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Abstract: The increase in demand for energy storage devices, including portable electronic devices,
electronic mobile devices, and energy storage systems, has led to substantial growth in the market
for Li-ion batteries (LiB). However, the resulting environmental concerns from the waste of LiB
and pollutants from the manufacturing process have attracted considerable attention. In particular,
N-methylpyrrolidone, which is utilized during the manufacturing process for preparing cathode
or anode slurries, is a toxic organic pollutant. Therefore, the dry-based process for electrodes is of
special interest nowadays. Herein, we report the fabrication of a cathode by a mortar-based dry
process using NCM811, a carbon conductor, and poly(tetrafluoroethylene)binder. The electrochemical
performance of the cathode was compared in terms of the types of conductors: carbon nanotubes and
carbon black. The electrodes with carbon nanotubes showed an ameliorated performance in terms of
cycle testing, capacity retention, and mechanical properties.
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1. Introduction

Recently, owing to the demand for energy storage systems, including electric car
batteries, the requirement for the production of secondary batteries, particularly, Li-ion
batteries (LiB) is significantly high [1–6]. In addition to the advancements in the search
for alternatives for energy storage systems, research has been devoted to developing high-
performance LiBs with better safety and lifetime [7–12]. Simultaneously, there has been
considerable attention on environmental issues potentially arising from the waste or manu-
facturing procedures of LiB [13–19]. During the fabrication of cathodes or anodes, most
industries have utilized N-methylpyrrolidone (NMP)-based slurry containing active mate-
rials, conductors, binders, and several additives [20–23]. However, owing to factory safety
and the generated pollutants, environmental regulations in the near future concerning
organic solvents will lead to new approaches to preparing LiB components [24]. Several
excellent methods have been reported, including water-based electrode slurries. Rongyu
et al. and Minh et al. reported water-soluble binders for anode electrodes in LIBs [25,26].
Weiwen et al. also reported water-based binders for cathode electrodes in Li-S batteries [27].
However, adopting an aqueous-based slurry on the cathode electrode results in limitations
because most of the active materials in the cathode are unstable under water and humidity
exposure. In addition, wet processing such as NMP and aqueous-based slurry methods
require a long processing time and cost because the solvent must be sufficiently dried, and
microstructural defects may occur on the electrode surface while the solvent evaporates.
Therefore, dry processes to fabricate cathodes, including the dry jet and mortar methods,
which were recently reported, is essential. Mohanad et al. reported a solvent-free dry-
powder coating process for NCM-positive electrodes in LIBs. Dylan et al. reported a dry
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pressing method for binder-free Li-ion electrodes, and Ludwiget et al. reported a dry pow-
der painting process of electrodes for LIB [28–30]. In addition, the agate mortar method has
been adopted to disperse active materials and conductors into binders; however, limited
information has been provided so far [31,32].

In this study, we report a dry-processed LiB cathode composed of NCM811, poly
(tetrafluoroethylene) (PTFE) binders, and carbon conductors. We compared the electro-
chemical performances in terms of the types of conductors: carbon nanotubes (CNT) and
carbon black (CB). All components in the cathodes are effectively dispersed in the PTFE
binder using the agate mortar method without the addition of an organic solvent. Since the
solvent removal process is not required, the dry process using the PTFE binder can reduce
the processing time and does not result in unnecessary voids on the electrode surface. The
density of the cathode is slightly higher in the case of the CNT conductor than in the case
of the CB conductor, resulting in enhanced electrochemical performance, including overall
capacity, durability, and cycle performance. The results of this study can provide basic
guidelines for future battery designers to consider solvent-free processes. In addition, these
solvent-free processes could be effectively utilized in the fabrication of all-solid-state LiB.

