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Abstract: In this study, we designed mixed metal oxides with doping compound nano-constructions
as efficient electrode materials for supercapacitors (SCs). We successfully prepared the Fe-dopant
with NiCoOx grown on nickel foam (Fe-dopant@NiCoOx@NF) through a simple hydrothermal
route with annealing procedures. This method provides an easy route for the preparation of high
activity SCs for energy storage. Obtained results revealed that the Fe dopant has successfully
assisted NiCoOx lattices. The electrochemical properties were investigated in a three-electrode
configuration. As a composite electrode for SC characteristics, the Fe-dopant@NiCoOx@NF exhibits
notable electrochemical performances with very high specific capacitances of 1965 F g−1 at the
current density of 0.5 A g−1, and even higher at 1296 F g−1 and 30 A g−1, respectively, which
indicate eminent and greater potential for SCs. Moreover, the Fe-dopant@NiCoOx@NF nanoneedle
composite obtains outstanding cycling performances of 95.9% retention over 4500 long cycles. The
improved SC activities of Fe-dopant@NiCoOx@NF nanoneedles might be ascribed to the synergistic
reactions of the ternary mixed metals, Fe-dopant, and the ordered nanosheets grown on NF. Thus,
the Fe-dopant@NiCoOx@NF nanoneedle composite with unique properties could lead to promising
SC performance.

Keywords: capacitive contribution; Fe-dopant; nanoneedles structure; NiCoOx; specific capacitance

1. Introduction

These days, there is a growing insistence on greener and more renewable energy
sources, including hydro-energy and solar power, to replace fossil fuel applications, which
have negative environmental effects [1,2]. Superior electrochemical storing devices that are
safe and eco-friendly with energy durability are therefore needed [3–5]. Supercapacitors
(SCs), as currently recommended energy-storing equipment, have been vitally improved
for electric motors, portable electrical devices, and networks through virtue of great power
densities, ultrafast charging/discharging, and prolonged life cycles [6,7]. It is well known
that operational sample electrodes are important components of SCs. Thus, three rep-
resentative anode electrode materials—denoted graphite electrodes [8–10], transitional
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metal compounds [11–13], and conducting polymers [10,11]—have been very often re-
ported. In general, SCs lag behind fuel cells and batteries in terms of electrochemical
energy density, which limits their practical utility for near-future applications [14,15]. Until
now, various electrode bases that include oxides [16–18], carbons [19,20], and conducting
polymers [21–23] have been exerted.

Developing the specific discharge capacitances (C) is regarded as a feasible path to ef-
fectively improving the energy densities of SC devices [24,25]. Because of the inconsistency
of electrochemical storing principles, pseudocapacitors (PCs) provide superior energy den-
sities compared to electric double-layer capacitors (EDLCs). Binary metal electrodes have
obtained much consideration because of their eco-friendliness, easier fabrication, and great
energy storage performances compared with single metal oxides. NiCo2O4 is composed
of spinel nano-structures through face-centered cubic architecture with variant stacks of
oxygen octahedra (NiO6, CoO6) and tetrahedra (CoO4) [26], which were reported as the
foremost SCs. These materials have great conductivity, ultra high specific capacitances, and
outstanding capacity retention comparable to the single-metal counterpart components
NiO and Co3O4 [27,28]. Nevertheless, the single NiCo2O4 electrode is still limited by its
low rate capability and slow cycles, manifesting its insufficient electro-kinetic characteris-
tics and low specific region resulting from its intrinsic demerits [29]. Very recently, some
scientists reported and designed NiCo2O4 sheet sample materials for SC properties. For
instance, Wang et al. designed NiCo2O4@NiCo2O4 nano-cone types with notable specific
capacitance of 2045 F g−1 and high energy density of 82.7 Wh·kg−1 at 351 W·kg−1 [30].
Moreover, Gao et al. presented NF@NiCo2O4 nano-feather composites with C of 1797 F g−1

