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Abstract: As a potential anode material for lithium-ion batteries (LIBs), metal tin shows a high
specific capacity. However, its inherent “volume effect” may easily turn tin-based electrode materials
into powder and make them fall off in the cycle process, eventually leading to the reduction of the
specific capacity, rate and cycle performance of the batteries. Considering the “volume effect” of
tin, this study proposes to construct a carbon coating and three-dimensional graphene network to
obtain a “double confinement” of metal tin, so as to improve the cycle and rate performance of the
composite. This excellent construction can stabilize the tin and prevent its agglomeration during
heat treatment and its pulverization during cycling, improving the electrochemical properties of
tin-based composites. When the optimized composite material of C@Sn/NSGr-7.5 was used as an
anode material in LIB, it maintained a specific capacity of about 667 mAh g−1 after 150 cycles at
the current density of 0.1 A g−1 and exhibited a good cycle performance. It also displayed a good
rate performance with a capability of 663 mAh g−1, 516 mAh g−1, 389 mAh g−1, 290 mAh g−1,
209 mAh g−1 and 141 mAh g−1 at 0.1 A g−1, 0.2 A g−1, 0.5 A g−1, 1 A g−1, 2 A g−1 and 5 A g−1,
respectively. Furthermore, it delivered certain capacitance characteristics, which could improve the
specific capacity of the battery. The above results showed that this is an effective method to obtain
high-performance tin-based anode materials, which is of great significance for the development of
new anode materials for LIBs.

Keywords: Sn-based material; graphene; heteroatomic doping; carbon coating; lithium ion battery

1. Introduction

For the past few years, LIBs have played an important role in electric vehicles and
portable electronic devices due to their high energy density [1–4], environmental friendli-
ness and lack of the memory effect [5–7]. In addition, the demands for high-performance
battery anode materials are increasing with the continuous development of technology.
Nowadays, graphite is one of the commercial anode materials for LIBs [8–10], with the
characteristics of low cost, good electronic conductivity, long cycle life and stable capacity.
However, the capacity of commercial graphite is very close to the theoretical specific ca-
pacity of graphite (372 mAh g−1), and it is very difficult to improve the specific capacity
of this kind of materials. In order to meet the development needs of high-performance
LIBs, researchers need to carry out more in-depth research to explore and develop new
high-performance anode materials [11,12].

Among the many potential new anode materials for LIBs, tin-based materials can
form the alloy compound Li4.4Sn with high specific capacity. In particular, the theoretical
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specific capacity of metal tin is up to about 994 mAh g−1, which is more than two times
higher than that of commercial graphite carbon materials [13]. In addition, tin has attracted
researchers’ attention because of its abundant reserves, high safety and environmental
friendliness [14,15], making it considered as a good material to replace the commercial
graphite carbon anode of LIBs. However, tin is prone to cause huge volume expansion
and contraction during the process of insertion and extraction of lithium, resulting in tin
pulverization and its falling off from the current collector. This eventually leads to a serious
reduction of the specific capacity and the deterioration of the cycle and rate performance
of the electrode material [16–18]. In order to alleviate these problems, many researchers
have conducted research on the nanolization of metal tin [15,18–20], the introduction of
an active or inactive buffer matrix [21–23], etc. As a buffer matrix, carbon materials can
effectively relieve the “volume effect” of metal tin and improve the specific capacity and
cycle performance of the electrode material. Carbon materials have good mechanical
properties, flexibility and high specific surface area, which not only is conducive to the
preparation of composite materials, but also can stabilize the structure of metal tin and
improve the cycle life of composite materials [24,25].

