped tungstate nanocomposite materials for detecting and sensing various toxic
and carcinogenic organic pollutants with high efficiency and cost effectiveness through the
combination of experimental and theoretical perspectives.
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