and energy density of 53.8 Wh·kg−1 at 802 W·kg−1 [31]. In addition, NiCo2O4 mesoporous
samples have been prepared by J. Acharya et al. with C of 790 F g−1 and energy density
of 42.4 Wh·kg−1 with power density of 746.2 W·kg−1 [32]. To overcome the conductiviy
drawbacks, metal transition elements’ dopant procedures have been considered as efficient,
and serious approaches have been made by supplying defects, tuning the intrinsic electrical
conductivity, and supplying many holes to condense the pathways for ionic diffusion
while the redox reaction occurs [28]. Among the transition elements, cobalt (Co) has been
seen as an essential source for SC application owing to its higher capacity results, cheaper
prices, innate abundance, and eco-friendliness. The iron ion (Fe3+) has been selected as
the dopant element to boost electrical kinetics with conductivity characteristics, raise the
electrochemically activated sites, and accelerate the redox process for obtaining higher
electrochemical performances [28,33,34]. Due to this underlying reason, the usage of the
Fe-based metals on the current collector is considered an effective strategy to enhance
capacity performance, leading to high energy density, increased capacity distribution, and
stable structures. In addition, nickel foam-based nano-composites are widely employed to
improve electrochemical stability for long discharge cycles [35], using their major specific
area, excellent conductivity characteristics, and outstanding thermal stability [36]. Still,
several synthesis methods are unexplored in this field. However, by identifying suitable
synthesis methods for a specific application (such as energy storage), one can achieve
improved supercapacitor performance. To this end, we have adopted this concept and
validated the role of the hydrothermal method and temperature in depositing ternary metal
oxides such as cobalt, nickel, and copper as cations.

Herein, we synthesized a unique ternary mixed metal of Fe-dopant@NiCoOx@NF
nanoneedles with enhanced electrochemical activities for SCs through a hydrothermal
route followed by an annealing process. To understand the synergistic catalytic effects, we
have presented seven different ratios of Fe to study SC performance. The most synergistic
effects of the two metals enable Fe-dopant@NiCoOx@NF nanoneedle composites to pro-
vide high specific discharge times, notable rate capabilities, conserable conductivity, and
stability in cycles while employed in SCs. Fe-dopant@NiCoOx@NF nanoneedles possess
hierarchical sheet constructions that could supply plentiful paths for better ion transporta-
tion. Impressively, the sheet-like Fe-dopant@NiCoOx@NF composite delivered excellent
super-capacitive behavior, including capacitance of 1965 F g−1 with 95.97% superb rate
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capabilities even after 4500 long cycles that were derived from the synergetic contributions
of Ni, Fe, and Co oxides.

2. Experiment
2.1. Materials

All the reagents are analytically graded and used with no further purification. Typical
nickel foam substrates were successfully pretreated with aqueous 3 M HCl solution, ethanol,
and DI water before utilization.

2.2. Fabrication of the Fe-dopant@NiCoOx@NF Nanoneedles

Initially, 1 mmol Co(NO3)2·6H2O and 0.5 mmol Ni(NO3)2·6H2O were added to 150 mL
deionized water (DI) with constant stirring for 45 min to give a light pink precursor. In
addition, Fe-dopant reagent and 43 mg FeCl3·6H2O were were added to the mixture.
Then, 70 mg PVP and 350 mg urea were also added to the above precursors. Light pink
colored solutions were formed through vigorous stirring. The described solution was put
under ultrasonication for 25 min, moved to an autoclave, and optimized at 110 ◦C for 15 h.
Afterwards, the procured black powders were cleansed with DI water and ethanol various
times and dried at 50 ◦C overnight.

2.3. Fabrication of the NiCoOx@NF Nanowires

The NiCoOx@NF nanowires were prepared using an easy hydrothermal technology with
the combination of an annealing process. Additionally, pure NiCoOx nanowires without
Fe-dopant sources were also produced to be comparable with the Fe-dopant@NiCoOx@NF
samples. Eventually, the accumulated precursors were optimized at 350 ◦C for 180 min with
ramping speeds of 3 ◦C·min−1 to obtain NiCoOx@NF nanowires and Fe-dopant@NiCoOx@NF
nanoneedles with abundant nanosheets. The mass loading of active material NiCoOx@NF
nanowires and Fe-dopant@NiCoOx@NF on Ni foam substrate was calculated to be 4.6 mg cm−2

and 6.9 mg cm−2 by subtracting the mass of bare Ni foam substrate from the mass of active
material loaded onto Ni foam.

