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Abstract: The concept of nanosatellite technology becomes a viable platform for earth and space
observation research to minimize cost and build time for the payload. The communication approach
is the essential fundamental attribute of a satellite, of which the antenna is a crucial component for
forming a communication link between the nanosatellite and the earth. The nanosatellite antenna
must comply with some special requirements like compact size, lightweight, and high gain with a
space-compatible structure. This paper proposes a compact metamaterial-based Ku-band antenna
with circular polarization for the nanosatellite communication system. The designed antenna obtained
an impedance bandwidth of 2.275 GHz with a realized gain of 6.74 dBi and 3 dB axial beamwidth
of 165◦ at 12.10 GHz. The overall antenna size of the designed is 0.51λ × 0.51λ × 0.17λ, which is
fabricated on Rogers 5880 substrate material. The antenna results performance has been examined
with a 1 U nanosatellite structure and found suitable to integrate with metallic and nonmetallic
surfaces of any miniature nanosatellite structure.

Keywords: antenna; circular polarization; Ku-band; metamaterial; nanosatellite

1. Introduction

With the advancement of technology, nanosatellite has drawn remarkable contempla-
tion from space researchers due to the feasibility of payload missions within a few cubic
centimeter’s size satellite structure and minimal expense. Nowadays, this type of small
satellite is widely used in various sectors, like astronomy, astrobiology, earth observation,
atmospheric science, ecology, meteorology, telecommunications, disasters mitigation and
management, education, and training [1–4]. Smooth data communication is very crucial for
nanosatellite missions, where the antenna plays a key role in establishing communication
between the satellite and the earth. The nanosatellite antenna design becomes complex to
antenna researchers due to the inverse proportionality relation between antenna perfor-
mance and size [5–7]. Most nanosatellite payloads demand high gain, compact and circular
polarized antenna for a smooth communication system [2].
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Various antennae have been designed in Ku-band applications, but most have linear
polarization. A linear polarized dual-band patch dipole antenna was developed in [8] for
Ku and Ka-band uses, with resonant frequencies at 16.5 and 32.5 GHz. In [9], a larger size
patch antenna was presented for S, C and Ku band frequencies. The antenna shows the reso-
nant frequency at 2.4, 5.0, and 15.5 GHz frequencies with a low gain value. Different designs
of Ku band antenna are presented in [10–14], where all the design has linear polarization
and lower gain. Several researchers also focused on designing compact circular polarized
(CP) high-gain antenna for small satellite communication systems [7,15,16]. In [12], a cir-
cular patch antenna was designed, which has CP, but the antenna size is 40 × 48 mm2.
In [17], a patch antenna has been developed for Ku-band satellite application with a size of
20 × 20 mm2. The antenna shows circular polarization from 12.30 to 12.46 GHz. However,
the gain of this antenna at this band is 1.6 dB. Similarly, Vijayvergiya et al. proposed a
patch antenna with the size of 22.13 × 21.9 mm2, which operates at 12.2–14.5 GHz and has
a linear polarized gain of 4.8 dB at 12.2 GHz [18]. In [19], a frequency selective surface (FSS)
integrated patch antenna has been presented for a wide X and Ku band communication sys-
tem, where the antenna can operate from 5 GHz to 24.5 GHz with the highest gain of 5.9 dB.
The major limitation of this antenna is the overall size of 52.8 mm × 52.8 mm × 21.2 mm,
which is not compatible with the 1 U (One unit) nanosatellite system. In [20], a printed
monofilar antenna is offered for the Ku-band CubeSat application, which provides a gain
of 8.5 dBi at 12.2 GHz with an overall size of 18 mm × 18 mm × 14 mm. The square cavity
structure of the antenna makes complexity to mount with a 1 U nanosatellite structure,
which is a major concern for nanosatellite antenna researchers. Therefore, from the study, it
is shown that there is a great demand for designing a Ku-band antenna for a 1 U nanosatel-
lite communication system to overcome the limitations of lower gain, larger size, complex
structure, and circular polarization, etc. The metamaterial structure is attractive in antenna
design, improving the gain and reducing interference with the satellite structure [21–23].

This paper proposes a metamaterial-inspired Ku band antenna for a 1 U nanosatellite
communication system. The proposed antenna is a non-deployable planar structure with
sufficient mechanical robustness to realize the maximum design flexibility of the limited
volume 1 U nanosatellite structure.