Graphene is a typical two-dimensional carbon nanomaterial with large specific surface
area, good mechanical elasticity and superior electrical conductivity. Graphene can not
only provide enough space to alleviate the volume expansion and contraction effect of
metallic tin, but also improve the cyclic stability of the composite and reduce its internal
resistance. Qin et al. [26] prepared Sn and graphene composite materials with NaCl as
the template. The three-dimensional porous graphene network in the composite material
can maintain the structure and interface stability of Sn nanoparticles, inhibit the aggrega-
tion of Sn nanoparticles and buffer the volume expansion, thus significantly enhancing
the electrical conductivity and structural integrity of the overall electrode. Li et al. [27]
prepared a Sn-graphene composite using a novel method of encapsulating Sn nanoparticles
in graphene nanostructures by microwave plasma irradiation of SnO2. The results showed
that the nanostructures of Sn-graphene were fully capable to prevent the volume changes
and agglomeration effects of the Sn nanoparticles, successfully increasing the charging and
discharging rates of the composite material. In addition, previous studies reported that the
introduction of N and S created more active sites and increased the electrical conductivity
of graphene, enabling the composite to exhibit high capacity and stability during cy-
cling [28–31]. Jarulertwathana et al. [28] used a simple and low-cost method to synthesize
high-performance tin/nitrogen-doped graphene-based nanocomposites, and the test results
showed that the presence of pyridine nitrogen on the surface of nitrogen-doped graphene
could improve the electrical conductivity of the composites. Although Sn/graphene can be
prepared by different means, there are still great challenges to avoid pollution and achieve
a low-cost and large-scale preparation. Therefore, it is important to explore and develop
synthetic methods that are simple, fast and controllable to prepare Sn/graphene.

Herein, in order to easily prepare high-performance Sn/graphene composites, we
propose to prepare a sulfur and nitrogen co-doped graphene solution by simple electro-
chemical exfoliation, then to anchor metal tin nanoparticles on the surface of the graphene
by electroless plating and finally to use carbon coating to construct C@Sn/NSGr composites.
The composite showed excellent structural characteristics, as the carbon coating limits the
nanoparticles to a relatively small space, and the high conductivity and flexible graphene
forms a network structure to further limit the tin nanoparticles, thus realizing a “double
confinement” of metal tin. In addition, doping with heteroatoms such as sulfur and nitro-
gen can regulate the electronic properties of the material, accelerate electron transport and
provide more active sites. When used in LIBs, the composites showed good electrochemical
performance, thus providing a new strategy for the preparation of anode composites for
LIBs with high performance.
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2. Experimental
2.1. Preparation of Graphene

Graphene was prepared by electrochemical exfoliation, with a platinum sheet
(20 mm × 20 mm) as the counter electrode and a graphite foil (30 mm × 60 mm) as the
working electrode. They always maintained a distance of 1 cm during electrochemical
exfoliation. Typically, the electrolyte (1 L) contained ammonium sulfate (0.1 mol L−1)
and glycine (0.1 mol L−1), and the constant voltage was set at 12 V. After the complete
exfoliation, the products were filtered and washed repeatedly with deionized water. Then,
the collected products were dissolved in dimethyl formamide (250 mL) and sonicated for
2 h. In order to remove dimethyl formamide, the black suspension was centrifuged for
20 min at 3000 rpm. After that, the black solid was dispersed in deionized water, repeatedly
washed and centrifuged for 20 min at 9000 rpm several times to obtain graphene. To obtain
the surface-treated graphene, 0.5 g of graphene was dissolved in 100 mL of PdCl2 solution
(0.1 g L−1) and sonicated for 20 min. After the ultrasonic treatment, the mixed solution
was stirred for 30 min at room temperature. Then, 0.5 g of sodium phosphite was added
into the above solution, which was stirred for 30 min. After filtration and washing, the
surface-treated graphene was obtained.