2.4. Measurements and Characterizations

The as-synthesized product sample was analyzed by X-ray diffraction (XRD, Bruker
D8 Advance, Bruker AXS LTD., Busan, Republic of Korea) with Cu K radiation (1.5406 Å),
and the sample was scanned in the 2q range from 10◦ to 90◦ in steps of 0.02◦ with a volt-
age of 40 kV and a current of 200 mA using a high resolution transmission electron mi-
croscope (TEM, JEM-2100F, JEOL LTD., Busan, Republic of Korea) and a field emission
scanning electronic microscope (FE-SEM, JSM-7800F, JEOL LTD., Busan, Republic of Korea)
instrumented with energy-dispersive spectra (EDS) and X-ray photoelectronic spectro-
scope analyzers with an energy analyzer (XPS; ESCCALAB 250Xi, Thermo Scientific LTD.,
Busan, Republic of Korea). Brunauer–Emmett–Teller (BET) was recorded at 77 K to exam-
ine the specific surface area and pore size utilizing a Micromeritics ASAP 2010 (Busan,
Republic of Korea) absorption analyzer.

2.5. Electrochemical Measurements

A qualitative 3-electrode setup was created in 3 M KOH aqueous electrolytes, and all
the analyses were maintained on electrochemical workstations (Bio-Logic, SP-150, Busan,
Republic of Korea). The as-fabricated electrodes, Ag/AgCl, and platinum (Pt) foil elec-
trodes were proposed as the working electrode, reference electrode, and counter electrodes,
respectively. The CV measurements were conducted at different scan rates ranging from
5 to 100 mV s−1 within the potential window of 0–0.4 eV. The GCD measurement was
carried out at different current densities ranging from 1 to 20 A g−1. The EIS measure-
ments were carried out using Nyquist plots in the frequency range of 0.001 Hze100 KHz.
Therefore, GCD results from varying current densities were procured to quantify the spe-
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cific capacitances of electrodes. The specific capacitances were measured according to the
following equation [37,38]:

C = (I × ∆t)/(m × ∆V) (1)

wherein I is the current density, t is the discharge time, ∆V is the window range for the
GCD procedures, and m denotes the mass of the samples.

3. Results and Discussion

The synthesis process of the unique Fe-dopant@NiCoOx@NF nanoneedle composite is
demonstrated in Figure 1. Initially, the vertical NiCoOx nanoparticles composed of nickel
foam were successively organized and produced by the hydrothermal route. After that, the
Fe-dopant was well decorated and dispersed on NiCoOx nanowires and on nickel foam
and was successively prepared through facile hydrothermal followed by annealing.
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Figure 1. Schematic illustration of the synthesis of Fe-dopant@NiCoOx@NF nanoneedle composite.

The micro-morphologies and the structural characteristics of the as-designed NiCoOx@NF
and Fe-dopant@NiCoOx@NF product samples were analyzed using an FE-SEM microscope.
As shown in Figure 2a, the NiCoOx nanowires were vertically developed and homoge-
neously formed on the nickel foam skeleton structure. Figure 2b,c demonstrated that the
NiCoOx morphologies possess a nanowire formation with steady sizes between 3–5 µm
formulated from abundant nanowires grown on the NF skeleton surface area. As demon-
strated in Figure 2c, all nanowires consist of diameters of ranges between 100 and 200 nm
with a span length of 1–2 µm. Impressively, all wire-shaped structures are attributed
to the many minor internally connected crystals that possess uniform sizes (Figure 2c).
Figure 2d–f corresponds to the Fe-dopant@NiCoOx@NF nanoneedle composite in FE-SEM
images. The influence of Fe-dopant on NiCoOx morphology is clearly seen, and the diame-
ters of the nanowires gradually decreased to be in the range of 40–60 nm, while the lengths
were preserved due to the effect of the Fe-dopant on the NF foam substrate (Figure 2f). It is
seen that the mesoporous property of NiCoOx was forcibly affected by the Fe-dopant. The
Fe-dopant@NiCoOx@NF nanoneedle composite possesses rough interfaces that substituted
for the smoother surfaces of the nanoneedles after annealing.