2. Materials and Methods
2.1. Materials

CNT (JEIO, Republic of Korea, 5~7 nm) and carbon black Super P (Alfa Aesar, Con-
ductive 99+%, 40 nm) were used as conductive additives in this study. LiNi0.8Co0.1Mn0.1O2
(NCM811) (Wellcos, Republic of Korea, 7~14 µm) was used as the cathode material, and
polytetrafluoroethylene (PTFE) (Chemours-Mitsui Fluoroproducts Co.,Tokyo Ltd., Japan,
495 µm) was used as the binder without further purification.

Scanning electron microscopy (SEM) (TESCAN. CLARA) was used to investigate the
microstructure of the cathode before and after cycling. The mechanical properties of the
cathode with a thickness of approximately 250 µm were analyzed using a universal testing
machine (UTM; Lloyd LRX Plus, AMETEK). Electrochemical impedance spectroscopy (EIS,
Ivium-n-stat) was used to perform impedance analysis, and a battery testing system (WBCS
3000; WonAtech, Seoul, Republic of Korea) was used to analyze the cycle performance and
discharge C-rate capacity.

2.2. Preparation of Dry Cathode Sheet Using Agate Mortar Method (Dry Process)

To prepare the cathode, all materials were dried in a vacuum oven at 80 ◦C for 3 h.
NCM811, CNT or CB, and PTFE were weighed and dispersed using an agate mortar until
the color became homogeneous (approximately 1 h). The mixture was spread evenly on
a protective film (polyimide film) and compressed using a hydraulic press (30 MPa) for
10 min to reduce voids. Subsequently, it was pressed several times using a roll press to
attain the target thickness (200–300 µm) and increase the density of the electrode. The
dry cathode sheet was cut into 14 Ø sizes using a punch machine and compressed with
21 µm-aluminum foil at 100 ◦C using a hydraulic press for 5 min to assemble the coin cell.

2.3. Electrochemical Measurements

Using a 14 ∅-sized dry-process cathode, 2032-type half cells were assembled using
a polypropylene separator (PP separators film celgard 2400), few drops of 1.2 M LiPF6
in EC:EMC (3:7 v/v + VC 2 wt.%) as an electrolyte and Li foil (as an anode) under an
argon atmosphere glove box (H2O < 1 ppm, O2 < 0.1 ppm) to evaluate the electrochemical
performances of the cathode. After aging, the cycle test was performed in the range of 3.0
to 4.2 V, at a rate of 0.1 C using a battery testing system. The discharge test was conducted
at various speeds of 0.1–1 C. The impedance of the coin cells before and after cycling was
also evaluated using EIS.
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3. Results

Figure 1 shows the overall procedure for preparing the cathode using the agate mortar
method (dry process without any solvent). Initially, the entire component of the cath-
ode (active materials, carbon conductor, and PTFE) in the powder state was poured and
mortared mechanically until a homogenous dispersion was obtained (inset of Figure 1).
After sufficient mortaring (approximately 1 h), a paste-like homogeneous mixture was
obtained, as shown in Figure 1. Following additional hydraulic pressing and roll pressing
to increase the electrode density, these mixtures were placed onto a current collector (alu-
minum foil) and hot-pressed for 5 min at 100 ◦C. Additional roll-pressings were performed
to ensure enhanced electrode density and a regular interface. Coin cells (2032 type) were
then assembled to evaluate the electrochemical performance of the cathode. Further, the
effect of the conductor type on the overall battery performance was analyzed.
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Figure 1. The overall process for dry process LIB cell in this study.