2. Antenna Design Methodology

The developed antenna is intended to provide effective uplink and downlink com-
munication between small satellites and the earth. The antenna prototype consists of two
layers, shown in Figure 1. One layer is a truncated square patch antenna (Figure 1a),
and another layer is an interconnected split rectangular metamaterial array (Figure 1b).
Both layers are interconnected with conducting reflectors shown in Figure 1c. The space
between the antenna and the metamaterial layer is 1.69 mm. Both layers are connected
with a 0.25 mm thick conductive reflector wall, which also provides a strong mechanical
strength of the structure. The antenna is fabricated on space-quality substrate material
Rogers 5880 with a thickness of 1.575 mm, a dielectric constant of 2.2 and a dielectric loss
tangent of 0.0009. The antenna is fed by a 50 Ω Sub-Miniature version A (SMA) connector.
The optimized structural layout parameters are listed in Table 1. The overall size of the
antenna will be 15 mm × 15 mm. Figure 1b shows the designed net-like hexagonal split
ring base metamaterial structure, which has equal dimensions to the antenna and all other
design parameters of the antenna listed in Table 1. The metamaterial structure has been
characterized by considering perfect magnetic (PMC) and perfect electric (PEC) boundary
conditions along the y and x-axis. The designed metamaterial-based antenna has been
presented in Figure 1c. The designed metamaterial structure simulation setup is presented
in Figure 1d [24].
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Figure 1. (a) Layer 1, (b) Layer 2, (c) perspective view and (d) Simulation setup of the metamaterial.

Table 1. Layout parameters of the presented antenna.

Parameters Value (mm) Parameters Value (mm)

L 14.22 L7 2.0
L1 5.93 Lf 0.4
L2 5.93 Wf 0.2
L3 2.36 g1 0.2
L4 12 g2 0.2
L5 1.85 h 1.57
L6 2 g 4.83
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The metamaterial property like relative permittivity (εr) and permeability (µr) has
been calculated from scattering parameters by using Equations (1) and (2) [25–27].

εr = 2/jk0d × (1 − S11 − S21)/(1 + S11 + S21) (1)

µr = 2/jk0d × (1 − S21 + S11)/(1 + S21 − S11) (2)

Figure 2a,b shows the metamaterial property of the designed metamaterial reflector.
The higher negative permeability has been achieved at the operating frequency of the
antenna (10.18–13.05 GHz), which is µr ≥ −600. On the other hand, higher positive
permittivity appeared in the same frequency range. This single negative feature reflected
back the incident electromagnetic wave. The phase information of the reflected wave can
also be understood from the phase value of the reflection coefficient. Figure 2c shows the
phase value of the proposed metamaterial reflection operating frequency relayed in the
+90◦ to −90◦ range. This is characterized as an artificial magnetic conductor (AMC) because
the operating bandwidth of the AMC is considered from +90◦ to −90◦, and the resonant
frequency is considered at 0-degree. The AMC-type metamaterial structure mimics the
attributes of the perfect magnetic conductor. The AMC, which has PMC characteristics, can
reflect the incident wave with a 0-degree phase, which made a constructive interference
with the antenna-radiated wave in the forward direction shown in Figure 2d. Hence, the
directivity and gain of the antenna improve significantly, and interference of the signal
with the back side element of the antenna has been reduced.
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Figure 2. Metamaterial characteristics (a) permeability; (b) permittivity. (c) reflection phase, and
(d) AMC wave interference.

3. Results and Discussions

The simulated antenna has been fabricated and measured to validate performances.
The antenna’s reflection coefficient is presented in Figure 3. The antenna achieves −10 dB
impedance bandwidth of 1.87 GHz (11.18 GHz to 13.05 GHz) in simulation and 2.275 GHz
(10.85 to 13.125 GHz) in measurement. Both results seem identical. However, a little
mismatch is observed due to fabrication and measurement tolerances.
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Figure 3. Reflection coefficient results.

The simulated 3D radiation pattern of the projected antenna at 12.1 GHz is demon-
strated in Figure 4a. The antenna shows 6.53 dBi of realized gain with very low back radia-
tion. The substantial decrease in back radiation occurred due to the AMC metamaterial
layer. Additionally, the 3 dB simulated axial ratio is also presented in Figure 4b. The antenna
shows approximately 165◦ of 3 dB axial beamwidth with stable circular polarization.
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The radiation characteristics have been measured in Satimo nearfield measurement
system, shown in Figure 5. The antenna exhibits realized gain of 6.61 dB and 6.7 dB
without nanosatellite (free space) and with nanosatellite structure, respectively. Besides,
axial beamwidth at 12.1 GHz has also been measured, shown in Figure 6. The antenna
attained 3 dB axial beamwidth of 162◦ and 158◦ for phi 0◦ and phi 90◦, correspondingly.
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Figure 5. The radiation pattern of the antenna (a) measurement system and (b) measured radiation
pattern.