TEM was used to study the microstructure of the as-developed unique composites. It
can be clearly identified in Figure 3a,b that the formation of individual particles is explicit
and is similar to that found in FE-SEM, with regular particles 3–5 µm in size whose diame-
ters were around 30 to 50 nm. Impressively, these nanoparticles can be attributed to many
uniform crystals, resulting in their mesoporous behavior. Therefore, the TEM results are in
agreement with the SEM outcomes. The hierarchical and novel NiCoOx@NF nanowire mi-
crostructures and their successive ornamentation using Fe-dopant nanosheets could boost
the electrical kinetics and the active sites. The selected area electron diffraction (SAED)
image (shown in the inset of Figure 3b) displays multiple diffraction rings with varied diam-
eters that are indexed with the (220), (311), and (400) phases of the NiCo2O4 spinel [25]. The
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SAED results reveal the polycrystalline characteristics of the sample. To further distinguish
the elemental distributions found in the synthesized Fe-doped@NiCoOx@NF nanosheets,
EDS maps were also created, as demonstrated in Figure 3c–g. EDS mappings of the sam-
ple showed that Fe, Ni, Co, and O elements uniformly covered the entire nanoneedle,
indicating that Fe-dopant particles were successively decorated on NiCoOx.
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XRD was used to investigate the phases of NF, NiCoOx@NF, and Fe-dopant@NiCoOx@NF
samples. As depicted in Figure 4a, the diffraction peaks allocated at 2θ values were
well ascribed to the (220), (311), (222), (400), (422), (511), and (440) spaces of the spinel
NiCo2O4 angle (JCPDS No.00-020-0781) [39]. Moreover, the two representative angles
at 44.53◦and 51.68◦ could be attributed to (111) and (200) phases of NF crystals (JCPDS
card no. 01-089-7128) [40,41]. The XRD patterns do not display any peaks of other phases,
thus manifesting the unalloyed phases of NiCo2O4. These characteristics can affect the
electrochemical performances of NiCo2O4 composites via the formation of sufficient electro-
active sites for the redox mechanism procedures [29].

The distribution of pores and surface areas of the designed NiCoOx-based electrode
samples were extensively investigated by the BET. The N2 absorption–desorption isotherms
are shown in Figure 4b. All the fabricated electrodes displayed type-IV hysteresis with
a loop at high pressure that indicates the mesoporous behaviors. The BET surface area
of Fe-dopant@NiCoOx@NF was detected to be around 118.6 m2·g−1. Hence, the electro-
chemically active sites were distinctly improved because of the Fe-dopant. From the BJH
image, as depicted in Figure 4c, the pore distribution sizes of the Fe-dopant@NiCoOx@NF
composite sample displayed mesoporous distribution characteristics [42]. As illustrated in
Figure 4c, the Fe-dopant@NiCoOx@NF sample consists of large meso/micro-pore volumes.

The comprehensive survey of XPS spectra of the Fe-dopant@NiCoOx@NF composite
sample that were ascribed to Fe 2p, Ni 2p, Co 2p, O1s, and C1s are shown in Figure 5a.
Various chemical states were extensively analyzed, and the outcomes are depicted in
Figure 5b–f. The elevated spectra of Fe 2p signals can be manually deconvoluted into
two existing species, Fe 2p1/2 (at 726 eV) and Fe 2p1/2 (at 710.5 eV), proving that Fe3+