Figure 2 shows the top and cross-sectional SEM images of the prepared cathodes.
Interestingly, in both the CNT- and CB-based cathodes, the spherical shape of NCM811
was maintained after the harsh mortar process. In the cross-sectional SEM images, the
average thickness of the dry CNT cathode was 300 µm, and that of the CB-based cathode
was 247 µm. No perceptible differences in the top views of the electrodes fabricated using
different carbon conductors were evident. However, the electrode prepared using the CNT
conductor showed less porosity, resulting in a higher electrode density. It is also proven by
the analysis of BET surface area (Figure S1). The BET surface areas of CB- and CNT-based
electrodes are measured as 11.25 m2/g, and 4.23 m2/g, respectively. In all cases, at different
electrode compositions (Table 1), the electrode fabricated using the CNT conductor had a
higher electrode density than that fabricated using the CB conductor. The electrode density
of the CB-based dry cathode sheet (85:10:5) was 3.02 g/cm3, while that of the CNT-based
dry cathode sheet of the same ratio showed the highest density of 3.40 g/cm3. It also
summarized the detail information of each electrode in Table S1. Furthermore, even at
other dry-cathode–sheet ratios, the density of the CNT-based cathode was higher than that
of the CB-based cathode sheet. This might be attributed to the fibril structure of the CNT
and the ensuing entanglement, which are beneficial for increasing the adhesion between
the binder and active materials [33]. The EDX mapping of the cathode sheet from the
dry process indicates the noticeable dispersion of all components (Co, Ni, Mn, C, and F)
(Figures S2 and S3), implying that the mortar method is an excellent alternative to the
wet-based method (NMP-based slurry) for the preparation of cathode or anode in LiBs.

The mechanical properties of the cathode slurry from the dry process are also suitable
for use in LiB electrodes. Figure 3a,b shows the strain–stress curves of the CNT- and
CB-based cathodes with respect to different ratios of the components. In both cases, the
maximum stress of the CNT paste is higher than that of the CB paste. This is also the
result of the lower porosity of the CNT-based paste, and evidently, the entanglement of
CNT is beneficial for increasing the mechanical properties of the electrode. In addition, the
overall mechanical properties of the cathode paste from the dry process were comparable
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to those of flexible battery electrodes, as shown in Figure 3c. The folding/unfolding of
the electrode does not deteriorate its overall properties, implying that it can be applied in
flexible batteries or pouch batteries.
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Table 1. Electrode density from dry−process CNT and dry−process CB-based cathode sheet.

Sample Ratio of
NCM: Carbon/CB: Binder

Electrode Density
(g/cm3)

Electrode
Loading Level

(mg/cm2)

Dry-CNT-90 90:5:5 3.25 65

Dry-CNT-85 85:10:5 3.40 71

Dry-CB-90 90:5:5 2.95 65

Dry-CB-85 85:10:5 3.02 60
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free-standing dry−process cathode sheet before and after folding (CNT-based cathode).

The CNT paste with higher electrode densities and better mechanical properties than
CB paste are also advantageous for ameliorating the electrochemical performance of LiB.
The coin cell was assembled using Celgard as the separator, Li metal as the anode, and
LiPF6 in EC:EMC (3:7 v/v + VC 2 wt.%) as the electrolyte to analyze the electrochemical per-
formance of the dry-processed cathode. We employed electrodes comprising components
of different ratios and observed that the cycle performance in the LiB was enhanced with
increasing amounts of carbon conductors in all cases. This indicates that the electron con-
ductance in the cathode is a significant factor in the dry process. However, the recent trend
is to increase storage capacitance in LiBs; therefore, determining the optimal condition to
utilize a minimum amount of carbon conductor is essential. Fortunately, CNT conductors
exhibit better performance than CB conductors at low concentrations. Figure 4a shows
a comparison of the cycle performances of the CNT- and CB-based cathodes at a ratio of
85:10:5 (NCM811:carbon:binder). A lower amount of CNT than used in this condition
shows poor stability in the cycle test in our manual mortar procedure. Under these con-
ditions, the cycle performance of the CB paste is still poor, but a stable cycle performance
can be obtained in the case of CNT at a 85:10:5 ratio until 100 cycles at a charge/discharge
rate of 0.1 C. The discharge capacity of the CNT-based cathode was 205 mAh g−1, which re-
mained at 155 mAh g−1 after 100 cycles with a capacity retention of 75%, whereas the initial
capacity of the CB-based cathode cell was 175 mAh g−1, which significantly decreased after
thirty cycles. The capacity retention of the CNT-based cathode is superior to that of the
CB-based cathode at different discharge rates (Figure 4b), indicating that a one-dimensional
carbon conductor, such as CNT, is more advantageous than CB in the dry process. General
0-dimensional CB exists as point particles in the electrode mixture, so a large amount is
required to connect to each material. On the other hand, since one-dimensional CNT are in
the form of linear, it can uniformly connect electrode materials with a small amount, and
it helps charges to move better to the electrode than CB. The C-rate capacity of the CNT-
and CB-based cathode was compared under the range of 3.0 to 4.2 V by charging at 0.1 C
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and discharging at 0.11 C. Until a discharge rate of 0.4 C, the capacities of the CNT- and
CB-based cathode cells were similar at 94% and 93%, respectively. However, the capacity
retention at a higher discharging rate (above 0.6 C) significantly decreased in the case of the
CB-based electrode. In particular, when discharged at 1 C, the capacity of the CNT-based
cell was 67%, and that of the CB-based cell was 52%, indicating that the CNT-based cell
showed better performance than the CB-based cell.
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dry−process CNT and CB cathode cell (charged under 0.1 C rate).