The developed antenna has been integrated into the standard 1 U nanosatellite archi-
tecture to investigate the performance in the real environment. In both simulation and
measurement, the antenna reveals well agreement in both measurements. The radiation
pattern with 1 U nanosatellite structure at 12.1 GHz is depicted in Figure 7. In Figure 7a,
only antenna (without metamaterial layer) has been integrated, and radiation performances
have been observed where the antenna reveals realized gain of 4.7 dB. On the other hand,
the antenna with a metamaterial layer has been integrated to observe radiation perfor-
mances, where the antenna reveals realized gain of 6.69 dB. Therefore, the metamaterial
significantly improves antenna gain and reduces the coupling effect with satellite structure.
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Figure 7. Antenna radiation pattern with 1 U nanosatellite structure at 12.1 GHz (a) without AMC
metamaterial and (b) with metamaterial.

This article presents a compact Ku-band CP antenna for the nanosatellite communica-
tion system. The antenna’s gain significantly increases by placing an AMC in the back side
of the antenna, which also reduces the antenna’s signal interference with other nanosatellite
components. The antenna’s performance has been investigated with a 1 U nanosatellite
structure and found suitable to integrate with metallic and nonmetallic surfaces of any
miniature nanosatellite structure. A details comparison table of the projected antenna with
the existing antenna has been presented in Table 2. Where most of the shows liner polar-
ization except [12], but the antenna size is larger than the projected antenna. Additionally,
antenna performance does not investigate with satellite structure. The antenna presented
in [28] and [11] shows higher gain, but the antenna size is very large compared to the
nanosatellite structure; polarization is the liner. Finally, the compact size, high gain, circular
polarization, and investigation with 1 U nanosatellite structure makes proposed antenna a
potential candidate for Ku-band 1 U nanosatellite communication systems.
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Table 2. Comparison with the existing antenna.

Ref Antenna Type Size Substrate Resonant
Frequency

Bandwidth
(GHz)

Gain
(dBi) Polarization

[8] Patch-dipole
antenna 10 × 10 × 1.524 TSM-DS3 16.5

32.5
15.9–17.7
31.4–34.4 6.8 Linear

[9]

Circular slot
rectangular patch
and an inverted-L

strip

40 × 40 × 1.6 FR-4
2.4
5.0

15.5

2.10–2.70
4.82–6.10
12.73–18

2.35
4.41
4.71

Linear

[29]
Circular slot patch

and parasitic
inverted L-shape

40 × 40 × 1.6 FR-4 2.4
5.0

2.02–2.62
5.08–6.27
11.97–18

2.27
4.02
5.05

Linear

[10]
Arrow Shaped

Microstrip Patch
Antenna

12 × 15 × 1.6 FR-4 17 6.75–18.96 7.41 Linear

[14] Modified multi-slot
patch

RT5880,
graphene

11.46
15.42 8–18 6.98 8.14 Linear

[28]
Defected ground

antenna with
Microstrip-line-fed

36 × 36 × 0.762 Duroid-5880 10.8
16 9.8 to 17.55 5–12.08 Linear

[13] Low-profile patch
antenna 20 × 20 × 1.6 FR-4 12.38, 14.40 11.69–13.24

13.72–15.07 1.6–4.2 Linear

[12]
Hexa-decagon
circular patch

antenna with DGS.
40 × 48 × 1.59 FR4 13.67

15.28
13.179–14.033
14.584–15.724

8.01
6.01 CP

[30]
Defected ground

and multiple slots
antenna

20 × 20 × 1.6 FR4 N/A
11.40–12.91
13.86–14.53
17.20–17.86

2.08–6 Linear

[11]
Antenna based on

single layer
meta-surface

80 × 80 × 14.5 FR4 N/A 12–14.13 14.2 Linear

proposed AMC base patch
antenna 14.22 × 14.22 × 4.83 Duroid-5880 12.1 11.18–13.05 6.8 CP

4. Conclusions

This paper presents a non-deployable circular polarized antenna for the Ku-band 1 U
nanosatellite communication system, which is highly mechanical robust with 1 U structure.
The antenna prototype has been designed, fabricated, and measured. By adopting AMC
metamaterial layer with reflector wall technique, the antenna achieves circular polarization
with a realized gain of 6.69 dB with 1 U nanosatellite structure. Therefore, an extensive and
comprehensive performance analysis of the proposed antenna shows its suitability with a
nanosatellite environment.
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