ions were successively doped in the spinel species of the NiCo2O4 sample and outright
oxidational states [28,43]. The Ni 2p spectra (Figure 5c) of elevated resolutions possess
2 sub-peaks at 855.5 and 873.4 eV, corresponding to Ni 2p3/2 and Ni 2p1/2 spin-orbit dou-
blets, respectively. These spin-orbit deconvolution characteristics revealed the existence
of 2 shake-up satellite peaks at 880.3 and 861.4 eV. All the spin-orbits and shake-up satel-
lite signals were closed to Ni3+ and Ni2+. Moreover, the Co 2p spectra deconvolution
confirmed the existence of 2 spinal-orbit doublets, Co 2p1/2 (at 795.4 eV) and Co 2p3/2
(at 780.6 eV). These spinal-orbit doublets consist of 2 supplemented shake-up species
at 803.3 and 786.9 eV, corresponding to Co2+ and Co3+ (shown Figure 5d), respectively.
Additionally, the sub-peaks at 794.6 and 779.1 eV are associated with Co2+, and those at



Nanomaterials 2023, 13, 292 6 of 13

796.1 and 780.4 eV were related to Co3+. The existence of Ni2+, Ni3+, Co2+, and Co3+ peaks
was also reported in recent studies [32]. In addition, the elevated fitting of O1s spectra
(Figure 5e) revealed the occupancy of one strong peak. The main one at 529.6 eV was
ascribed to the metal binding oxides [44] that consist of the oxygen defection (OH− groups)
site in the Fe-dopant@NiCoOx@NF interface. The C1s elevated spectra (Figure 5f) were
further examined to reveal the interactions among the Fe-dopant NiCo2O4 and NF and to
prove the reduction degrees of NF. In conclusion, all XPS spectra proved the existence of
Fe3+, Ni3+, Ni2+, Co2+, Co3+, and O2−, which agree well with the analyzed phases of the
Fe-dopant@NiCoOx@NF nanoneedle composite [45].
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Electrochemical Properties of Electrode Materials

The CV and GCD tests of NF, NiCoOx@NF nanowires (Figure S1), and Fe-dop-
ant@NiCoOx@NF nanoneedle composite electrodes were conducted using the setup of
3 electrodes in 3 M KOH aqueous solution. Figure 6a comprises the CV tests (plotted
at 10 mV s−1) of NF, NiCoOx@NF nanowires, and Fe-dopant@NiCoOx@NF nanoneedle
composite electrodes. A redox couples (oxidation–reduction peaks) can be clearly ob-
served, indicating the Faradic type behavior of the supercapacitor electrode. It can be
observed that the integral regions of CV plots for NF, NiCoOx@NF nanowires, and Fe-
dopant@NiCoOx@NF nanoneedle composite electrodes successively increase, revealing
that Fe-dopant@NiCoOx@NF nanoneedle composite electrodes have the greatest area spe-
cific discharges. To quantify the specific capacitance data, GCD analysis was successively
performed from a 0 to 0.5 V potential window relative to Ag/AgCl. The GCD curves of NF,
NiCoOx@NF nanowires, and Fe-dopant@NiCoOx@NF nanoneedle composite electrodes at
0.5 A g−1 are depicted in Figure 6b. Interstingly, the specific discharge capacitance of Fe-
dopant@NiCoOx@NF nanoneedle composite electrodes (at 0.5 A g−1) is nearly twice that of
the NiCoOx@NF nanowire electrodes and about triple that of the NF sample, indicating the
superior storage charge ability and excellent energy storage performance of the as-grown
composite. Thus, electrolyte ions would powerfully and suitably penetrate the inside
surfaces of the active sample to prodcue the Faradic reaction.
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Figure 6. Electrochemical characteristic of the as-synthesized electrodes in a three-electrode system:
(a) CV curves for NF, NiCoOx@NF nanowires, Fe-dopant@NiCoOx@NF nanoneedle composite elec-
trodes at 10 mV·s−1; (b) GCD plots for NF, NiCoOx@NF nanowires, and Fe-dopant@NiCoOx@NF
nanoneedles at 0.5 A g−1; (c) full CV tests for Fe-dopant@NiCoOx@NF nanoneedle composite elec-
trodes at several applied scan rates; and (d) full GCD tests for Fe-dopant@NiCoOx@NF nanoneedle
composite electrodes at several applied currents.