2.2. Preparation of the C@Sn/NSGr Composites

The C@Sn/NSGr composites were prepared through electrochemical exfoliation, elec-
troless tin plating and carbon coating treatment, as shown in Scheme 1. Firstly, 20 g of
thiourea and 2 g of sodium phosphite were dissolved in deionized water at 80 ◦C, and
1.5 g of SnCl2·2H2O (7.5 g L−1) was dissolved in hydrochloric acid (5 mL). Then, the SnCl2
solution and the sodium phosphite solution were added to the thiourea solution. After
thoroughly mixing, the treated graphene and an appropriate amount of TritonX-100 were
added. After that, deionized water was added into the solution to 200 mL, and the solution
was stirred at 80 ◦C for 1 h. Then, the resulting black solid was washed and filtered with
deionized water at 80 ◦C, and the Sn/NSGr-7.5 precursor was obtained after drying. In
order to obtain the carbon-coated Sn/NSGr composite, glucose (70 mg) was dissolved
in deionized water, and then the Sn/NSGr-7.5 precursor was added to the solution. The
solution was stirred by a magnetic stirrer at 80 ◦C until the deionized water was com-
pletely evaporated. Finally, the obtained black product was annealed at 500 ◦C for 2 h
in an argon atmosphere. The as-prepared product was called C@Sn/NSGr-7.5. Similarly,
C@Sn/NSGr-5 and C@Sn/NSGr-10 were prepared with an identical procedure, using
5 g L−1 and 10 g L−1 of SnCl2·2H2O, respectively.
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Scheme 1. The formation mechanism of C@Sn/NSGr composite materials.

2.3. Characterization of the Materials

The crystallographic structures of the as-prepared samples were analyzed by X-ray
diffraction (XRD) on Rigaku Ultima IV (Tokyo, Japan) with Cu Ka radiation at 40 kV.
Scanning electron microscopy (SEM) on a Tescan MIRA LMS (Brno, Czech Republic)
and transmission electron microscopy (TEM) on a JEOL JEM 2100F (Tokyo, Japan) were
implemented to characterize the morphology of the materials. The distribution of the
elements of the samples was investigated by an energy-dispersive spectroscope (EDS)
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attached to the SEM. In order to explore the chemical composition of the samples, X-ray
photoelectron spectroscopy (XPS) tests were implemented on a Thermo Scientific K-Alpha
system (New York, NY, USA). Nitrogen adsorption and desorption isotherms tests were
carried on an ASAP 2020 Plus (Norcross, USA) by the Brunauer-Emmett-Teller (BET)
method to investigate the specific surface area and pore structure of the materials.

2.4. Electrochemical Tests

All the as-prepared composite materials were used as active substances to produce
electrodes. The preparation process of the electrodes was as follows. N-methyl pyrrolidone,
Super-P and polyvinylidene fluoride were used as solvent, conductive additive and bond-
ing agent, respectively. The slurry was composed of 80% active material, 10% Super-P and
10% polyvinylidene fluoride and was evenly coated on a copper foil. The pole sheets were
placed in a vacuum oven for 6 h to dry and then cut into circular pieces with a diameter
of 12 mm. The circular electrodes as the working electrodes and Li metal as the counter
electrode were assembled into CR2025 cells in an argon-filled glovebox. The electrolyte
contained 1M LiPF6, which was dissolved in a solution of 50% ethylene carbonate and 50%
diethyl carbonate. A charge–discharge cycling test was performed by a Neware (Shenzhen,
China) test system in the voltage range from 0.01 V to 3 V (vs. Li/Li+). Electrochemical
impedance spectroscopy (EIS) was carried out in an electrochemical workstation (Chenhua,
Shanghai, China) in the frequency range from 10 mHz to 100 kHz at a voltage amplitude of
5 mV. A cyclic voltammetry (CV) test was performed at a scanning rate of 0.1 mV s−1 in
the voltage range from 3.0 V to 1.0 mV at room temperature.