The advantage of the CNT paste in the dry process is more evident in the Nyquist plot
of each cathode (Figure 5a,b) after the cycle test. The impedances of CNT and CB were
initially comparable (slightly higher in CB paste than in CNT paste), but in the case of the
CNT-based cathode, the resistance increased by approximately 1.5 times after 60 cycles,
whereas the resistance of the CB-based cathode increased significantly by approximately
three times. In the case of the CNT based cathode, the resistance was 16 Ω at 1 kHz and
23 Ω at 1 Hz, and after 60 cycles, each resistance increased to 28 Ω and 49 Ω. The resistance
of the CB-based cathode was 18 Ω at 1 kHz and 27 Ω at 1 Hz, which was initially similar
to that of CNT. However, after 60 cycles, the resistance of the CB-based cathode more
increased to 31 Ω at 1 kHz and 63 Ω at 1 Hz. The impedance loss of the CB-based conductor
was much larger than that of the CNT-based conductor, indicating the poor formation
of the electrical current pathway during the mortar process. After charge/discharge, the
conductivity of the CNT-based paste was maintained, resulting in a minimal decrease in
capacity after the cycle, which could also be a reason for the better contact of the CNT
with the active materials in the matrix. The SEM images obtained after the cycle test
provided direct evidence for the aforementioned results. Figure 5c,d shows the top and
cross-sectional SEM images of each electrode, respectively, after the cycle test. In the top
view, a gap between the active materials and the binder is more obvious in the case of the
CB-based conductor (arrows in Figure 5d, left panel) than that of the CNT-based conductor
(Figure 5c, left panel). In addition, these low bonding strengths resulted in the detachment
of the active materials from the electrode during the cross-sectioning procedure (Figure 5d,
right panel).
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4. Conclusions

A cathode paste was successfully prepared using a mortar-based dry process. The
cathode slurry from the dry process exhibits stable charge–discharge cycle performance
when CNT is adopted as carbon conductor. The maximum capacity of the CNT paste was
205 mAh/g, and the capacity retention rate after 100 cycles was 75%, while the highest
capacity of the CB paste was 175 mAh/g and significantly decreased after 30 cycles. In
the C-rate test (charging at 0.1 C, discharging at 0.1 ~ 1 C), the CNT-based cell showed
better performance than the CB-based cell, especially when discharged at 1 C. Furthermore,
in the impedance analysis, the CB-based cell showed significantly increased resistance
before cycle performance. Thus, the electrochemical performance of the CNT paste was
outstanding compared to the CB paste. The maximum capacity of the CNT paste was higher
than that of the CB paste. The enhanced performance of the CNT paste from the dry process
indicates that a one-dimensional carbon conductor is beneficial for manufacturing a LiB
cathode via a dry process. These fundamental results can provide significant information
to battery designers regarding solvent-free processes in battery production.
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