The existence of an obvious pair of Faradic lines indicates the redox reactions and
the lines are clearly shown in Figure 6c. As demonstrated in Figure 6c, the symmetric
triangular formation of GCD curves exists at the greatest applicable current value of
30 A g−1, reflecting its notable Faradic reactions under the GCD charge mechanisms. As
can be seen in Figure 6d, the storage mechanisms could be classified into two paths: the
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first one consists of the Faradic reaction contributions from the GCD effects, and the second
path possesses the capacitance contribution reactions from the EDLC characteristic. The
assistance of the Fe-dopant has been further studied by quantifying the GCD plots with
numerous Fe amounts. The electrochemical storage mechanisms and the kinetic reactions
were investigated by CV tests. Two pairs of redox species were obtained under the CV
curves in the applied potential range of 0.0–0.5 V, which were mainly interconnected with
the reversible Fe3+, Co3+/Co2+, and Ni3+/Ni2+ redox reactions [46–48]. Consequently, the
electrochemical storage mechanisms of Fe-dopant@NiCoOx@NF nanoneedle composite
samples can be explained via the equations [49–51]:

NiCo2O4 + H2O + OH−↔ 2CoOOH + NiOOH + e− (2)

CoOOH + OH−↔ CoO2 + H2O + e− (3)

Fe3+ + e−↔ Fe2+ (4)

The plots of GCD-specific discharge capacitances versus the specific current of the
Fe-dopant@NiCoOx@NF and NiCoOx@NF samples are shown in Figure 7a. Apparently,
the Fe-dopant@NiCoOx@NF nanoneedle composite electrodes achieve the largest discharge
times at all current values compared with the binary NiCoOx@NF nanowire electrodes. The
Fe-dopant@NiCoOx@NF nanoneedle composite exhibited a high specific capacitance of
1965 F g−1 at 0.5 A g−1, which is much larger than the values found in recent reports (shown
in Table 1). When current values were increased from 0.5 to 30 A g−1, the capacitance of
the Fe-dopant@NiCoOx@NF nanoneedle composite decreased from 1965 to 1289 F g−1,
whereas the NiCoOx@NF nanowire electrodes achieved 1391 F g−1 at 0.5 A g−1. Particularly,
the Fe-dopant@NiCoOx@NF nanoneedle composite achieved high rate capabilities (89.4%)
when compared with pristine NiCoOx@NF nanowires (78.7%), indicating the effect of
iron dopant on the electrical conductivity characteristics and the good construction of the
Fe-dopant with NiCoOx nanowires on NF.
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Figure 7. Electrochemical behavior of the as-developed electrodes in a three-electrode con-
figuration: (a) Specific discharge capacity for as-fabricated NF, NiCoOx@NF nanowires, and
Fe-dopant@NiCoOx@NF nanoneedle composite electrodes measured at diverse specific current,
(b) cyclic stability properties, (c) EIS plots of the prepared electrodes (inset: fitted equivalent circuit),
and (d) EIS plots of the enlarged high-frequency region.
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Table 1. Specific capacitance comparisons between recent reports of transition metals and our highly
efficient Fe-dopant@NiCoOx@NF nanoneedle composite electrodes in a 3-electrode configuration.

Electrode Materials Synthesis Approach Capacitance (F g−1) Cycling Stability
(No. of Cycles) Ref.