3. Results and Discussion

Figure 1a shows the XRD patterns of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-
10. The peaks near 26.3◦ and 44.4◦ correspond to the characteristic peaks of graphene at
(002) and (101). The diffraction peaks at about 32.0◦, 43.8◦ and 55.3◦ were assigned to
the (101), (220) and (301) diffractions of Sn, corresponding to the crystal structure of Sn
(JCPDS 04-0673). The partial diffraction peaks of Sn were not obvious, which might be
due to the diffraction peaks of carbon and graphene being too prominent or overlapping.
The results of Raman spectroscopy in Figure 1b display a D peak and a G peak at around
1345 cm−1 and 1580 cm−1, respectively. The D peak reflects the disordered structure caused
by carbon defects, and the G peak indicates the degree of graphitization [32,33]. The results
showed that the ID/IG values of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10 were
0.28, 0.21 and 0.16, respectively, which indicated that the C@Sn/NSGr samples had good
lattice structures. Figure 1c displays the nitrogen adsorption-desorption curves of the
C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10 samples. They exhibit the typical
characteristics of the type IV curve, indicating the existence of mesopores in the obtained
materials [34]. Particularly, C@Sn/NSGr-7.5 demonstrated the maximum specific surface
area of 100.8 m2 g−1, while the specific surface areas of C@Sn/NSGr-5 and C@Sn/NSGr-10
were 50.6 m2 g−1 and 96.7 m2 g−1, respectively. Meanwhile, the pore size distribution
calculated by the BJH method showed that the pore size was mostly about 4.5 nm, as shown
in Figure 1d [35], further confirming the samples possessed an abundant mesoporous struc-
ture. This structure has a large specific surface area and pore volume, a unique morphology,
as well as excellent thermal and chemical properties [36]. Such considerable specific surface
area and abundant mesopores contribute to creating a large contact area and promote the
diffusion of lithium ions.

Figure 2 shows the morphological and structural features of graphene, C@Sn/NSGr-5,
C@Sn/NSGr-7.5 and C@Sn/NSGr-10. It can be clearly seen that the obtained graphene
presented a distinct thin layered structure, and the layers were cross-linked. Graphene
displayed a wrinkled structure on the surface, which could be beneficial to increase the
surface area and reaction sites of the materials, as shown in Figure 2a. Compared to
materials without carbon coating (shown in Figure S1), Figure 2b–d show that all the
obtained composites still maintained the layered structure of graphene, and there were
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uniformly distributed particles on the surface of the composites. In addition, after coating
by glucose, the direct contact of the Sn particles was limited to some extent, which could
effectively hinder Sn agglomeration. When the concentration of Sn2+ was low, the amount
of Sn2+ diffusing on the surface of graphene was also low, resulting in only a small part
of Sn2+ being reduced to metal Sn during the reduction process, so less metal Sn became
attached to the surface of graphene. As the concentration of Sn2+ increased, more metal Sn
was reduced on the graphene surface, as shown in Figure 1c,d (the Sn nanoparticles are
marked with yellow circles). Therefore, this showed that Sn can be successfully plated on
graphene by electroless Sn plating, and the agglomeration of Sn can be further limited after
coating by glucose, finally reaching the effect of “double confinement” of metal Sn.

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 1. XRD patterns (a), Raman spectra (b), nitrogen adsorption–desorption isotherm (c) and 
pore diameter distribution (d) of C@Sn/NSGr–5, C@Sn/NSGr–7.5 and C@Sn/NSGr–10. 

Figure 2 shows the morphological and structural features of graphene, C@Sn/NSGr–
5, C@Sn/NSGr–7.5 and C@Sn/NSGr–10. It can be clearly seen that the obtained graphene 
presented a distinct thin layered structure, and the layers were cross–linked. Graphene 
displayed a wrinkled structure on the surface, which could be beneficial to increase the 
surface area and reaction sites of the materials, as shown in Figure 2a. Compared to ma-
terials without carbon coating (shown in Figure S1), Figure 2b–d show that all the obtained 
composites still maintained the layered structure of graphene, and there were uniformly 
distributed particles on the surface of the composites. In addition, after coating by glucose, 
the direct contact of the Sn particles was limited to some extent, which could effectively 
hinder Sn agglomeration. When the concentration of Sn2+ was low, the amount of Sn2+ 
diffusing on the surface of graphene was also low, resulting in only a small part of Sn2+ 
being reduced to metal Sn during the reduction process, so less metal Sn became attached 
to the surface of graphene. As the concentration of Sn2+ increased, more metal Sn was re-
duced on the graphene surface, as shown in Figure 1c,d (the Sn nanoparticles are marked 
with yellow circles). Therefore, this showed that Sn can be successfully plated on gra-
phene by electroless Sn plating, and the agglomeration of Sn can be further limited after 
coating by glucose, finally reaching the effect of “double confinement” of metal Sn. 

Figure 1. XRD patterns (a), Raman spectra (b), nitrogen adsorption–desorption isotherm (c) and pore
diameter distribution (d) of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10.