NiCo2O4@PPy Electrochemical deposition 1.44 F cm−2 (2 mA·cm−2) 85% (5000) [52]

NiCo2O4@Ni0.85Se Hydrothermal 1454 (1 A g−1) 88.5% (10,000) [53]

MWCNT/GO/NiCo2O4 Hydrothermal 707 (2.5 A g−1) 88% (5000) [54]

NiCo2O4/graphene
hydrogel/Ni foam Electrochemical deposition 3.84 F cm−2 (2 mA·cm−2) 92% (5000) [55]

C/NiCo2O4 Hydrothermal 404 (1 A g−1) 87.1% (1000) [56]

GE/NiCo2O4 Hydrothermal 591.5 (1 A g−1) 88.9% (2000) [57]

NiCo2O4/GO Hydrothermal 709.7 (1 A g−1) 84.7% (3000) [58]

NiCo2O4 nanorods Solvothermal 440 (5 mV·s−1) 94% (2000) [59]

NiCo2O4@MnO2 Hydrothermal 5.3 F cm−2 (1 mA·cm−2) 90.1% (5000) [60]

Fe-dopant@NiCoOx@NF Hydrothermal 1965 F g−1 at (0.5 A g−1) 95.9% (4500) This work

Cycling stability is an additional crucial constituent for evaluating the electrochemical
capabilities of our samples. Cycling stability was quantified under GCD tests at 4 A g−1

over 4500 long cycles (Figure 7b). Figure 7b depicts the cycling plots of NiCoOx@NF
nanowires and Fe-dopant@NiCoOx@NF nanoneedle composite electrodes, respectively. It is
detected that the Fe-dopant@NiCoOx@NF composite could be stable at 95.9% of the starting
capacitance over 4500 cycles. On other hand, the capacitance of the NiCoOx@NF nanowire
samples slightly diminishes to 82.6% of the prior data. Thus, hydrothermal preparations of
Fe-dopant anchored on more stable NiCoOx nanowires successively enhance the stability
properties of composites, indicating excellent electrochemical stability behaviors.

EIS was further conducted to estimate the conductivity characteristics. All EIS plots
displayed two principal categories. As seen in Figure 7c,d, the semi-circle diameters rep-
resent the charge transfer resistances (Rct), while the internal resistance, Rs, is obtained
from the intersection of Nyquist curves with the Z′-axis. Moreover, the angles in the lower
frequency region determine the kinetic mass transfer procedures. The Rct of NiCoOx@NF
nanowires and Fe-dopant@NiCoOx@NF nanoneedle composite electrodes were approxi-
mated to be 0.57 and 0.36 Ω, respectively, revealing that Fe-dopant@NiCoOx@NF nanonee-
dle composites possess rapid kinetic charge transfers and low resistance internals. Such
characteristics favor the paths for ions affected by the Fe-dopant particles to the internal
zone of Fe-dopant@NiCoOx@NF nanoneedle composites [37,38]. Impressively, the Fe-
dopant@NiCoOx@NF nanoneedle composites sample delivered a smaller circled line with
possible vertical slope lines, indicating the ultra-fast rate of ion transport diffusion and
adequate connections between electrolytes and electrode samples.

4. Conclusions

In summary, we have designed an earth-abundant, cost-effective transition metal pair
composed of Fe-dopant and NiCoOx nanowires for SC energy storage performance. The Fe-
dopant with NiCo2O4 nanowires was effectively anchored and occupied on the NF skeleton,
and the impact of synergistic reactions of greater redox activities was observed. Thus, the
prepared Fe-dopant@NiCoOx@NF nanoneedle composite nanostructures resulted in the
inclusion of energy storage active sites and enhanced charge transportation, and it lessened
the transportation pathways for ion diffusion in the electrolyte. The outcomes revealed
that Fe-dopant@NiCoOx@NF nanoneedle composites demonstrate notable electrochemical
reactions as unique electrode materials for SCs. Consequently, the Fe-dopant@NiCoOx@NF
nanoneedle composites exhibited a superior specific capacitance of 1965 F g−1 at 0.5 A g−1.
In addition, the leading rate capability and the outstanding cycling stability were distinctly
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reflected under the capacitance retentions of 95.9% over 4500 cycles. Thus, preparing
a unique nanostructure concept with transition metals will lead to progress in creating
efficient SCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano13020292/s1, Figure S1. Electrochemical characteristic of the as-synthesized electrodes
at a three-electrode system: (a) Full CV tests for NiCoOx@NF nanowires electrode at everal applied
scan rates, and (b) Full GCD tests for NiCoOx@NF nanowires electrode at several applied currents.
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