To further explore the microstructure of C@Sn/NSGr-7.5, TEM and HRTEM obser-
vations were implemented. It can be seen in Figure 3a,b that the Sn nanoparticles were
evenly dispersed on graphene, without obvious agglomeration. The average diameter of
the Sn nanoparticles was approximately 5 nm, which was beneficial to slowing the volume
effect of Sn. Furthermore, Figure 3c shows that there were few layers of graphene in the
composite and the metal Sn nanoparticles were coated with a carbon layer. In addition,
Figure 3d shows that Sn lattice fringes were observed, with a lattice spacing of about 0.206
nm, corresponding to the (220) crystal plane of Sn. Figure 3f–j displays that the elements
C, N, O, S and Sn were uniformly distributed in C@Sn/NSGr-7.5, and the content of each
element was 88.13%, 0.42%, 5.37%, 0.20% and 6.30%, respectively, as shown in Table S1.
Therefore, these results proved that the electrochemical stripping method had successfully
doped the sulfur and nitrogen elements into graphene and that the Sn nanoparticles were
uniformly dispersed on graphene by electroless plating.
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For investigating the composition and bonding state of the surface energy of the
C@Sn/NSGr-7.5 sample, X-ray photoemission spectroscopy (XPS) was carried out. a
clearly demonstrates the presence of C, Sn, O, N, and S elements in C@Sn/NSGr-7.5,
further verifying that the electrochemical exfoliation process could effectively dope the
nitrogen and sulfur elements. Figure 4b shows the high-resolution spectrum of C 1s. Peaks
appeared at about 284.8 eV, 285.3 eV, 285.6 eV and 286.4 eV, corresponding to the C−C/C=C,
C−S, C−N and C−O bonds, respectively [37]. In the high-resolution spectrum of Sn 3d
(Figure 4c), The Sn 3d5/2 peak was split into three peaks with binding energies of 487.6 eV
(Sn4+), 487 eV (Sn2+) and 485.2 eV (Sn), and the Sn 3d3/2 peak was split into three peaks
with binding energies of 496.1 eV (Sn4+), 495.2 eV (Sn2+) and 493.8 eV (Sn). These results
proved that electroless plating could reduce Sn2+ to metallic tin. There was a combination
of Sn4+ and Sn2+ in the tin, which could be caused by the partial oxidation of metal Sn,
consistent with the results of the O 1s spectrum [38,39]. Three peaks appear at about
531.8 eV, 534.0 eV and 531.0 eV in Figure 4d, which refer to the bonds of C=O, C−O and
Sn−O−C, respectively. Figure 4e shows that three peaks were located at about 401.7 eV,
399.8 eV and 398.5eV, which corresponded to the bonds of graphitic N, pyridinic N and
pyrrolic N [40], respectively. In the high resolution of S 2p, Figure 4f demonstrates that there
were three peaks at around 163.7 eV, 165.2 eV and 168.8 eV, which were assigned to the
chemical bond energies of C−S−C, C−S−C and C−SOx [41,42], respectively. Noteworthily,
nitrogen and sulfur co-doping contributed to increase the lithium storage capacity and
promote charge transport and ion diffusion.
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The CV curve of C@Sn/NSGr-7.5 in Figure 5a displays a peak at around 0.5 V during
the first lithium insertion process which disappeared in the subsequent two cycles [23].
There was a sharp peak appearing near 0.01 V, which was attributed to the formation of
the LixSn alloy and the insertion of lithium into the carbon layers to form LixC [31,43]. In
the following anodic process, the peaks appearing at about 0.25 V and 1.10 V indicated the
processes of Li+ extraction from the carbon layers and LixSn conversion to Sn, respectively.
Distinctly, similar and overlapping CV curves appeared in the subsequent two cycles,
indicating a good electrochemical reversibility and stability of C@Sn/NSGr-7.5 during
cathodic and anodic processes. Figure 5b–d presents the charge–discharge curves of
C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10 at 0.1 A g−1. All the electrodes
demonstrated a sloping voltage platform at around 1.00–0.25 V and 0.25–0.01 V during
the initial lithiation process, which was related to the formation of LixSn and the insertion
of Li+ into the carbon layers and graphene, respectively. During the initial delithiation
process, there was a sloping voltage platform at 0.50–1.10 V in all composite materials, in
connection with the extraction of Li+ from LixSn. In the subsequent cycles, all the electrodes
demonstrated the disappearance of the discharge voltage platform of the first cycle (around
0.50–0.80 V), which could be due to the formation of a stable SEI film. These above results
are consistent with the results of CV in Figure 5a. In addition, it can be seen that the initial
discharge specific capacity of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10 were
1436 mAh g−1, 1346 mAh g−1 and 1294 mAh g−1, corresponding to the charge specific
capacity of 658 mAh g−1, 692 mAh g−1 and 694 mAh g−1, respectively. This huge loss
of specific capacity might be caused by the formation of SEI or the decomposition of the
electrolyte. Although the initial coulombic efficiency of all electrodes was low, it could reach
about 95% during the subsequent cycles, indicating that the electrodes tended to be stable
and possessed a very high cyclic reversibility. To verify the capacity of the C@Sn/SNGr-7.5
composite, the theoretical capacity of C@Sn/SNGr (Sn/C = 6.3:88.13 wt%) was calculated
to be about 390 mAh g−1 based on the theoretical capacity of tin (994 mAh g−1) and the
theoretical capacity of graphene and carbon (≈372 mAh g−1) [44]. The prepared composite
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materials exceed the theoretical capacity of 390.5 mAh g−1. This could be due to the fact
that the composite material had a considerable mesoporous structure and presented sulfur
and nitrogen co-doping, which are beneficial to improve the lithium storage capacity of the
composite materials [45,46].
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Figure 6a exhibits the cycle performances of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and
C@Sn/NSGr-10 at the current density of 0.1 A g−1. The specific capacity of the C@Sn/NSGr-
5 electrode was low, which was due to the low content of Sn in the composite. As the
concentration of stannous chloride increased, the specific capacity of the composite also
increased. Distinctly, the C@Sn/NSGr-7.5 electrode delivered a higher reversible capacity
than C@Sn/NSGr-5 and C@Sn/NSGr-10. The specific capacity of the composites coated by
carbon was higher than that of the uncoated composites, as shown in Figure S2. Particularly,
the C@Sn/NSGr-7.5 electrode had a good cycling performance, which could be due to the
good synergistic effects of heteroatom-doped graphene, carbon coating and appropriate
Sn concentration. The huge loss of specific capacity during the first charge–discharge
process could be caused by the formation of the SEI or the decomposition of the electrolyte.
With a continuous circulation, the electrolyte constantly wetted the composite material,
promoting the lithium ions to be embedded in the deep interior of the composite materials,
thus improving the lithium storage capacity of the composite materials. Meanwhile, the
doping of sulfur and nitrogen induced defects in the graphene, increasing the insertion
sites of lithium and providing a higher charge capacity during the cycles [45]. Figure 6b
demonstrates the rate performance of C@Sn/NSGr-5, C@Sn/NSGr-7.5 and C@Sn/NSGr-10
at different current densities from 0.1 to 5 A g−1 and finally back to 0.1 A g−1. It can be seen
that all the electrodes were relatively stable at each rate. Particularly, the C@Sn/NSGr-7.5
electrode displayed the best rate performance at each current density, and the reversible
charge capacity was 663 mAh g−1, 516 mAh g−1, 389 mAh g−1, 290 mAh g−1, 209 mAh g−1

and 141 mAh g−1, respectively. When the current density was restored to 0.1 A g−1

again, C@Sn/NSGr-7.5 still displayed a high reversible charge capacity of 665 mAh g−1,
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proving that it possessed a high rate performance and good cyclic reversibility. Figure 6c
demonstrates the electrochemical impedance spectra of C@Sn/NSGr-5, C@Sn/NSGr-7.5
and C@Sn/NSGr-10. All the electrodes showed similar Nyquist plots with a semicircle in
the high-frequency range and a sloping straight line in the low-frequency range, attributed
to the charge transfer resistance (Rct) and the Warburg resistance (Zw), respectively. It
can be obviously seen that the charge transfer resistance value of the C@Sn/NSGr-7.5
electrode (355 Ω) was the smallest, compared to those of the C@Sn/NSGr-5 (474 Ω) and
C@Sn/NSGr-10 electrodes (368 Ω), suggesting that the C@Sn/NSGr-7.5 electrode had
a higher electron conductivity. All the C@Sn/NSGr electrodes exhibited good electrical
conductivity, which could be due to the Sn nanoparticles shortening the transport path of
the electrons, helping to improve their transport capacity. Sulfur and nitrogen doping in
graphene could increase the speed of electron/ion diffusion and transport, which could
the improve the reaction kinetics of composite materials [30,45]. Meanwhile, the good
synergistic effect of carbon coating, sulfur and nitrogen co-doping of graphene and Sn
nanoparticles could also improve the conductivity of the composite materials. Furthermore,
according to the linear relationship between Z′ andω−1/2, the C@Sn/NSGr-7.5 electrode
displayed a slope of 231.49, which was lower than that of the C@Sn/NSGr-5 (1341.54)
and C@Sn/NSGr-10 electrodes (527.01), suggesting that the C@Sn/NSGr-7.5 electrode
possessed the faster interface kinetics of Li+. According to the formulas Z′ = Re + Rct +
σω−1/2 and D = (R2T2)/(2A2n4F4C2σ2), the ion diffusion coefficient of C@Sn/NSGr-7.5
(9.519 × 10−13 cm2 s−1) was higher than those of C@Sn/NSGr-5 (2.834 × 10−14 cm2 s−1)
and C@Sn/NSGr-10 (1.837 × 10−13 cm2 s−1), which further proved that the C@Sn/NSGr-
7.5 electrode had a better electrochemical performance. Moreover, Figure S3 shows the
Nyquist plots and the corresponding value of σ before and after five cycles, which indicate
that a considerable electronic conductivity of C@Sn/NSGr-7.5 could be obtained during
the cycling process. This could be due to the increased number of lithium storage sites after
cycling [47]. Nitrogen and sulfur doping in graphene improves the electronic conductivity,
increases the rate of electron/ion diffusion and transport, and improves the reaction
kinetics [30,45].

Figure 7a shows the CV curves at different scan rates, from 0.1 to 1.0 mV s−1 to explore
the reaction kinetics of the C@Sn/NSGr-7.5 electrode. It can be seen that there is a pair
of redox peaks at about 0.26 and 0.01 V in the CV curves. The capacitive effect could be
calculated according to following equation [48]:

i = avb (1)

where a and b refer to adjustable parameters, and i and v represent the current density and
the scanning speed, respectively. Generally, when the value of b tends to 1, the capacitive
behavior is dominant. Figure 7b shows that the values of b were 0.51 and 0.72 at about
0.26 V (peak 1) and 0.01 V (peak 2), respectively, which indicated the C@Sn/NSGr-7.5
electrode allowed diffusion-controlled and capacitance-controlled electrochemical reaction
processes [49,50]. In addition, an equation was used to study the capacitive effects (k1v)
and the diffusion-controlled insertion process (k2v1/2) of C@Sn/NSGr-7.5:

i(V) = k1v + k2v
1/2 (2)

where v refers to the scan rate. Usually, the value of k1 and k2 could confirm the ratio of the
current, which is associated with the surface capacitance and sodium ion semi-infinite linear
diffusion. Figure 7c shows that the C@Sn/NSGr-7.5 electrode provided a 71% (orange)
capacitive contribution to the total capacity at a scan rate of 1 mV s−1, which is in agreement
with the results in Figure 7b. Figure 7d shows that the capacitive charge storage contribution
increased with the increase of the sweep rate from 0.1 to 1 mV s−1, reaching 45%, 48%,
61%, 64%, 66% and 71% of the total capacity. These results convincingly confirmed that
the C@Sn/NSGr-7.5 electrode possesses diffusion-controlled and capacitance-controlled
lithium storage ability and may improve the electrochemical performance of batteries [51].
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and at around 0.2 V (delithiation) (b), capacitive charge storage contribution (orange) and diffusion
charge storage contribution (gray) at 1 mV s−1 (c), normalized contribution ratio of capacitive (orange)
and diffusion-controlled (gray) capacities at different scan rates (d) for C@Sn/NSGr-7.5.

4. Conclusions

In summary, we presented a high-efficiency preparation of C@Sn/NSGr for LIBs
through a facile electrochemical exfoliation, electroless plating and carbon coating asso-
ciated strategy. The results showed that the Sn nanoparticles were evenly distributed on
the surface of graphene, without obvious agglomeration, indicating graphene and carbon
coating can effectively limited the agglomeration of Sn. Moreover, the optimized composite
material (C@Sn/NSGr-7.5) demonstrated a high specific capacity of about 667 mAh g−1

after 150 cycles at the current density of 0.1 A g−1, exhibiting good cycle performance. It
displayed a good rate performance with a specific capacity of 663 mAh g−1, 516 mAh g−1,
389 mAh g−1, 290 mAh g−1, 209 mAh g−1 and 141 mAh g−1 at 0.1 A g−1, 0.2 A g−1,
0.5 A g−1, 1 A g−1, 2 A g−1 and 5 A g−1, respectively. Due to the synergistic effect of the
high specific capacity of Sn and the excellent cycling stability of graphene and carbon,
the C@Sn/NSGr composites exhibited an excellent electrochemical performance. There-
fore, this study provides an efficient preparation approach to improve the electrochemical
properties of tin-based anode materials for LIBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13020271/s1, Figure S1: SEM images of Sn/NSGr-5 (a),
Sn/NSGr-7.5 (b), and Sn/NSGr-10 (c); Table S1: Results of elemental analysis on C@Sn/NSGr-7.5
by EDS; Figure S2: Cyclic properties of Sn/NSGr-5, Sn/NSGr-7.5 and Sn/NSGr-10 at 0.1 A g−1;
Figure S3: Nyquist plots before and after 5 CV cycles of C@Sn/NSGr-7.5 (a), the relation of the
Z′–ω−1/2 curves in the low-frequency region of C@Sn/NSGr-7.5 (b).
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20. Nowak, A.P.; Trzciński, K.; Szkoda, M.; Trykowski, G.; Gazda, M.; Karczewski, J.; Łapiński, M.; Maskowicz, D.; Sawczak, M.;
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